With Significant Electrode Or Terminal Feature Patents (Class 361/278)
  • Patent number: 7464459
    Abstract: A method of forming an actuator and a relay using a micro-electromechanical (MEMS)-based process is disclosed. The method first forms the lower sections of a square copper coil, and then forms a magnetic core member. The magnetic core member, which lies directly over the lower coil sections, is electrically isolated from the lower coil sections. The method next forms the side and upper sections of the coil, followed by the formation of an overlying cantilevered magnetic flexible member. Switch electrodes, which are separated by a switch gap, can be formed on the magnetic core member and the magnetic flexible member, and closed and opened in response to the electromagnetic field that arises in response to a current in the coil.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: December 16, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Trevor Niblock, Peter Johnson
  • Publication number: 20080297974
    Abstract: A method of manufacturing capacitive elements for a capacitive device which comprises one or more layers is provided. At least one layer is etched from a first surface to a second surface thereof to form two sections of the layer, such that the sections are movable relative to one another, and such that a wall extending from the first surface to the second surface is formed on each of the two sections, the walls defining a gap therebetween. An etching step forms multiple recesses in each wall such that multiple capacitive elements are defined between adjacent recesses, the capacitive elements of one wall being offset from those of the other wall when the sections are stationary with respect to one another. A corresponding capacitive device is also provided.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Applicant: INFINEON TECHNOLOGIES SENSONOR AS
    Inventors: Terje Skog, Svein Moller Nilsen
  • Patent number: 7446994
    Abstract: A lower movable electrode 35, having line sections 35a, 35a on both ends and a capacitor section 35b in the center, and an upper movable electrode 37, having line sections 37a, 37a on both ends and a capacitor section 37b in the center, are placed so that the capacitor sections 35b, 37b face each other, and drive electrodes of lower-movable-electrode actuators 27a, 27b, 27c, 27d driving the lower movable electrode 35 and upper-movable-electrode actuators 29a, 29b, 29c, 29d driving the upper movable electrode 37 are electrically separated from the lower movable electrode 35 and upper movable electrode 37. These actuators 27a to 27d and/or 29a to 29d move the lower movable electrode 35 and/or upper movable electrode 37 to adjust the distance between both capacitor sections 35b, 37b, and control the electrostatic capacity.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: November 4, 2008
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Tadashi Nakatani
  • Patent number: 7440254
    Abstract: A micro-electromechanical variable capacitor with first and second capacitor plates spaced apart to define a gap therebetween. The first plate has two control electrodes and an active electrode. The second plate is movable relative to first plate when a voltage is applied to produce a potential difference across the control electrode and the second capacitor plate. This has the effect of varying the capacitance of the capacitor. The facing surface of at least one of the plates is formed in such a way that it has a roughened surface. The degree of roughness is sufficient to prevent the facing surfaces adhering together through stiction.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: October 21, 2008
    Assignee: RFMD (UK) Limited
    Inventor: Andrew James Gallant
  • Publication number: 20080218933
    Abstract: A micro-device includes a movable part, a frame and a connecting part. The movable part has a main portion, a first capacitor electrode and a first driver electrode. The capacitor electrode and the driver electrode have electrode teeth extending from the main portion. The frame includes second capacitor and driver electrodes, where the second capacitor electrode has electrode teeth extending toward the first capacitor electrode, and the second driver electrode has electrode teeth extending toward the first driver electrode. The connecting part connects the movable part to the frame. The first and second capacitor electrodes have their electrode teeth overlapped in their initial position. The movable part is rotatable for varying the extent of the overlapping between the first and second driver electrodes.
    Type: Application
    Filed: February 26, 2008
    Publication date: September 11, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Xiaoyu Mi, Takeaki Shimanouchi, Masahiko Imai, Satoshi Ueda
  • Publication number: 20080190204
    Abstract: A variable capacitor including at least two interdigitized combs provided with teeth, the cross section of the end of a tooth adjacent to the other comb being greater than the cross section of the end of a tooth remote from the other comb. The variable capacitor can be used in gyrometers and accelerometers.
