Variable Patents (Class 361/277)
  • Patent number: 10354804
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 16, 2019
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus, Norito Baytan
  • Patent number: 10319766
    Abstract: First, a three-dimensional substrate is placed such that the rear surface is oriented upward. Next, a translucent member is placed inside a recessed portion so as to cover a through-hole by bringing a first surface of the translucent member into contact with a protruding portion. Next, an element is placed on the rear surface of the three-dimensional substrate so as to cover the recessed portion. Next, a sealing resin is filled between three-dimensional substrate and the element, between the element and a second surface of the translucent member that opposes the first surface, between a side surface of the translucent member and the three-dimensional substrate, and between the first surface of the translucent member and the three-dimensional substrate. In this way, the element and the translucent member are integrated with the three-dimensional substrate.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 11, 2019
    Assignee: MICRO MODULE TECHNOLOGY CO., LTD.
    Inventor: Fumikazu Harazono
  • Patent number: 10249440
    Abstract: A variable capacitor includes a substrate; a plurality of electrodes on the substrate; a phase change material on the plurality of electrodes; and a thermo-modifying element adjacent to the phase change material, wherein the thermo-modifying element changes a temperature of the phase change material. The change in temperature of the phase change material may change a capacitance between the plurality of electrodes. The thermo-modifying element may be integrated into the substrate. The thermo-modifying element may include a heater that raises a temperature of the phase change material to change from a solid state to a liquid state. The thermo-modifying element may include a layer of metal adjacent to the substrate, and wherein when electrical current flows through the layer of metal, the layer of metal forms a resistive heater and raises a temperature of the phase change material to change from a solid state to a liquid state.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 2, 2019
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Nathan S. Lazarus, Christopher P. Migliaccio, Iain M. Kierzewski
  • Patent number: 10199173
    Abstract: The present provides a variable capacitance element enabling a further reduction in capacitance variation among variable capacitance elements, and provides a packaged circuit including the variable capacitance element. A variable capacitance element is configured to include an element body unit, a compensation unit, a first external terminal for signals, a second external terminal for signals, external terminals for control, and external terminals for capacitance compensation. The compensation unit has second variable-capacitance capacitor units C9 to C 11, each including a second dielectric layer formed of a ferroelectric material, and is connected to the element body unit, and has a capacitance varying according to a control voltage signal.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: February 5, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Masayoshi Kanno, Norio Saito
  • Patent number: 10157720
    Abstract: A device includes a thermally deformable assembly accommodated in a cavity of the interconnection part of an integrated circuit. The assembly can bend when there is a variation in temperature, so that its free end zone is displaced vertically. The assembly can be formed in the back end of line of the integrated circuit.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: December 18, 2018
    Assignee: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Christian Rivero, Pascal Fornara, Antonio di-Giacomo, Brice Arrazat
  • Patent number: 10032731
    Abstract: A radio frequency (RF) switch arrangement that improves the voltage handling capacity of a stack of switching elements (e.g., field-effect transistors (FETs)). The RF switch arrangement can include a ground plane and a stack arranged in relation to the ground plane, the stack including a plurality of switching elements coupled in series with one another. The RF switch arrangement can also include a plurality of capacitive elements, each of the plurality of capacitive elements providing a capacitive path across respective terminals of a corresponding one of the plurality of switching elements.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: July 24, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hanching Fuh, Anuj Madan, Guillaume Alexandre Blin, Fikret Altunkilic
  • Patent number: 10014897
    Abstract: A method, communication device, and computer program product mitigate Specific Absorption Rating (SAR) exposure to a user proximate to a communication device. The method includes an on-device measurement receiver of a communication device detecting a first signal level corresponding to power delivered to a first antenna. The method includes a controller determining a first return loss value based on a first transmit power setting and the first signal level. The method includes the controller determining whether the first return loss value differs from a baseline value by a threshold amount. In response to the controller determining that the first return loss value differs by the threshold amount, the controller causes the communication device to reduce the power delivered to the first antenna.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 3, 2018
    Assignee: Motorola Mobility LLC
    Inventors: Gregory R Black, Armin W Klomsdorf, Andrew Peter Pavacic, Dale Schwent
  • Patent number: 9877392
