Liquid Electrolytic Capacitor Patents (Class 361/503)
  • Patent number: 8976508
    Abstract: The electrochemical cell of the present invention is provided with a hermetic container having a base member, a jointing material fixed to the base member, and a lid member welded on the base member via the jointing material, and in which a housing space sealed between the base member and the lid member is defined, and an electrochemical element which is housed inside the housing space and which is available to effect charging and discharging, wherein the lid member is made of stainless steel.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: March 10, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Tsuneaki Tamachi, Ryo Sato, Kenji Ogata, Isamu Shinoda, Shunji Watanabe
  • Patent number: 8971019
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains an alkyl-substituted poly(3,4-ethylenedioxythiophene) having a certain structure. Such polymers can result in a higher degree of capacitance than many conventional types of coating materials. Further, because the polymers are generally semi-crystalline or amorphous, they can dissipate and/or absorb the heat associated with the high voltage. The degree of surface contact between the conductive coating and the surface of the metal substrate may also be enhanced in the present invention by selectively controlling the manner in which the conductive coating is formed.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 3, 2015
    Assignee: AVX Corporation
    Inventor: Martin Biler
  • Patent number: 8971020
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains a conductive copolymer having at least one thiophene repeating unit, as well as a pyrrole repeating unit and/or aniline repeating unit.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 3, 2015
    Assignee: AVX Corporation
    Inventors: Martin Biler, Jan Petrzilek, Dirk H. Dreissig, Mitchell D. Weaver
  • Patent number: 8964357
    Abstract: An electric double layer capacitor with a low resistance value is disclosed. The electric double layer capacitor includes an electrochemical device in the inside of a housing container and capable of achieving charge and discharge via external terminals, wherein the electrochemical device includes a pair of electrodes, a separator disposed between the pair of electrodes, and an electrolytic solution with which the pair of electrodes and the separator are impregnated; when a volume between the pair of electrodes is designated as Ve, and a volume of a void in an inter-electrode part of the separator disposed between the pair of electrodes is designated as Se, an inter-electrode part void ratio Re is defined as Re=Se/Ve×100 (%); and when a thickness of the inter-electrode part is designated as L2 (?m), and a separator evaluation index Ie is defined as Ie=L2/Re (?m/%), a relation of Ie?1.0 (?m/%) is satisfied.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Tsuneaki Tamachi, Ryo Sato, Kazumi Tanaka, Kensuke Tahara, Tadahito Suzuki, Akira Sato
  • Patent number: 8953302
    Abstract: One of the objects of the present invention is to provide a separator for an electrochemical device, capable of suppressing an increase in a resistance value of a storage element. In accordance with one aspect of the present invention, a separator 16c for an electrochemical device is formed such that plural high porosity portions 16c1 from an upper surface to a lower surface in a thickness direction thereof and plural low porosity portions 16c2 from the upper surface to the lower surface in the thickness direction thereof are arranged in a region which is interposed between a positive electrode 16a and a negative electrode 16b.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: February 10, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Naoto Hagiwara
  • Patent number: 8947855
    Abstract: Technologies are generally described for electrochemical capacitor devices. Some example electrochemical capacitor devices may include a composite electrode that includes an electrode substrate coupled to a polymeric electrochemical layer. The polymeric electrochemical layer may include: a conductive polymer electrically coupled to the electrode substrate; a solid state, ionically conductive electrolyte polymer; and non-conducting cross-links that covalently link the conductive polymer and the electrolyte polymer. Various example electrochemical capacitor devices may be constructed by laminating two of the composite electrodes against opposing sides of an ionically conducting separator membrane, and contacting the composite electrodes and the separator membrane with a liquid electrolyte. Some example electrochemical capacitor devices may display favorable performance such as symmetric charge storage, non-Faradic charge storage, and/or similar or greater capacity compared to carbon based systems.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Vincenzo Casasanta, III
  • Patent number: 8927967
    Abstract: An electrochemically-gated field-effect transistor includes a source electrode, a drain electrode, a gate electrode, a transistor channel and an electrolyte. The transistor channel is located between the source electrode and the drain electrode. The electrolyte completely covers the transistor channel and has a one-dimensional nanostructure and a solid polymer-based electrolyte that is employed as the electrolyte.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 6, 2015
    Assignee: Karlsruhe Institute of Technology
    Inventors: Subho Dasgupta, Horst Hahn, Babak Nasr
  • Publication number: 20150003033
    Abstract: An energy storage device includes an electrode made from an active material in which a plurality of channels have been etched. The channels are coated with an electrically functional substance selected from a conductor and an electrolyte.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Yang Liu, Priyanka Pande, Bum Ki Moon, Michael C. Graf, Donald S. Gardner, Nicolas Cirigliano, Shanthi Murali, Zhaohui Chen
  • Publication number: 20150004473
    Abstract: A secondary battery including a plurality of electrode assemblies including: a first electrode assembly including a first positive electrode active material; and a secondary electrode assembly including a second positive electrode active material; the first electrode assembly and the second electrode assembly being electrically connected to each other, the first positive electrode active material being different from the second positive electrode active material, and a discharge capacity ratio of the second electrode assembly being in a range of 25% to 80%, based on a total discharge capacity of the first electrode assembly and the second electrode assembly, is disclosed.