    Type: Application
    Filed: February 1, 2006
    Publication date: August 14, 2008
    Applicant: COMMISSARIAT AL'ENERGIE ATOMIQUE
    Inventors: Jean-Sebastien Danel, Bernard Diem
  • Patent number: 7411774
    Abstract: A charge storage device having a capacitance that is variable by alteration of the relative permittivity of the dielectric positioned between conductive electrodes within the device. The device consists of two conductive plates sandwiching a conductive grid, typically embedded within a dielectric material. Charging the grid with a negative or positive potential changes the value of the dielectric constant (the relative permittivity) and thereby changes the capacitance of the device.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: August 12, 2008
    Inventor: William F. Leeper, II
  • Patent number: 7400488
    Abstract: A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 15, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Jonathan J. Lynch, Sarabjit Mehta, John Pasiecznik, Peter Petre
  • Patent number: 7400489
    Abstract: A method of driving a parallel-plate variable micro-electromechanical capacitor includes establishing a first charge differential across first and second conductive plates of a variable capacitor in which the first and second conductive plates are separated by a variable gap distance, isolating the first and second plates for a first duration, decreasing the charge differential to a second charge differential which is less than the first charge differential and in which the second charge differential corresponds to a second value of the variable gap distance.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: July 15, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Andrew L. Van Brocklin, Eric Martin
  • Patent number: 7394641
    Abstract: A MEMS tunable capacitor and method of fabricating the same, includes a plurality of fixed charge plates on a substrate, the plurality of fixed charge plates having a same height, being arranged in a shape of comb-teeth and being electrically connected to one another, a capacitor dielectric layer covering the plurality of fixed charge plates, a movable charge plate structure spaced apart from the capacitor dielectric layer, and arranged on the plurality of fixed charge plates, wherein the movable charge plate structure includes a plurality of movable charge plates arranged corresponding the plurality of fixed charge plates, and an actuator connected to the movable charge plate structure allowing the movable charge plate structure to move in a horizontal direction.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Kang-soo Chu, Weon-Hong Kim
  • Publication number: 20080151468
    Abstract: Substrates with slotted metals and related methods are provided. According to one aspect, a slotted metal attached to a substrate can include a metal patterned with slots less than or about equal to 2 microns. The slots can result in line widths that are approximately the size of a single metallurgical grain in an unpatterned layer.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 26, 2008
    Inventors: Arthur S. Morris, Dana DeReus, Shawn J. Cunningham
  • Patent number: 7385800
    Abstract: According to one aspect, the subject matter described herein includes a MEMS fixed capacitor and a method for fabricating the MEMS fixed capacitor. The MEMS fixed capacitor can include a first stationary, capacitive plate on a substrate. Further, the MEMS fixed capacitor can include a non-conductive, stationary beam suspended above the substrate. The MEMS fixed capacitor can also include a second stationary, capacitive plate spaced a predetermined distance from the first stationary, capacitive plate for producing a predetermined capacitance between the capacitive plates.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: June 10, 2008
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, Shawn Jay Cunningham
  • Publication number: 20080106843
    Abstract: A variable capacitance element of the invention includes: a columnar vibrator formed inside a cylindrical hole of a supporting wall; a first circular driving electrode disposed above the columnar vibrator; a first circular capacitive electrode disposed in the middle of the columnar vibrator; a second circular driving electrode disposed on the periphery of the cylindrical hole of the supporting wall; and a second circular capacitive electrode disposed on an inner side surface of the supporting wall. An electrostatic force is increased or decreased sequentially in the circumferential direction of the second driving electrode that is divided into four parts by sequentially increasing or decreasing the driving voltage in the circumferential direction of the second driving electrode. As a result, the columnar vibrator is rotated to change the electrostatic capacitance between the first capacitive electrode and the second capacitive electrode.
    Type: Application
    Filed: October 9, 2007
    Publication date: May 8, 2008
    Applicant: ALPS ELECTRIC CO., LTD.