    Abstract: There are provided PCB capacitor variable device and method. The PCB capacitor variable device includes: a PCB forming any parallel capacitor by disposing a dielectric layer between a first pattern and a second pattern; and a switch unit connected to a pattern of one of the capacitors to switch the pattern of one of the capacitors so as to control equivalent capacitance of the capacitor. According an exemplary embodiment of the present disclosure, the capacitor is implemented using the PCB pattern and the dielectric substance and therefore the miniaturization and weight lightening of the wireless communication system may be implemented. Further, according to an exemplary embodiment of the present disclosure, the capacitor may be selectively switched and therefore the optimized frequency required in the output of the amplification unit may be implemented.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: January 23, 2018
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yu Sin Kim, Sang Won Lee, Jong Jin Lee
  • Patent number: 9859088
    Abstract: A method for depositing material layers with gap variation between film deposition operations is provided. A material layer is deposited over a substrate and is performed in a plasma chamber having a bottom electrode and a top electrode. The method sets a first gap between the bottom and top electrodes and performs plasma deposition to deposit a first film of the material layer over the substrate while the first gap is set between the bottom and top electrodes. Setting a second gap between the bottom a top electrodes and performs plasma deposition to deposit a second film of the material layer over the substrate while the second gap is set between the bottom and top electrodes. The material layer is from the first and second films and the first gap is varied to the second gap to offset pre-characterized non-uniformities when depositing the first film followed by the second film.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: January 2, 2018
    Assignee: Lam Research Corporation
    Inventor: Fayaz Shaikh
  • Patent number: 9859882
    Abstract: There are disclosed herein various implementations of composite semiconductor devices including a voltage protected device. In one exemplary implementation, a normally OFF composite semiconductor device comprises a normally ON III-nitride power transistor having a first output capacitance, and a low voltage (LV) device cascoded with the normally ON III-nitride power transistor to form the normally OFF composite semiconductor device, the LV device having a second output capacitance. A ratio of the first output capacitance to the second output capacitance is set based on a ratio of a drain voltage of the normally ON III-nitride power transistor to a breakdown voltage of the LV device so as to provide voltage protection for the LV device.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Jason Zhang, Tony Bramian
  • Patent number: 9844127
    Abstract: A switching circuit includes: an electronic switch comprising one or more diodes for switching a capacitor within an electronic variable capacitor array; a first power switch receiving a common input signal and a first voltage input; and a second power switch receiving the common input signal and a second voltage input, wherein the second voltage input is opposite in polarity to the first voltage input, and the first power switch and the second power switch asynchronously connect the first voltage input and the second voltage input, respectively, to a common output in response to the common input signal, the one or more diodes being switched according to the first voltage input or the second voltage input connected to the common output.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: December 12, 2017
    Inventor: Imran Bhutta
  • Patent number: 9824825
    Abstract: The invention relates to a variable-capacitance electrical capacitor comprising a first electrode and a second electrode facing the first electrode and a zone of a dielectric material arranged between said first and second electrodes characterized in that the second electrode is formed at least on one hand of a primary electrode made of an electrically conductive material and, at least on the other, of an additional electrode comprising a state-change material, the primary electrode and the additional electrode facing the first electrode, said state-change material being arranged at least partially in contact with the primary electrode and configured to alternatively adopt a high-resistivity state wherein the additional electrode is electrically insulated from the primary electrode and a low-resistivity state wherein the additional electrode is in electrical conduction with the primary electrode so as to vary the electrically active surface area of the second electrode.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 21, 2017
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Bruno Reig, Jean-Claude Bastien
  • Patent number: 9711291
    Abstract: The present invention generally relates to a MEMS DVC and a method for fabrication thereof. The MEMS DVC comprises a plate movable from a position spaced a first distance from an RF electrode and a second position spaced a second distance from the RF electrode that is less than the first distance. When in the second position, the plate is spaced from the RF electrode by a dielectric layer that has an RF plateau over the RF electrode. One or more secondary landing contacts and one or more plate bend contacts may be present as well to ensure that the plate obtains a good contact with the RF plateau and a consistent Cmax value can be obtained. On the figure PB contact is the plate bend contact, SL contact is the Second Landing contact and the PD electrode is the Pull Down electrode.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: July 18, 2017
    Assignee: Cavendish Kinetics, Inc.