    Type: Application
    Filed: October 28, 2013
    Publication date: January 1, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Dae-Seop Lim, Jin-Man Jeoung, Jung-Woo An, Jeong-Tae Kim
  • Patent number: 8917492
    Abstract: A power storage module for a hybrid system. The module includes internal absorption elements for absorbing electrolytes, and gasses thereof, that may have separated from a storage cell within the module owing to overvoltages. The module may further include external indicator(s) for indicating that such separated electrolytes are contained within the module case. It is possible to protect a user of the power storage module who wants to open the case of this module, in the event that the power storage cell has released electrolyte in gaseous and/or liquid form into the interior of the case.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 23, 2014
    Assignee: Valeo Equipements Electriques Moteur
    Inventors: Fabien Guerin, Roger Abadia, Benoît Soucaze-Guillous, Alexis Hosni
  • Patent number: 8913368
    Abstract: A three-dimensional network aluminum porous body in which the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode each using the aluminum porous body, and a manufacturing method thereof. In such a sheet-shaped three-dimensional network aluminum porous body for a current collector, the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction. For example, in the case where a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, each region is configured so that the average of the amounts of aluminum in the region 1 and the region 3 differs from the amount of aluminum in the region 2.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Patent number: 8913369
    Abstract: Disclosed are an aluminum electrolytic capacitor having low impedance properties and a long service life, and an electrolytic solution which enables to give such capacitor. The electrolytic solution contains a solvent containing water, a phosphorus oxoacid ion-generating compound which can generate a phosphorus oxoacid ion in an aqueous solution, and a chelating agent which can coordinate with aluminum to form an aqueous aluminum chelate complex. The electrolytic solution further contains a compound selected from the group consisting of azelaic acid and an azelaic acid salt, and a compound selected from the group consisting of formic acid, a formic acid salt, adipic acid, an adipic acid salt, glutaric acid and a glutaric acid salt. The content of azelaic acid and/or the azelaic acid salt is at least 0.03 moles per kg of the solvent.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 16, 2014
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Masao Sakakura, Junichi Kawakami, Kazuma Okura, Shingo Takeuchi, Masashi Ozawa, Kenji Tamamitsu
  • Patent number: 8891224
    Abstract: A capacitor provides a plurality of selectable capacitance values, by selective connection of six capacitor sections of a capacitive element each having a capacitance value. The capacitor sections are provided in a plurality of wound cylindrical capacitive elements. Two vertically stacked wound cylindrical capacitance elements may each provide three capacitor sections. There may be six separately wound cylindrical capacitive elements each providing a capacitor section. The capacitor sections have a common element terminal.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 18, 2014
    Assignee: America Radionic Company, Inc.
    Inventor: Robert M. Stockman
  • Patent number: 8885325
    Abstract: An object of the present invention is to provide a way to reduce the internal resistance of a lithium ion capacitor without causing its capacity or withstand voltage to drop. The present invention provides a lithium ion capacitor having a positive electrode, a negative electrode, a separator, and an electrolyte solution, wherein the separator contains cellulose that has been given a treatment to create carbon-carbon double bonds.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Takatoshi Nagase, Koji Kano, Takeo Tsuzuki
  • Patent number: 8873220
    Abstract: This document provides an apparatus including a sintered electrode, a second electrode and a separator material arranged in a capacitive stack. A conductive interconnect couples the sintered electrode and the second electrode. Embodiments include a clip interconnect. In some embodiments, the interconnect includes a comb-shaped connector. In some embodiments, the interconnect includes a wire snaked between adjacent sintered substrates.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Michael J. Root, Jay E. Daley, Eric Stemen
  • Publication number: 20140308554
    Abstract: This disclosure provides collector plates for an energy storage device, energy storage devices with a collector plate, and methods for manufacturing the same. In one aspect, a collector plate includes a body. One or more apertures extend into the body. The apertures are configured to allow a portion of a free end of a spirally wound current collector of a spirally wound electrode for an energy storage device to extend into the one or more apertures.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 16, 2014
    Applicant: Maxwell Technologies, Inc.