    Inventor: Shinji MURATA
  • Patent number: 7369394
    Abstract: A variable capacitor includes a supporting substrate and a plurality of variable capacitance elements, and bias lines. The plurality of variable capacitance elements is formed on the supporting substrate, each of which is composed of a lower-laid first electrode layer, an upper-laid second electrode layer, and a dielectric layer sandwiched therebetween whose dielectric constant changes with direct current bias voltage. In the variable capacitance elements which are adjacent to each other, the second electrode layer of a first variable capacitance element and the first electrode layer of a second variable capacitance element are electrically connected in series with each other. The bias lines each include at least one of resistance component and inductance component for applying the direct current bias voltage. The variable capacitance elements are each connected to the bias lines.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: May 6, 2008
    Assignee: Kyocera Corporation
    Inventor: Hideharu Kurioka
  • Patent number: 7361962
    Abstract: Micro-electro-mechanical system (MEMS) variable capacitor apparatuses, system and related methods are provided. According to one embodiment, a MEMS variable capacitor is provided. The variable capacitor can include first and second actuation electrodes being spaced apart, and at least one of the actuation electrodes being movable when a voltage is applied across the first and second actuation electrodes. Further, the variable capacitor can include a first capacitive electrode attached to the first actuation electrode. The variable capacitor can also include a second capacitive electrode attached to the second actuation electrode and spaced from the first capacitive electrode for movement of at least one of the capacitive electrodes with respect to the other capacitive electrode upon application of voltage across the first and second actuation electrodes to change the capacitance between the first and second capacitive electrodes.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 22, 2008
    Assignee: Wispry, Inc.
    Inventors: Ted Plowman, Dana DeReus, Randy Richards, Arthur S. Morris
  • Publication number: 20080089005
    Abstract: A tunable capacitor using an electrowetting phenomenon includes a first electrode; a second electrode which is spaced apart from the first electrode and faces the first electrode; a fluidic channel which is disposed between the first electrode and the second electrode; a first insulating layer which is disposed between the first electrode and the fluidic channel; and a conductive fluid which is disposed in the fluidic channel and moves along the fluidic channel when a direct current (DC) potential difference occurs between the first and second electrodes. Accordingly, it is possible to fabricate the tunable capacitor with the simplified fabrication process, good reliability and durability, and no restriction on the tuning range.
    Type: Application
    Filed: April 3, 2007
    Publication date: April 17, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung-tae Choi, Ji-hyuk Lim, Woon-bae Kim, Eun-seok Park, Jeong-yub Lee
  • Patent number: 7346981
    Abstract: A process for fabricating a MEMS device comprises the steps of depositing and patterning on one side of a wafer a layer of material having a preselected electrical resistivity; bonding a substrate to the one side of the wafer using an adhesive bonding agent, the substrate overlying the patterned layer of material; selectively removing portions of the wafer from the side opposite the one side to define stationary and movable MEMS elements; and selectively removing the adhesive bonding agent to release the movable MEMS element, at least a portion of the layer of material being disposed so as to be attached to the movable MEMS element.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: March 25, 2008
    Assignee: Teledyne Licensing, LLC
    Inventors: Robert L. Borwick, III, Philip A. Stupar, Jeffrey F. DeNatale, Jun J. Yao, Sangtae Park
  • Patent number: 7345866
    Abstract: A method is provided of continuously varying the capacitance of a MEMS varactor having a cantilever assembly mounted on a base portion, the cantilever assembly having a first capacitance plate and a dielectric element mounted thereon, and the base portion having a second capacitance plate mounted thereon. The method includes applying a first actuation voltage to deform the cantilever assembly until the dielectric element contacts the second capacitance plate leaving a gap therebetween, and applying a second actuation voltage larger than the first actuation voltage to further deform the cantilever assembly to reduce the gap between the dielectric element and the second capacitance plate.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 18, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, David Chang
  • Patent number: 7319580