    Inventors: Richard L. Knipe, Robertus Petrus Van Kampen
  • Patent number: 9698775
    Abstract: The operating device for an electrical apparatus or a system, in particular for a vehicle component, is provided with at least one elastically mounted operating element (12), a counter-element (14), relative to which the at least one operating element (12) is movable when actuated, thereby varying the distance, namely as seen in the movement direction, and at least one capacitor (38) which comprises a first carrier body (20) with a first capacitor electrode (34) and an elastically bendable second carrier body (22), designed as a bending bar, having a first end (26) and a second end (32) opposite said first end and having a second capacitor electrode (36) opposite the first capacitor electrode (34). Connected to the first and second capacitor electrode (34, 36) is an evaluation unit (42) for determining the capacitance and/or a change in the capacitance of the at least one capacitor (38) upon actuation of the at least one operating element (12).
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: July 4, 2017
    Assignee: Behr-Hella Thermocontrol GMBH
    Inventors: Winfried Fust, Karsten Marquas
  • Patent number: 9660721
    Abstract: An optical detector for detecting radio frequency (RF) signals, the optical detector comprising a light source and a photodetector, and an electrical circuit comprising a position dependent capacitor and a bias voltage source adapted for providing a bias voltage for biasing the position dependent capacitor, the position dependent capacitor comprising an electrode and a membrane being displaceable in reaction to RF signals incident on the membrane, the membrane being metallized, has a thickness of less than 1 ?m and a quality factor, Qm, of at least 20,000, and the distance between the membrane and the electrode being less than 10 ?m.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: May 23, 2017
    Assignees: Kobenhavns Universitet, Danmarks Tekniske Universitet, National Institute of Standards and Technology, The United States Of America, as Represented by The Secretary Of Commerce
    Inventors: Eugene Simon Polzik, Albert Schliesser, Silvan Schmid, Anders Sondberg Sorensen, Jacob M. Taylor, Koji Usami, Tolga Bagci, Anders Simonsen, Luis Guillermo Villanueva, Emil Zeuthen, Juergen Appel
  • Patent number: 9651815
    Abstract: A self-capacitance in-cell touch screen including a glass array substrate, thin film transistors disposed on the substrate, and pixel electrodes electrically connected with the thin film transistors, a planarizing layer between the pixel electrodes and the thin film transistors. The transparent touch control sensing electrode, a first insulation layer, a second insulation layer, and a metal connection line are disposed on the planarizing layer in sequence. The metal connection line is electrically connected to the touch control sensing electrode through via holes. The first insulation layer is between the planarizing layer and the pixel electrode, and the second insulation layer is located on the pixel electrode. The touch control sensing electrodes are common electrodes to transfer a common voltage and a touch scan signal by time-sharing during a period of displaying one frame image. A method of manufacturing self-capacitance in-cell touch screens and a liquid crystal displays is also disclosed.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 16, 2017
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Xiaojiang Yu
  • Patent number: 9605470
    Abstract: A protector with a sensor is installed on a sliding door for detecting an object by touch between two core wires in a hollow part. In a terminal part of the protector with the sensor, the core wires drawn out are connected with legs of a resistor. A primary seal is formed by grinding a surface of the hollow part of the terminal part of an extrusion molded part, positioning a ground part on a die and covering wire connection parts and a side of another end of an insert while also covering the ground part by means of injection molding. A secondary seal is formed by means of the injection molding for coating a part formed with the primary seal for forming an external shape of a product.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 28, 2017
    Assignee: NISHIKAWA RUBBER CO., LTD.