    Inventor: Alexander D. Khakhalev
  • Patent number: 8848339
    Abstract: A capacitor and a manufacturing method thereof are provided. Two electrodes are disposed opposite to each other. Two electrode protection layers are respectively disposed on inner sides of the electrodes and include carbon particles each covered and bonded with a polymer shell. Active carbon layers are disposed on opposite inner sides of the electrode protection layers. The separator is disposed between the active carbon layers. The electrolyte fills between the electrode protection layers. The polymer shells of each electrode protection layer are bonded to the surface of the corresponding electrode by first and second functional groups. The first functional groups include thiol groups. The second functional groups include epoxy groups or carboxylic groups. The electrode protection layers serve as adhesion layers between the active carbon layers and the electrodes, and protect the electrodes from being corroded by the acid electrolyte solution.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 30, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsieh-Ho Tsai, Yu-Lin Hsin, Yu-Ming Lin, Li-Key Chen, Mei-Hua Wang, Chih-Kuang Chang
  • Patent number: 8842417
    Abstract: An electro-chemical double layer capacitor comprises positive and negative electrodes, where the carbon material that is incorporated into the positive electrode is halogenated carbon material, while the carbon material that is incorporated into the negative electrode is un-halogenated carbon material. Further, the carbon material incorporated into each respective electrode can have a distinct pore size distribution. A pore volume ratio of the carbon material incorporated into the positive electrode is greater than a pore volume ratio of the carbon material incorporated into the negative electrode. The pore volume ratio R is defined as R=V1/V, where V1 is a total volume of pores having a pore size of less than 1 nm, and V is a total volume of pores having a pore size greater than 1 nm.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 23, 2014
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Shrisudersan Jayaraman
  • Publication number: 20140272523
    Abstract: An electrical storage device includes a cathode, an anode, a protective film that is provided between the cathode and the anode, and an electrolyte solution, the protective film including a polymer that includes a repeating unit derived from a fluorine-containing monomer, and a repeating unit derived from an unsaturated carboxylic acid.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 18, 2014
    Applicant: JSR CORPORATION
    Inventors: Yoshiharu Otsuka, Hironori Kitaguchi, Nobuyuki Fujihara
  • Publication number: 20140255765
    Abstract: Provided is a packaging material for an electrochemical cell which prevents the occurrence of short circuits. A packaging material for an electrochemical cell configured by laminating a base material layer including: at least a resin film; a heat-adhesive layer including a heat-adhesive resin, the heat-adhesive layer being disposed on the innermost layer; and a barrier layer including a metal foil, the barrier layer being disposed between the base material layer and the heat-adhesive layer, wherein a chemical-conversion-treated layer including alumina particles and modified epoxy resin is formed on the surface of at least the heat adhesive layer side of the barrier layer.
    Type: Application
    Filed: October 22, 2012
    Publication date: September 11, 2014
    Inventors: Hirohisa Akita, Makoto Amano, Kazuhiko Yokota, Rikiya Yamashita
  • Patent number: 8824120
    Abstract: An electrical double-layer capacitor electrode with excellent capacitance characteristics is obtained together with a manufacturing method therefor. Paper-molded sheet of carbon nanotubes is integrated with etched foil constituting a collector, by means of bumps and indentations formed on the surface of etched foil to prepare an electrical double-layer capacitor electrode. Alternatively, carbon nanotubes grown around core catalyst particles on substrate are integrated with etched foil by means of bumps and indentations formed on the surface of etched foil to prepare an electrical double-layer capacitor electrode. To manufacture these electrodes, this carbon nanotube sheet or substrate with carbon nanotubes grown thereon is laid over bumps and indentations on the surface of etched foil, and the sheet or substrate and the foil are pressed under 0.01 to 100 t/cm2 of pressure to integrate the carbon nanotubes with the etched foil.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: September 2, 2014
    Assignee: Nippon Chemi-con Corporation
    Inventors: Kenji Machida, Shunzo Suemastu, Kenji Tamamitsu
  • Patent number: 8817452
    Abstract: Embodiments of the present invention are directed to an energy storage device and a method for manufacturing the energy storage device. The method includes accessing a metal substrate and forming plurality of carbon nanotubes (CNTs) directly on a metal substrate. The method further includes removing substantially all amorphous carbon from said plurality of CNTs and coupling the plurality of CNTs to an electrolytic separator.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 26, 2014
    Assignee: Ultora, Inc.