    Abstract: According to one embodiment a microelectromechanical (MEMS) switch is disclosed. The MEMS switch includes a substrate, a plurality of actuation electrodes mounted on the substrate, a plurality of bottom electrodes mounted on the substrate, a capacitor having subcomponents mounted on the two or more bottom electrodes and a top bendable electrode mounted on the substrate. The top electrode collapses a first magnitude towards the actuation electrodes whenever a first voltage is applied to one or more of the actuation electrodes and collapses a second magnitude towards the actuation electrodes whenever a second voltage is applied to the actuation electrodes.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: January 15, 2008
    Assignee: Intel Corporation
    Inventor: Tsung-Kuan Allen Chou
  • Patent number: 7307827
    Abstract: The first movable electrode is flat, but the second movable electrode is deformed into a convex shape. A dielectric layer is placed on the facing surface of the second movable electrode. By adjusting a voltage to be applied between the first movable electrode and the second movable electrode, an arbitrary distance is secured between the two electrodes by the electrostatic attractive force generated between the two electrodes, and a desired electrostatic capacitance is obtained. When the distance between the two electrodes is shortened, first, at the center, a part of the first movable electrode and a part of the second movable electrode come into contact with each other with the dielectric layer between them. Then, the first movable electrode and the dielectric layer (second movable electrode) come into contact with each other successively from the contact part towards the periphery side, and the contact area gradually increases.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: December 11, 2007
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Tadashi Nakatani, Anh Tuan Nguyen, Satoshi Ueda
  • Patent number: 7283347
    Abstract: A digital variable capacitor package is provided as having a ground plane disposed on predetermined portion of the top surface of a substrate. An elongated signal electrode may also be disposed on the substrate and including a first end defining an input and a second end extending to a substantially central region of the top surface of the substrate. This elongated signal electrode is disposed to be electrically isolated from the ground plane. A number of elongated cantilevers are disposed on the substrate and each include first ends coupled to the second end of the signal electrode and each further include second ends suspended over different predetermined portions of the ground plane. In operation, one or more of the cantilevers may be actuated to move portion thereof into close proximity to the ground plane for providing one or more discrete capacitance values.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: October 16, 2007
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: James R. Reid, Jr.
  • Patent number: 7274277
    Abstract: The present invention relates to an electrically controllable/tunable microwave device comprising a ferroelectric substrate with a variable dielectric permitivity and conducting electrodes, arranged on said substrate, and the capacitance of which depends on applied voltage C/V), the microwave device comprises at least two sections or parts of the substrate/electrodes for each of which different electrical field strengths are generated upon voltage application. Said generated electrical field strengths are controlled by means of the design of the device and/or the voltage application such that the slope (dC(dV) of the voltage dependence of the capacitance (C(V) of the microwave device can be controlled.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 25, 2007
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Spartak Gevorgian, Erland Wikborg
  • Publication number: 20070217120
    Abstract: A microelectrical device comprising two generally parallel electrodes (20,21) at least one of which is movable, and at least one of the electrodes comprising a layer of a semiconductor presenting space charge characteristics. The electrodes have a closed position an open position. A spring effect biases the movable electrode (21) towards the open position. When the movable electrode (21) is closed by a first voltage pulse (P1) a sufficiently high space charge density (10) is generated to hold the movable electrode (21) closed. When zero voltage is applied the movable electrode (21) is held closed by the built in space charge until the application of a second voltage pulse (P2) which decreases the space charge in the semiconductor (10) to allow the movable electrode(s) to be moved to the open position by the spring effect.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 20, 2007
    Inventors: Jean-Michel Sallese, Didier Bouvet
  • Patent number: 7251121
    Abstract: A capacitor array may include a bottom electrode, a plurality of top electrodes, at least one dielectric medium and a plurality of switching mechanisms. Each switching mechanism may separably electronically connect two or more top electrodes. The at least one dielectric medium may include a plurality of discrete capacitors each in contact with a top electrode and the bottom electrode.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: July 31, 2007
    Assignee: Innovation Engineering LLC
    Inventor: Imran Ahmed Bhutta
  • Patent number: 7242570