    Inventors: Michihiko Matsumoto, Yuzo Hirakawa
  • Patent number: 9589731
    Abstract: In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: March 7, 2017
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Anartz Unamuno, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Toshiyuki Nagata
  • Patent number: 9564273
    Abstract: A tunable capacitor includes a first electrode and a second electrode, each being formed of a conductive material. The tunable capacitor further includes a third electrode between the first electrode and the second electrode, and a dielectric material interposed between the first electrode and the third electrode, and between the second electrode and the third electrode. The third electrode is movable relative to the first electrode and the second electrode by a stepper motor, to adjust and tune a capacitance of the tunable capacitor.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: February 7, 2017
    Assignee: MCV TECHNOLOGIES, INC.
    Inventors: Edward C. Liang, Georgiy Kolomichenko
  • Patent number: 9543383
    Abstract: High-speed high-power semiconductor devices are disclosed. In an exemplary design, a high-speed high-power semiconductor device includes a source, a drain to provide an output signal, and an active gate to receive an input signal. The semiconductor device further includes at least one field gate located between the active gate and the drain, at least one shallow trench isolation (STI) strip formed transverse to the at least one field gate, and at least one drain active strip formed parallel to, and alternating with, the at least one STI strip. The semiconductor device may be modeled by a combination of an active FET and a MOS varactor. The active gate controls the active FET, and the at least one field gate controls the MOS varactor. The semiconductor device has a low on resistance and can handle a high voltage.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 10, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Yang Du, Vladimir Aparin, Robert P. Gilmore
  • Patent number: 9536874
    Abstract: A variable capacitor includes a fixed main capacitor electrode disposed in a first metal layer overlying a substrate, a second main capacitor electrode spaced from the fixed main capacitor electrode, and a movable capacitor electrode disposed in the first metal layer adjacent the fixed main capacitor electrode. The movable capacitor electrode can be caused to be in a first position ohmically electrically connected to the fixed main capacitor electrode such that the variable capacitor has a first capacitance value or in a second position spaced from the fixed main capacitor electrode such that the variable capacitor has a second capacitance value.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: January 3, 2017
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Christian Rivero
  • Patent number: 9455089
    Abstract: A liquid micro-electro-mechanical system (MEMS) capacitor includes a first capacitor plate, a second capacitor plate, a channel, a dielectric doped droplet, and a droplet activating module. The channel is implemented or embedded in one or more layers of a board and the dielectric doped droplet is contained in the channel. The droplet activating module operable to change the dielectric doped droplet with respect to the first and second capacitive plates, which are proximal to the channel and at a distance from each other, thereby changing a dielectric property of the liquid MEMS capacitor.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 27, 2016
    Assignee: BROADCOM CORPORATION
    Inventor: Ahmadreza Rofougaran
  • Patent number: 9424993
    Abstract: Systems and methods are provided for fabricating a thin film capacitor involving depositing an electrode layer of conductive material on top of a substrate material, depositing a first layer of ferroelectric material on top of the substrate material using a metal organic deposition or chemical solution deposition process, depositing a second layer of ferroelectric material on top of the first layer using a high temperature sputter process and depositing a metal interconnect layer to provide electric connections to layers of the capacitor.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: August 23, 2016
    Assignee: BlackBerry Limited
    Inventors: Marina Zelner, Mircea Capanu, Susan C. Nagy
  • Patent number: 9312071
    Abstract: An electronic device having a variable capacitance element, includes a support substrate providing physical support, a pair of anchors formed on the support substrate, and having support portions in a direction perpendicular to a surface of the substrate, a movable electrode supported by the support portions of the pair of anchors, having opposing first and second side surfaces constituting electrode surfaces, and at least partially capable of elastic deformation, a first fixed electrode supported above the support substrate, and having a first electrode surface opposing to the first side surface of the movable electrode, and a second fixed electrode supported above the support substrate, and having a second electrode surface opposing to the second side surface of the movable electrode.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: April 12, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Takeaki Shimanouchi, Norinao Kouma, Takashi Katsuki, Osamu Toyoda, Satoshi Ueda
  • Patent number: 9299499
    Abstract: The invention relates to a varactor with an actuator, wherein the first actuator surface (2a) of the actuator is embodied on a substrate (1), and a second actuator surface (2b) is embodied on a first movable membrane (3a). In this context, the first movable membrane (3a) is arranged above an upper side (1a) of the substrate (1). A second movable membrane (2b) is arranged below a lower side (1b) of the substrate (1) facing away from the upper side (1a). The invention further relates to a varactor system made from two such varactors.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: March 29, 2016
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventor: Gerhard Kahmen
  • Patent number: 9236190