    Inventors: Cattlien Van Nguyen, Darrell Lee Niemann
  • Patent number: 8810995
    Abstract: An electrochemical capacitor includes a first electrode, a second electrode, a membrane, and an electrolyte. The first electrode includes a carbon nanotube composite. The carbon nanotube composite includes a free-standing carbon nanotube structure, and a plurality of nano grains located on the carbon nanotube structure. The membrane is located between the first electrode and the second electrode, to separate the first electrode from the second electrode. The first electrode, the second electrode, and the membrane are disposed in the electrolyte.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Rui-Feng Zhou, Chui-Zhou Meng, Kai Liu, Kai-Li Jiang, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 8810996
    Abstract: An electrical component includes an inkjet-printed graphene electrode. Graphene oxide flakes are deposited on a substrate in a graphene oxide ink using an inkjet printer. The deposited graphene oxide is thermally reduced to graphene. The electrical properties of the electrode are comparable to those of electrodes made using activated carbon, carbon nanotubes or graphene made by other methods. The electrical properties of the graphene electrodes may be tailored by adding nanoparticles of other materials to the ink to serve as conductivity enhancers, spacers, or to confer pseudocapacitance. Inkjet-printing can be used to make graphene electrodes of a desired thickness in preselected patterns. Inkjet printing can be used to make highly-transparent graphene electrodes. Inkjet-printed graphene electrodes may be used to fabricate double-layer capacitors that store energy by nanoscale charge separation at the electrode-electrolyte interface (i.e., “supercapacitors”).
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 19, 2014
    Assignees: The Trustees of the Stevens Institute of Technology, The United States of America, as represented by the Secretary of the Army
    Inventors: Woo Young Lee, Linh Le, De Kong, Matthew Henderson Ervin, James L. Zunino, III, Brian E. Fuchs
  • Patent number: 8804309
    Abstract: Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as ?80° C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1?)-bipyrrolidium tetrafluoroborate (SBPBF4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: August 12, 2014
    Assignee: California Institute of Technology
    Inventors: Erik J. Brandon, Marshall C. Smart, William C. West
  • Patent number: 8804311
    Abstract: To provide an electrolyte solution, which contains an electrolyte compound, a molecular structure of which contains a molecular chain containing a repeating unit of alkylene oxide, and contains quaternary ammonium cations at both terminals of the molecular chain.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventors: Masaaki Sasa, Tamotsu Yamamoto, Tsutomu Tanaka, Kensuke Yoshida
  • Patent number: 8797715
    Abstract: Technologies are generally described for a capacitor device that includes parallel nanotubes. Such a capacitor device may include two parallel electrodes, each of which includes an array of nanotubes that extends from the surface of the respective electrode towards the other electrode. The nanotubes can be substantially parallel to each other and substantially perpendicular to the electrode from which they extend. The space between the electrodes and the nanotubes can be filled with an electrolyte or dielectric material, for example, a solution of an electrolyte solute in a suitable solvent. Such a capacitor device can have high electrode surface area but can avoid pore effects, in comparison to high surface area porous electrodes which do not have interpenetrating electrodes.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 5, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Nicholas S. Bromer
  • Patent number: 8795544
    Abstract: One object is to provide a power storage device including an electrolyte using a room-temperature ionic liquid which includes a univalent anion and a cyclic quaternary ammonium cation having excellent reduction resistance. Another object is to provide a high-performance power storage device. A room-temperature ionic liquid which includes a cyclic quaternary ammonium cation represented by a general formula (G1) below is used for an electrolyte of a power storage device. In the general formula (G1), one or two of R1 to R5 are any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, and a methoxyethyl group. The other three or four of R1 to R5 are hydrogen atoms. A? is a univalent imide anion, a univalent methide anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate (BF4?), or hexafluorophosphate (PF6?).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: August 5, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kyosuke Ito, Toru Itakura
  • Patent number: 8792224
    Abstract: Disclosed herein is a hybrid capacitor including: a first structure including a cathode containing activated carbon and an anode containing lithium; and a second structure including activated carbon layers formed on both surfaces of a current collector. With the hybrid capacitor, characteristics of an LIC and characteristics of an EDLC are implemented in a single cell, thereby making it possible to increase energy density and improve output characteristics.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hak Kwan Kim, Dong Hyeok Choi, Bae Kyun Kim, Jun Hee Bae
  • Patent number: 8787001