    Abstract: A vacuum capacitor including an insulating cylinder having first and second ends which are opposite to each other. A stationary-side flange is installed to the first end of the insulating cylinder. A stationary electrode supporting plate is installed to an inner surface side of the stationary-side flange. A movable-side flange is installed to the second end of the insulating cylinder. A movable electrode supporting plate is installed to an inner surface side of the movable-side flange through an electrostatic capacity adjusting screw and movable relative to the stationary electrode supporting plate by turning of the electrostatic capacity adjusting screw. Additionally, a diaphragm is sealingly connected between the movable-side flange and the movable electrode supporting plate, the diaphragm having corrugation and defining a vacuum side and an atmospheric side in the vacuum capacitor.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: July 10, 2007
    Assignee: Meidensha Corporation
    Inventor: Eiichi Takahashi
  • Patent number: 7215529
    Abstract: A capacitive sensor having a first and a second polymeric conductor are embedded within a non conducting body, wherein the body maintains a fixed separation distance between the first and the second polymeric conductor. The body can include a non conducting web, wherein the web substantially precludes variation in the spacing of the polymeric conductors during use in the intended operating environment.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: May 8, 2007
    Assignee: Schlegel Corporation
    Inventor: Keith W. Rosenau
  • Patent number: 7200908
    Abstract: A method of making a variable capacitor by forming a grove portion in an insulating substrate, two upper portions of the substrate located on either side of the groove portion forming two lateral edges, a conductive layer covering the inside of the groove portion, a flexible conductive membrane, placed above the groove portion by bearing on the edges, a dielectric layer covering the conductive layer or the membrane to insulate the conductive layer and the membrane, and terminals of application of a voltage between the conductive layer and the membrane, and such that the depth of the groove portion continuously increases from one of the edges to the bottom of the groove portion, and that the conductive layer covers the inside of the groove portion at least to reach one of the two edges, that it may cover.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: April 10, 2007
    Assignees: STMicroelectronics S.A., Commissariat a l'Energie Atomique
    Inventors: Fabrice Cassett, Guillaume Bouche, Maurice Rivoire
  • Patent number: 7203052
    Abstract: A MEMS tunable capacitor and method of fabricating the same, includes a plurality of fixed charge plates on a substrate, the plurality of fixed charge plates having a same height, being arranged in a shape of comb-teeth and being electrically connected to one another, a capacitor dielectric layer covering the plurality of fixed charge plates, a movable charge plate structure spaced apart from the capacitor dielectric layer, and arranged on the plurality of fixed charge plates, wherein the movable charge plate structure includes a plurality of movable charge plates arranged corresponding the plurality of fixed charge plates, and an actuator connected to the movable charge plate structure allowing the movable charge plate structure to move in a horizontal direction.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: April 10, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Kang-soo Chu, Weon-Hong Kim
  • Patent number: 7177134
    Abstract: A variable-capacitance element includes: a first electrode and a second electrode which are fixed on a substrate with a spacing; a movable electrode; an actuator which is supported on a supporting portion provided on the substrate to drive the movable electrode. The movable electrode is put in an electrically connecting state with the second electrode, when the movable electrode is driven to a first position by the actuator, and the movable electrode is put in an electrically non-connected state with the second electrode, when the movable electrode is driven to a second position by the actuator. The movable electrode is constituted to be always put in an electrically non-connected state with the first electrode.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: February 13, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tamio Ikehashi, Tatsuya Ohguro, Mie Matsuo
  • Patent number: 7161791
    Abstract: A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 9, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Jonathan J. Lynch, Sarabjit Mehta, John Pasiecznik, Peter Petre
  • Patent number: 7158363
    Abstract: A varactor includes a container forming a liquid chamber, a first electrode mounted adjacent the chamber, and a second electrode mounted adjacent the chamber. The chamber may be sized and configured, and a spacing between the electrodes and the chamber may be selected, so that a contact angle of a quantity of liquid metal in the chamber relative to at least one of the electrodes can be changed by applying a bias voltage.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: January 2, 2007
    Assignee: Agilent Technologies, Inc.