    Abstract: An amplifier provides a first amplifier circuit, a second amplifier circuit, a first hybrid-coupler circuit and a termination. The hybrid-coupler circuit provides an output terminal and an insulation terminal. In this context, the termination is connected to the insulation terminal of the hybrid-coupler circuit. The termination comprises a first capacitor and/or an inductance, which is disposed directly at the insulation terminal of the hybrid-coupler circuit.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: January 12, 2016
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Lothar Schenk
  • Patent number: 9214512
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable MOS capacitor structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the equivalent capacitor area of the MOS structure by increasing or decreasing its DC voltage with respect to another terminal of the device, in order to change the capacitance over a wide ranges of values. Furthermore, the present invention decouples the AC signal and the DC control voltage minimizing the distortion and increasing the performance of the device, such as its control characteristic. The present invention is simple and only slightly dependent on the variations due to the fabrication process. It exhibits a high value of capacitance density and, if opportunely implemented, shows a quasi linear dependence of the capacitance value with respect to the voltage of its control terminal.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: December 15, 2015
    Assignee: ETA Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 9047524
    Abstract: A high-frequency device includes an antenna coil, a variable capacitance element, and an RFIC. The variable capacitance element is configured by capacitor units in each of which a ferroelectric film is sandwiched between capacitor electrodes, and a capacitance value changes according to a control voltage applied between the capacitor electrodes. A control voltage application circuit configured by a plurality of resistance elements of different resistance values, and a resistance element of the variable capacitance element unit configured to apply a control voltage to the variable capacitance element are arranged in a layered manner above the capacitor unit. Thus, a variable capacitance element and a high-frequency device that includes a control voltage application circuit eliminating problems such as distortion due to active elements and growing IC size along with complication of circuit architecture, and ensuring reliability on impact due to falling or the like, are provided.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: June 2, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Nobuo Ikemoto, Toshiyuki Nakaiso, Katsumi Taniguchi, Naoki Gouchi, Naoto Ikeda
  • Patent number: 9036327
    Abstract: An electronic element includes a fixed portion, and a movable portion which is movable with respect to the fixed portion and which is provided to generate a spring force to make restoration to a predetermined position. The fixed portion is provided with a first driving electrode and a first signal electrode. The movable portion is provided with a second driving electrode and a second signal electrode. An electrostatic force is generated between the first driving electrode and the second driving electrode by a voltage applied therebetween so that the electrostatic force resists against the spring force; and the first and second driving electrodes and the first and second signal electrodes are arranged so that the electrostatic force is generated in a direction in which a spacing distance between the first and second signal electrodes is widened.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: May 19, 2015
    Assignee: Nikon Corporation
    Inventors: Hiroshi Konishi, Junji Suzuki
  • Publication number: 20150131197
    Abstract: Systems, devices, and methods for adjusting tuning settings of tunable components, such as tunable capacitors, can be configured for calibrating a tunable component. Specifically, the systems, devices and methods can measure a device response for one or more inputs to a tunable component, store a calibration code in a non-volatile memory that characterizes the device response of the tunable component, and adjust a tuning setting of the tunable component based on the calibration code to achieve a desired response of the tunable component.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Inventors: Arthur S. Morris, III, Marten A.E. Seth, Peter Good, Steven Spencer Watkins
  • Patent number: 9019686
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 28, 2015
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 9019687
    Abstract: The present subject matter relates to the use of current splitting and routing techniques to distribute current uniformly among the various layers of a device to achieve a high Q-factor. Such current splitting can allow the use of relatively narrow interconnects and feeds while maintaining a high Q. Specifically, for example a micro-electromechanical systems (MEMS) device can comprise a metal layer comprising a first portion and a second portion that is electrically separated from the first portion. A first terminus can be independently connected to each of the first portion and the second portion of the metal layer, wherein the first portion defines a first path between the metal layer and the first terminus, and the second portion defines a second path between the metal layer and the first terminus.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: April 28, 2015
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, Saravana Natarajan, Dana DeReus
  • Patent number: 9019007
    Abstract: A highly linear, variable capacitor array constructed from multiple cells. Each cell includes a pair of passive, capacitor components connected in anti-parallel. The capacitor components may be Metal Oxide Semiconductor (MOS) capacitors. A control circuit applies bias voltages to bias voltage terminals associated with each capacitor component, to thereby control the overall capacitance of the array.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 28, 2015
    Assignee: Newlans, Inc.