    Abstract: Electrical devices containing continuous fibers that are infused with carbon nanotubes are described herein. The electrical devices contain at least a first electrode layer and a second electrode layer, where the first and second electrode layers each contain a plurality of continuous fibers that are infused with carbon nanotubes. In some embodiments, the electrical devices can be supercapacitors, further containing at least a base plate, a layer of separator material disposed between the first and second electrode layers, and an electrolyte in contact with the first and second electrode layers. The first and second electrode layers can be formed by conformal winding of the continuous fibers. The electrical devices can contain any number of additional electrode layers, each being separated from one another by a layer of separator material. Methods for producing the electrical devices are also described herein.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: July 22, 2014
    Assignee: Applied Nanostructured Solutions, LLC
    Inventors: Corey Adam Fleischer, Lawrence P. Hetzel, Tushar K. Shah
  • Patent number: 8780528
    Abstract: An electrolyte includes an organic solvent, a solute and a compound represented by chemical formula [1], both contained in the organic solvent. R1 and R2 represent a methyl group or an ethyl group; R3 represents a functional group having a straight chain including three or more carbon atoms and a hydroxyl group bonded to a terminal carbon; C represents a carbon atom; H represents a hydrogen atom; O represents an oxygen atom; and N represents a nitrogen atom.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Seiji Takagi, Hideki Shimamoto, Hiroyuki Maeshima, Nao Matsumura
  • Patent number: 8773842
    Abstract: Disclosed is an electrical energy storage device provided with a metallic casing to receive a bare cell and first and second terminals located outside of the metallic casing corresponding to each electrode of the bare cell, including a plate-like member provided on at least one of the first and second terminals, an inner terminal contacting the plate-like member to form the boundary between the inner terminal and the plate-like member, and a laser welded portion formed along the boundary between the inner terminal and the plate-like member to connect the plate-like member with the inner terminal.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: July 8, 2014
    Assignee: LS Mtron, Ltd.
    Inventors: Ha-Young Lee, Jun-Ho Kim, Sang-Hyun Bae, Ji-Eun Kang
  • Patent number: 8767374
    Abstract: A capacitor and a manufacturing method thereof with improved capacitance density, simplified production process, and/or improved high frequency characteristic without having to form a nano-scale pattern are provided. A capacitor element 12 includes a dielectric layer made of porous oxide substrate, first and second internal electrodes formed within holes of the porous oxide substrate, a first external electrode electrically connected to the first internal electrode, a second external electrode electrically connected to the second internal electrodes.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Hidetoshi Masuda
  • Patent number: 8761875
    Abstract: One embodiment of the present subject matter includes a method for pulse generation in an implantable device, comprising measuring an impedance between a first electrode and a second electrode and delivering a pulse based on a pulse energy level and a pulse duration limit, comprising generating a pulse duration as a function of the pulse energy level and the impedance and selecting a capacitance value from a plurality of capacitances in a partitioned capacitor bank to deliver a pulse at the pulse energy level and wherein the pulse duration is less than the pulse duration limit.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 24, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8760851
    Abstract: Methods and apparatus for an electrochemical double-layer capacitor for hostile environments. An electrochemical double-layer capacitor includes two electrodes wetted with an electrolyte, each electrode being attached to or in contact with or coated onto a current collector and separated from each other by a separator porous to the electrolyte, the electrodes, electrolyte and current collector containing less than 1,000 parts per million (ppm) of impurities, while exhibiting a leakage current less than 1 amp per liter of volume over a range of operating temperatures and at a voltage up to a rated voltage.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 24, 2014
    Assignee: Fastcap Systems Corporation
    Inventors: Riccardo Signorelli, Lindsay A. Wilhelmus
  • Patent number: 8734667
    Abstract: This disclosure relates to an electrolyte for an aluminum electrolytic capacitor. An electrolyte according to one embodiment includes a protic fluid and a high dielectric co-solvent or a dipolar aprotic. According to various embodiments, the electrolyte is pH buffered to less than approximately 6.8 pH. The protic fluid includes ethylene glycol and the high dielectric co-solvent includes N-methylformamide, in various embodiments. The disclosure further relates to methods for manufacturing an electrolyte, and capacitors and implantable devices including a supporting electrolyte selected for optimal cation size and charge and anion solubility.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Ronald A. Dombro, Jr.