    Inventor: Timothy Beerling
  • Patent number: 7136215
    Abstract: A piezoelectric spatial light modulator including a substrate having an array of cavities and piezoelectric cantilevers is arranged on the substrate. Each of the piezoelectric cantilevers includes a base portion on the substrate and a beam portion extending over a respective one of the cavities. Each of the piezoelectric cantilevers further includes a first electrode, a second electrode and a piezoelectric element between the electrodes. A flexible layer covers the cavities and the piezoelectric cantilevers and reflective elements are each located on the flexible layer over a respective one of the beam portions.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: November 14, 2006
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Akihiro Machida, Jun Amano
  • Patent number: 7092232
    Abstract: A variable capacitance capacitor has a plurality of variable capacitance elements, using a thin-film dielectric layer whose dielectric constant varies with voltage application, connected in series with one another between the high-frequency signal input and output terminals. The first bias lines belonging to a high-potential side and the second bias lines belonging to a low-potential side, in terms of voltage application, are connected, alternately, to electrodes of the variable capacitance elements connected one another and electrodes in the array of the series-connected variable capacitance elements connected respectively to the input terminal and the output terminal.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 15, 2006
    Assignee: Kyocera Corporation
    Inventors: Yoshifumi Yamagata, Hiroshi Katta
  • Patent number: 7088566
    Abstract: A charge control circuit for controlling a micro-electromechanical system (MEMS) device having variable capacitor formed by first conductive plate and a second conductive plate separated by a variable gap distance. The charge control circuit comprises a switch circuit configured to receive a reference voltage having a selected voltage level and configured to respond to an enable signal having a duration at least as long as an electrical time constant constant of the MEMS device, but shorter than a mechanical time constant of the MEMS device, to apply the selected voltage level across the first and second plates for the duration to thereby cause a stored charge having a desired magnitude to accumulate on the variable capacitor, wherein the variable gap distance is a function of the magnitude of the stored charge.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: August 8, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Eric T. Martin, Mark Hunter, Arthur Piehl, James R. Przybyla, Matthew Gelhaus, Leslie Louis Szepesi, Jr.
  • Patent number: 7085122
    Abstract: A MEMS tunable capacitor with angular vertical comb-drive (AVC) actuators is described where high capacitances and a wide continuous tuning range is achieved in a compact space. The comb fingers rotate through a small vertical angle which allows a wider tuning range than in conventional lateral comb drive devices. Fabrication of the device is straightforward, and involves a single deep reactive ion etching step followed by release and out-of-plane assembly of the angular combs.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 1, 2006
    Assignee: The Regents of the University of California
    Inventors: Ming C. Wu, Hung D. Nguyen, Doo-Young Hah, Pamela R. Patterson
  • Patent number: 7085121
    Abstract: A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: August 1, 2006
    Assignee: HRL Laboratories, LLC
    Inventors: Jonathan J. Lynch, Sarabjit Mehta, John Pasiecznik, Peter Petre
  • Patent number: 7082024
    Abstract: A variable capacitor having a groove portion formed in an insulating substrate, two upper portions of the substrate located on either side of the groove portion forming two lateral edges, a conductive layer covering the inside of the groove portion, a flexible conductive membrane, placed above the groove portion by bearing on the edges, a dielectric layer covering the conductive layer or the membrane to insulate the conductive layer and the membrane, and terminals of application of a voltage between the conductive layer and the membrane, and such that the depth of the groove portion continuously increases from one of the edges to the bottom of the groove portion, and that the conductive layer covers the inside of the groove portion at least to reach one of the two edges, that it may cover.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: July 25, 2006
    Assignees: STMicroelectronics S.A., Commissariat a l'Energie Atomigue
    Inventors: Fabrice Casset, Guillaume Bouche, Rivoire Maurice
  • Patent number: 7061745
    Abstract: The disclosure describes a variable capacitor device, which is formed by a linear motor and a variable capacitor having at least one stator electrode and a movable electrode. A piezoelectric transducer of the linear motor is frictionally coupled to the movable electrode. Application of electrical signals to the piezoelectric transducer of the linear motor produces a motion of the surface of the piezoelectric transducer. The frictional coupling between the piezoelectric transducer surface and the movable electrode transmits a fraction of piezoelectric transducer motion to the movable piston electrode thereby changing the capacity of the variable capacitor. The amount and sign of the capacitance change is selectable by the operator through control of the electrical signals applied to the piezoelectric transducer.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 13, 2006
    Assignee: Varian, Inc.