    Inventors: Dev V. Gupta, Zhiguo Lai
  • Patent number: 9013857
    Abstract: Embodiments of a method include forming a metal-insulator-metal (MIM) capacitor including a first electrode and a second electrode and an insulator layer between the first and second electrodes, the MIM capacitor also including a reactive layer; and altering the reactive layer to change a capacitive value of the MIM capacitor.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 8988849
    Abstract: A varactor includes a first PTC region, which comprises a ceramic material with a positive temperature coefficient with respect to the resistance. The varactor also includes a capacitor region that includes a first electrode, a second electrode, and a first dielectric layer arranged between the first electrode and the second electrode. The first PTC region and the capacitor region are connected thermally conductively to one another. The capacitance of the capacitor region can be changed by applying a bias to the first PTC region, the capacitor region or to the first PTC region and the capacitor region.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 24, 2015
    Assignee: EPCOS AG
    Inventor: Andrea Testino
  • Patent number: 8982528
    Abstract: Logic circuit for integrated circuit comprising a variable supply voltage source, the variation of which comprises at least three successive phases, a first phase of increasing the voltage from a zero value to a nominal voltage, a second phase of maintaining the supply voltage at the nominal voltage and a third phase of reducing the supply voltage from the nominal voltage to a zero value, and at least two mechanical switches, said switches being microelectromechanical switches or nanoelectromechanical switches, and means of switching said switches.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: March 17, 2015
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Hervé Fanet
  • Patent number: 8973250
    Abstract: Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming a wiring layer on a substrate comprising actuator electrodes and a contact electrode. The method further includes forming a MEMS beam above the wiring layer. The method further includes forming at least one spring attached to at least one end of the MEMS beam. The method further includes forming an array of mini-bumps between the wiring layer and the MEMS beam.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christopher V. Jahnes, Anthony K. Stamper
  • Publication number: 20150061072
    Abstract: A variable capacitance semiconductor structure is disclosed. Embodiments include a capacitor having three plates, a top plate, a middle plate, and a bottom plate. The top plate serves as a positive plate. The middle and bottom plates serve as ground plates for the capacitor. A switching circuit selects between the middle plate and the bottom plate for use as the ground plate of the capacitor. The middle plate is slotted, allowing electric fields to penetrate through the middle plate to the bottom plate. The slots prevent the electric fields from terminating at the middle plate. A different capacitance value can be selected, depending on whether the middle plate or bottom plate is selected as the ground plate. Logic circuitry is configured to control the selection of plates to achieve a variety of capacitance values.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Shyam Parthasarathy, Ananth Sundaram, Balaji Swaminathan
  • Patent number: 8971011
    Abstract: A semiconductor device includes a first static actuator having a first drive electrode and a second drive electrode, the first drive electrode and the second drive electrode being capable of coming close to each other upon shifting from an open state to a close state due to an electrostatic attractive force against an elastic force thereof; a detection circuit configured to detect a temperature of the first static actuator; and a drive circuit configured to apply a first voltage between the first drive electrode and the second drive electrode to maintain the first static actuator in the closed state between the first drive electrode and the second drive electrode, and to switch a polarity of the first voltage every first time period. The drive circuit varies a length of the first time period based on a detection result of the detection circuit.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takayuki Miyazaki
  • Patent number: 8971012
    Abstract: The present invention relates to a variable-area capacitor for a micromechanical sensor, a micromechanical comb grid capacitor accelerometer and a micromechanical comb grid capacitor gyroscope. Among them, the variable-area capacitor structure comprises of a movable and a fixed electrodes in each capacitor unit; a front surface of aforesaid movable electrode is parallel to that of aforesaid fixed electrode; the front surface of aforesaid movable electrode is in a rectangular shape, and the front surface of the fixed electrode is in a triangular or sawteeth shape or the front surface of the movable electrode is in a triangular or sawteeth shape, and the front surface of the fixed electrode is in a rectangular form; the triangular front surface is only overlapped with one long side of aforesaid rectangular front surface. Micromechanical sensors with variable-area capacitor structures of the invention can adjust elasticity coefficient as compared with present technology.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Zhejiang University