  • Patent number: 8737040
    Abstract: A pseudocapacitor employs plates having an active material of a nanoparticles sized ceramic mixed ionic-electronic conductor such as may have the nominal formula of ABO3, A2BO4, AB2O4, and AO2, where A and B are metals. The active material may be prepared to promote sublattice vacancies to provide for the storage of additional charge.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 27, 2014
    Assignee: Wisys Technology Foundation, Inc.
    Inventors: Charles P. Gibson, Annamalai Karthikeyan
  • Patent number: 8725252
    Abstract: One embodiment includes a capacitor case sealed to retain electrolyte, at least one electrode disposed in the capacitor case, the at least one electrode comprising an overcurrent protector, a conductor coupled to the overcurrent protector and in electrical communication with a remainder of the electrode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case, a second electrode disposed in the capacitor case, a separator disposed between the electrode and the second electrode and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the second electrode, with the terminal and the second terminal electrically isolated from one another, wherein the overcurrent protector is to interrupt electrical communication between the terminal and the remainder of the electrode at a selected current level.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Patent number: 8724293
    Abstract: Disclosed is a storage device comprising a positive electrode material containing graphite; a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element; and an electrolyte solution. This storage device has high capacitance and high discharge voltage, thereby having high energy. Consequently, this storage device can have high energy density, while being excellent in cycle performances and rate performances.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: May 13, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Masaki Yoshio, Toshihiko Kawamura, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita, Hirofumi Taniguchi, Tomoyuki Sotokawa
  • Patent number: 8724292
    Abstract: A lithium-ion capacitor excellent in durability, which has high energy density and high capacity retention ratio when the capacitor is charged and discharged at a high load, is disclosed. The lithium-ion capacitor includes a positive electrode, a negative electrode and an aprotic organic solvent of a lithium salt as an electrolyte solution. In the lithium-ion capacitor, a positive electrode active material allows lithium ions and/or anions to be doped thereinto and de-doped therefrom, and a negative electrode active material allows lithium ions to be doped thereinto and de-doped therefrom. At least one of the negative electrode and the positive electrode is pre-doped with lithium ions so that after the positive electrode and the negative electrode are shortcircuited, a potential of the positive electrode is 2 V (relative to Li/Li+) or lower. A thickness of a positive electrode layer of the positive electrode is within a range from 18 to 108 ?m.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: May 13, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Hiromoto Taguchi, Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Yukinori Hatou
  • Publication number: 20140099529
    Abstract: A power storage device with a higher degree of safety is provided. Further, a power storage device with improved cycle life is provided. In the power storage device, an ionic liquid as a solvent of an electrolyte solution, and an exterior body is covered with a conductive component so as to prevent direct contact between a positive electrode current collector and the exterior body. This suppresses elution of the positive electrode current collector due to contact between different kinds of metals and accordingly prevents a phenomenon in which the eluted metal of the positive electrode current collector is deposited on a negative electrode and the deposited metal comes in contact with a positive electrode. Thus, an internal short-circuit caused by the contact can be prevented.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 10, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Jun ISHIKAWA, Kyosuke ITO, Rie YOKOI
  • Patent number: 8681478
    Abstract: A container 11 of a surface mounting electrochemical device according to an embodiment of the invention comprises a first metal component 11a having a recess 11a1, a second metal component 11b directly welded to the first metal component 11a to close the opening of the recess 11a1. A first electrode 16a of an electric storage element 16 is electrically insulated from the container 11, and a second electrode 16b electrically conducts thereto. A first terminal 14 is electrically insulated from the container 11 and electrically conducts to the first electrode 16a of the electric storage element 16 via a relaying element 13. A second terminal 15 electrically conducts to the container 11 and the second electrode 16b of the electric storage element 16 via the container 11.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Naoto Hagiwara
  • Patent number: 8675346
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski
  • Patent number: 8665581