    Inventors: Alexander Layton Funk, Weston Anderson
  • Patent number: 7054133
    Abstract: A capacitive light/dimmer switch which uses soft or fuzzy fabrics made with electronic textiles instead of, or as an extension of, metal or plastic plates. The soft fabric material, which may be in the form of a pompom, tassel, fur, or other electronic trim element, provides an attractive and compelling user interface that is soft to the touch. The user simply touches the pompom, as he would the dimmer plate, to cause the amount of light to increase or decrease. The electronic textiles of the light controller comprise electrodes integrated into their yarns or fibers, resulting in a conductive material (electronic textile) that may be used as the user interface. This conductive material is electrically connected to a sensing circuit by either AC coupling or DC contact. When the user touches the conductive material, the sensing circuit measures the change in load of the electrodes, and the lighting is changed.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: May 30, 2006
    Inventor: Margaret Orth
  • Patent number: 7054132
    Abstract: A variable capacitance element includes a movable element provided above a substrate using supporting portions and support beams so as to be displaced from the substrate. An insulating film and a movable electrode are provided on a conductor facing surface of the movable element. A driving electrode is arranged to displace the movable element, between a signal cutoff position and a signal passage position, whereby a high frequency signal transmitted through a transmission line is cut off or allowed to pass. The insulating film uses compressive stress to warp the movable element and the movable electrode in a direction of warping in a convex form toward the transmission line, and maintains this warping direction.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Koichi Yoshida, Takahiro Oguchi, Yoshihiro Konaka
  • Patent number: 7042699
    Abstract: A vacuum variable capacitor is includes of a vacuum container which is formed by sealing both end of a cylindrical insulator with a fixed-side end plate and a movable-side end plate, a movable conductive member which is disposed opposite to the fixed-side end plate in the vacuum container, a fixed electrode which is provided on the fixed-side end plate, a movable electrode which is provided on the movable conductive member, a bellows provided in the vacuum container, a rotating portion which is rotatably disposed outside of the vacuum container, and a ball screw through which the movable conductive member is supported by the rotating member.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 9, 2006
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Naoki Hayashi
  • Patent number: 7031136
    Abstract: Tunable capacitors (10, 20, 30, 40) have a dielectric material (16, 26, 36, 42) between electrodes, which dielectric material comprises an insulating material (17, 27, 37, 42) and electrically conductive material, (18, 28, 38, 48) e.g., conductive nanoparticulates, dispersed therein. In certain cases, enhanced tune-ability is achieved when the dielectric material comprises elongated nanoparticulates (38). Further enhanced tune-ability may be achieved by aligning elongated particulates in an electrode-to-electrode direction. Nanoparticulates may be produced by heating passivated nanoparticulates. Passivated nanoparticulates may be covalently bound within a polymeric matrix. High bias potential device structures can be formed with preferential mobilities.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 18, 2006
    Assignee: nGimat Co.
    Inventors: Andrew Tye Hunt, Miodrag Oljaca, Scott Flanagan, Girish Deshpande, Stein Lee, Peter W. Faguy
  • Patent number: 7027284
    Abstract: A variable capacitance element includes a coplanar line or signal conduction and a movable body, which are vertically displaced through a supporting bar and which are provided on a substrate. A movable electrode is provided between a first driving electrode and second and third driving electrodes which are movable electrodes. Voltage is applied between the movable electrodes, such that one of the movable electrodes is pressed against the coplanar line through a dielectric film. Thus, high frequency signals conducting through the coplanar line are shut off. When voltage is applied between the other electrodes, the movable electrode and the dielectric film are moved apart from the coplanar line. Thus, high frequency signals are conducted through the coplanar line.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 11, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinji Kobayashi, Koji Takemura, Masato Kobayashi
  • Patent number: 7002787
    Abstract: The present invention is directed to a capacitor apparatus of the capacity variable type. This capacitor apparatus is manufactured by Micro Electro-Mechanical System technology, and comprises an insulating substrate (2) in which at least two capacitor electrodes (3), (4) are formed on one surface (2a) in the state where they are insulated each other, an actuator (5) formed by insulating material and having an external shape to bridge over the respective capacitor electrodes (3), (4), the actuator (5) being such that a conductor which respectively constitutes capacitors between the conductor (6) and these capacitor electrodes (3), (4), and drive means (7) for allowing this actuator (5) to undergo an operation to come into contact with one principal surface (2a) of the insulating substrate (2) or to become away therefrom.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: February 21, 2006