    Inventors: Zhonghe Jin, Shichang Hu, Xia Zhang, Huijie Zhu
  • Patent number: 8963289
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable capacitor with MOS compatible structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the capacitance value between the other two terminals of the device, by increasing or decreasing its DC voltage with respect to one of the main terminals of the device. Furthermore, the present invention decouples the AC signal and the DC control voltage preventing distortion of the RF signal. The present invention describes a controllable capacitor whose capacitance value is not necessarily linear with its control voltage, but although possibly abrupt in its characteristic, is utilized to manufacture a semiconductor variable capacitor with digital control to improve its noise and linearity performance while maintaining high quality factor.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: February 24, 2015
    Assignee: ETA Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8953299
    Abstract: An embodiment of a tunable capacitor can include a plurality of capacitors connected in series where at least two capacitors of the plurality of capacitors share a common electrode where the at least two capacitors are in lateral proximity and a bias that is capable of being applied to the at least two capacitors whereby the at least two capacitors vibrate in opposite phase to each other when the bias and an RF signal is applied to the at least two capacitors.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: February 10, 2015
    Assignee: BlackBerry Limited
    Inventors: James Oakes, James Martin, Andrey Kozyrev, Alexandr Prudan
  • Publication number: 20150002984
    Abstract: An apparatus including a die; a carrier coupled to the die; and at least one capacitor positioned in or on the carrier, the at least one capacitor including a first electrode, a second electrode and a dielectric material; and a magnet positioned such that a magnetic field at least partially actuates the second electrode toward the first electrode. A method including disposing a die, a first electrode of a capacitor and a magnet on a sacrificial substrate; forming a dielectric layer on the first electrode; patterning a conductive material coupled to the first electrode; patterning a second electrode on the dielectric layer; and removing the sacrificial substrate. A method including exposing a suspended first electrode of a capacitor in a package to a magnetic field; driving a current in a first direction through the first electrode; and establishing a voltage difference between the first electrode and a second electrode.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Weng Hong TEH, Qing Ma, Johanna M. Swan, Valluri R. Rao
  • Patent number: 8891222
    Abstract: A capacitive transducer (1) comprises a polymer film (2) having a first surface and a second surface, a first electrically conductive layer (3) arranged on the first surface of the polymer film (2), and a second electrically conductive layer (3) arranged on the second surface of the polymer film (2). The polymer film (2) is at least partly made from a material having a molecular weight which is at least 21,000 g/mol. The inventors have surprisingly found that silicone polymer materials with high molecular weights, such as liquid silicone rubbers (LSR) or high temperature vulcanizing (HTV) elastomers, have high electrical breakdown strengths, even though technical data sheets from manufacturers state almost identical electrical breakdown strengths similar to that of RTV-2 elastomers. Using such materials in capacitive transducers allows high electrical fields to be applied to transducers without risking electrical breakdown, thereby increasing performance of transducers.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 18, 2014
    Assignee: Danfoss A/S
    Inventor: Mohamed Yahia Benslimane
  • Patent number: 8891223
    Abstract: Micro-electro-mechanical system (MEMS) variable capacitors and actuation components and related methods are provided. A MEMS variable capacitor can include first and second feed lines extending substantially parallel to one another. Further, MEMS variable capacitors can include first and second capacitive plates being spaced apart from the first and second feed lines. The first and second capacitive plates can be separately movable with respect to at least one of the first and second feed lines for varying the capacitance between the first and second feed lines over a predetermined capacitance range.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 18, 2014
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, John Qiang Huang
  • Publication number: 20140332746
    Abstract: The invention provides a stable oxide material system for a capacitor, electronic device or a memory device having an effective high-k value with an effective zero alpha while exhibiting low leakage current density. The stable oxide material comprises Mx-Si1-xO2, wherein the elements M & Si are mixed such that the insulator layer comprises staggered edge-linked SiO2-MO2 bonding chains to provide a stable 3-dimensional single crystal system.