    Abstract: Electrical devices having electrodes containing carbon nanotubes infused to a substrate are described herein. The electrical devices contain at least a first electrode material containing a first plurality of carbon nanotubes infused to a first substrate and a second electrode material containing a second plurality of carbon nanotubes infused to a second substrate. The first electrode material and the second electrode material are wound in a spiral configuration about a central axis. The electrical devices can be supercapacitors, which also contain at least an electrolyte in contact with the first electrode material and the second electrode material, and a first separator material disposed between the first electrode material and the second electrode material. Methods and apparatuses for making the electrical devices are also disclosed herein.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 4, 2014
    Assignee: Applied Nanostructured Solutions, LLC
    Inventors: Corey Adam Fleischer, Tushar K. Shah, Lawrence P. Hetzel, Harry C. Malecki
  • Patent number: 8659875
    Abstract: A capacitor includes an electrode and a dielectric layer over the electrode. The dielectric layer includes plural metal oxide particles which are spread, and have an aperture constituted by a space provided between the metal oxide particles. The capacitor further includes an insulating portion on a portion of the electrode facing an opening of the aperture of the dielectric layer. The insulating portion covers the opening of the aperture. This capacitor prevents short-circuiting between the electrodes, thus being highly reliable.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Kagata, Masayuki Hogiri
  • Patent number: 8659874
    Abstract: An energy storage device includes a supercapacitor having first and second electrodes, each including a composite of a mat of conducting fibers bound by an electrolytic resin. A method of fabricating a super capacitor includes constructing a mat of conducting fibers, binding the mat with an electrolytic resin, and forming a laminate of the electrodes spaced by an insulating spacer.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 25, 2014
    Assignee: Imperial Innovations Limited
    Inventors: Milo Shaffer, Emile Greenhalgh, Alexander Bismarck, Paul T. Curtis
  • Patent number: 8654509
    Abstract: An electrode-foil includes a foil having a metal layer on the surface thereof, a first dielectric film formed on the metal layer, and a second dielectric film formed on the first dielectric film. The first dielectric film is composed of a metal oxide of a metal constituting the metal layer. The thickness of the first dielectric film is greater than 0 nm and less than 10 nm. The second dielectric film is predominantly composed of a metal compound different from the metal oxide of the first dielectric film.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Hitoshi Ishimoto, Masashi Shoji
  • Patent number: 8654507
    Abstract: The present application is generally directed to energy storage materials such as activated carbon comprising enhanced particle packing properties and devices containing the same. The energy storage materials find utility in any number of devices, for example, in electric double layer capacitance devices and batteries. Methods for making the energy storage materials are also disclosed.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 18, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Henry R. Costantino, Chad Goodwin, William D. Scott, Aaron M. Feaver
  • Patent number: 8638545
    Abstract: An electrode structure which provides adhesiveness between an aluminum material, as a base material, and a dielectric layer, and adhesiveness between the dielectric layers, and enables a high capacitance, even with a thick dielectric layer. An interposing layer is formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and includes aluminum and carbon. The dielectric layer includes dielectric particles including valve metal, and an organic substance layer formed on at least one part of a surface of the dielectric particle. A mixture layer of dielectric particles, including the valve metal and a binder, is formed on a surface of the aluminum material, and thereafter, the aluminum material is heated in a state where the aluminum material is placed in a space including a hydrocarbon-containing substance.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 28, 2014
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hietoshi Inoue
  • Publication number: 20140002959
    Abstract: An accumulator device which provides a high energy density and high output power is provided. The accumulator device (D) includes a positive electrode in which a positive electrode layer (A) is formed, a negative electrode in which a negative electrode layer (B) is formed, and an electrolytic solution (C). The accumulator device is characterized by satisfying that 1.02?WA/WB?2.08 and that 390 ?m?TA?750 ?m, where WA is the weight of the positive electrode layer (A), WB is the weight of the negative electrode layer (B), and TA is the thickness of the positive electrode in which the positive electrode layer (A) is formed.
    Type: Application
    Filed: February 27, 2012
    Publication date: January 2, 2014
    Applicant: JM Energy Corporation
    Inventors: Nobuo Ando, Teruaki Tezuka, Yuu Watanabe, Makoto Taguchi, Kenji Kojima, Takashi Chiba, Hirobumi Suzuki