    Assignee: Sony Corporation
    Inventor: Norikazu Nakayama
  • Patent number: 6999296
    Abstract: A P type substrate is provided on a surface thereof with varactor elements. The varactor element has an N well formed on the surface of the P type substrate, and a gate insulating film is formed on the N well, with a polysilicon layer formed further thereon. On the other hand, the varactor element has an N well formed on the surface of the P type substrate, and a gate insulating film, greater than the gate insulating film in thickness, is formed on the N well. The polysilicon layer is then formed on the gate insulating film. Furthermore, the polysilicon layer is connected to a gate terminal, while the N well is connected to an S/D terminal via N+ diffusion layers.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: February 14, 2006
    Assignee: NEC Electronics Corporation
    Inventors: Susumu Kurosawa, Yuki Fujimoto
  • Patent number: 6992878
    Abstract: A tunable capacitor includes a substrate, a stationary electrode and a movable electrode supported by the substrate, piezoelectric actuators that are supported by the substrate and drive the movable electrode, and a dielectric layer interposed between the stationary electrode and the movable electrode.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 31, 2006
    Assignees: Fujitsu Limited, Fujitsu Media Devices Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Tadashi Nakatani, Tsutomu Miyashita, Yoshio Sato
  • Patent number: 6977511
    Abstract: A sensor for determining the presence of an analyte is disclosed comprising a reactive layer disposed between a base plate and a movable plate. The reactive layer is configured to interact with an analyte effecting a change in capacitance between the base plate and movable plate. When the analyte has a polarity or overall Hildebrand solubility parameter that is similar to the reactive layer, the change in capacitance is caused by a swelling of the reactive layer as analyte is absorbed into the reactive layer. This results in a decrease in capacitance. When the analyte has a solubility parameter not near the reactive layer, the absorbed analyte causes the reactive layer's total polarity to increase, an effect that dominates swelling. This causes an increase in capacitance. A capacitive sensing circuit is included for measuring the change in capacitance which is indicative of the analyte exposed to the sensor.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: December 20, 2005
    Assignee: Xsilogy, Inc
    Inventors: Sanjay V. Patel, Bernd Fruhberger, Robert J. Warmack, Todd E. Mlsna, David R. Baselt, Erno Klaassen
  • Patent number: 6975499
    Abstract: A vacuum variable capacitor includes an energization bellows arranged in a vacuum vessel and having ends mounted to a movable-electrode support plate and a movable side-end plate, respectively, a heat shielding bellows arranged inside the energization bellows and outside a slide-guide support and having ends mounted to the movable-electrode support plate and the movable side-end plate, respectively, and a cooling pipe interposed between the two bellows and for preventing transfer of heat generated in the energization bellows.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: December 13, 2005
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Naoki Hayashi
  • Patent number: 6975498
    Abstract: A variable capacitor includes a stator and a rotor rotatably supported by a cover relative to the stator. The stator includes a first stator electrode of two or more layers and a second stator electrode of two or more layers in the interior of a dielectric substrate. The first stator electrode is connected to a first external electrode and the second stator electrode is connected to a second external electrode. The rotor includes a rotor electrode of two pieces opposing the stator electrodes, and capacitances are defined in the areas of overlap of the rotor electrode and stator electrodes. The capacitances are adjustable to extremely small levels.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: December 13, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Wataru Kato
  • Patent number: 6970340
    Abstract: The present invention is directed to a capacitor apparatus of the capacity variable type. This capacitor apparatus is manufactured by Micro Electro-Mechanical System technology, and comprises an insulating substrate (2) in which at least two capacitor electrodes (3), (4) are formed on one surface (2a) in the state where they are insulated each other, an actuator (5) formed by insulating material and having an external shape to bridge over the respective capacitor electrodes (3), (4), the actuator (5) being such that a conductor which respectively constitutes capacitors between the conductor (6) and these capacitor electrodes (3), (4), and drive means (7) for allowing this actuator (5) to undergo an operation to come into contact with one principal surface (2a) of the insulating substrate (2) or to become away therefrom.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 29, 2005
    Assignee: Sony Corporation
    Inventor: Norikazu Nakayama