    Type: Application
    Filed: October 22, 2012
    Publication date: November 13, 2014
    Inventors: Scott Monaghan, Ian Povey
  • Patent number: 8873218
    Abstract: According to one embodiment, an actuator includes a substrate, a lower electrode disposed on the substrate, an upper electrode, a support and a driving unit. The upper electrode is opposed to the lower electrode. The support supports the upper electrode. The driving unit is connected between the lower electrode and the upper electrode and feeds a driving voltage. The driving voltage at which the lower and upper electrodes start to come into contact with each other is defined as a pull-in voltage. A capacitance between the lower and upper electrodes is defined as a pull-in capacitance. There exist a first region and a second region. In the second region, a change rate of a capacitance ratio changes more slowly than in the first region, when the absolute value of the potential difference is further increased. The driving unit feeds the driving voltage in the second region.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Masunishi, Tamio Ikehashi, Yasushi Tomizawa, Akihiro Koga
  • Patent number: 8854792
    Abstract: An electrical contactor for use in a high voltage bus utilizes two capacitor plates and a dielectric element movable in a gap between the plates under a charging voltage applied to the plates. The dielectric element is biased to a contactor off, or open, position by a biasing element, such as a spring. Once activated, the contactor remains closed under the influence of the charging voltage across the capacitor plates, yet does not draw a current during this state. The contactor may be released by a controllable discharge circuit placed across the capacitor plates.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Chrysler Group LLC
    Inventor: Adam Timmons
  • Patent number: 8854791
    Abstract: There is provided a voltage variable capacitor that can be formed on a semiconductor circuit, has a large variable ratio of capacitances and a high Q value, and achieves a highly linear relation of a control voltage and an oscillation frequency when the capacitor forms a VCO. The voltage variable capacitor is formed of a plurality of MOS capacitance elements (CM1 to CMn) having lower electrodes connected in common, the same number of non-variable capacitors (C1 to Cn) having one ends connected to upper electrodes of the plurality of MOS capacitance elements and the other ends connected in common, and a unit (VB1 to VBn and resistors) applying different fixed bias voltages to connection points of these MOS capacitance elements and non-variable capacitors, in which a control voltage is applied to the lower electrodes connected in common of the plurality of MOS capacitance elements.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 7, 2014
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventor: Yutaka Takahashi
  • Publication number: 20140285944
    Abstract: A capacitance element body 2 is configured by two or more capacitors, the capacitors being formed of a dielectric layer 3 and at least three internal electrodes, the internal electrodes each being laminated via the dielectric layer 3 and arranged to allow a center of gravity of an electrode body forming electrostatic capacitance to be arranged on a straight line in a lamination direction. In the capacitance element body 2, said two or more capacitors are serially connected in a lamination direction of the internal electrodes. Furthermore, external terminals 20 to 23, each being electrically connected to an electrode body forming electrostatic capacitance, are formed in side surfaces of the capacitance element body 2.
    Type: Application
    Filed: August 21, 2012
    Publication date: September 25, 2014
    Applicant: DEXERIALS CORPORATION
    Inventor: Noritaka Sato