Diode Patents (Class 365/243)
  • Patent number: 11948617
    Abstract: Methods, systems, and devices for a magnetic cache for a memory device are described. Magnetic storage elements (e.g., magnetic memory cells, such as spin-transfer torque (STT) memory cells or magnetic tunnel junction (MTJ) memory cells) may be configured to act as a cache for a memory array, where the memory array includes a different type of memory cells. The magnetic storage elements may be inductively coupled to access lines for the memory array. Based on this inductive coupling, when a memory value is written to or read from a memory cell of the array, the memory value may concurrently be written to a magnetic storage element based on associated current through an access line used to write or read the memory cell. Subsequent read requests may be executed by reading the memory value from the magnetic storage element rather than from the memory cell of the array.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: April 2, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Dmitri A. Yudanov
  • Patent number: 11557325
    Abstract: Methods, systems, and devices for inductive energy harvesting and signal development for a memory device are described. One or more inductors may be included in or coupled with a memory device and used to provide current for various operations of the memory device based on energy harvested by the inductors. An inductor may harvest energy based on current being routed through the inductor or based on being inductively coupled with a second inductor through which current is routed. After harvesting energy, an inductor may provide current, and the current provided by the inductor may be used to drive access lines or otherwise as part of executing one or more operations at the memory device. Such techniques may improve energy efficiency or improve the drive strength of signals for the memory device, among other benefits.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 17, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Dmitri A. Yudanov
  • Patent number: 9007801
    Abstract: Integrated electronic memory devices include control logic and one or more cross point information storage arrays. The cross point storage array(s) include a non-linear conductor proximate to at least one cross point storage location, and the control logic comprises (i) an NMOS type transistor and a PNP type transistor, but not a PMOS type transistor, or (ii) a PMOS type transistor and an NPN type transistor, but not an NMOS type transistor.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Contour Semiconductor, Inc.
    Inventor: Daniel Robert Shepard
  • Patent number: 8976579
    Abstract: According to one embodiment, a magnetic memory element includes: a magnetic wire, a stress application unit, and a recording/reproducing unit. The magnetic wire includes a plurality of domain walls and a plurality of magnetic domains separated by the domain walls. The magnetic wire is a closed loop. The stress application unit is configured to cause the domain walls to circle around along the closed loop a plurality of times by applying stress to the magnetic wire. The recording/reproducing unit is configured to write memory information by changing magnetizations of the circling magnetic domains as the domain walls circle around and to read the written memory information by detecting the magnetizations of the circling magnetic domains.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Yoshiaki Fukuzumi, Hirofumi Morise, Akira Kikitsu
  • Patent number: 8953370
    Abstract: A memory cell with a decoupled read/write path includes a switch comprising a first terminal connected to a first line and a second terminal connected to a second line, a resistive switching device connected between a gate of the switch and a third line, and a conductive path between the gate of the switch and the second line.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Ting, Kuo-Ching Huang, Chun-Yang Tsai
  • Patent number: 8842488
    Abstract: A circuit for programming a fuse is disclosed. The circuit includes a voltage supply terminal (Vf) and a semiconductor controlled rectifier (222, 224). The fuse is coupled between the voltage supply terminal and the semiconductor controlled rectifier. A switching circuit (200, 202, 208, 210) is coupled to the semiconductor controlled rectifier.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 23, 2014
    Inventor: Robert Newton Rountree
  • Patent number: 8804451
    Abstract: Power sources, backup power circuits, power source control circuits, data storage devices, and methods relating to controlling application of power to a node are disclosed. An example power source includes an input, backup power source, and a backup power source control circuit. The input is configured to be coupled to a primary power source and further configured to couple the primary power source to the output when the input is coupled to the primary power source. The backup power source control circuit is configured to control a current path from the backup power source to the output based at least in part on a voltage applied to the input.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Douglas Todd Hayden
  • Patent number: 8773885
    Abstract: A semiconductor device including: a first memory cell including a non-volatile first variable resistance element that stores data by varying a resistance value and a selection transistor that selects the first variable resistance element; a first memory layer provided with more than one such first memory cell arranged in a plane; a second memory cell including a non-volatile second variable resistance element that stores data by varying a resistance value and a selection diode that selects the second variable resistance element; and a second memory layer provided with more than one such second memory cell arranged in a plane; wherein more than one such second memory layer is stacked over the first memory layer.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: July 8, 2014
    Assignee: Spansion LLC
    Inventor: Naoharu Shinozaki
  • Patent number: 8659947
    Abstract: A nonvolatile semiconductor memory device comprises a plurality of memory blocks, each including a plurality of cell units and each configured as a unit of execution of an erase operation. Each of the cell units comprises a memory string, a first transistor, a second transistor, and a diode. The first transistor has one end connected to one end of the memory string. The second transistor is provided between the other end of the memory string and a second line. The diode is provided between the other end of the first transistor and a first line. The diode comprises a second semiconductor layer of a first conductivity type and a third semiconductor layer of a second conductivity type.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: February 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hitoshi Iwai, Tomoki Higashi, Shinichi Oosera
  • Patent number: 8625377
    Abstract: A circuit for programming a fuse is disclosed. The circuit includes a voltage supply terminal (Vf) and a semiconductor controlled rectifier (222, 224). The fuse is coupled between the voltage supply terminal and the semiconductor controlled rectifier. A switching circuit (200, 202, 208, 210) is coupled to the semiconductor controlled rectifier.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 7, 2014
    Inventor: Robert N. Rountree
  • Patent number: 8614910
    Abstract: An object is to provide a semiconductor device in which lower power consumption is realized by lowering voltage for data writing without increase in types of power supply potentials. Another object is to provide a semiconductor device in which threshold voltage drop of a selection transistor is suppressed without increase in types of power supply potentials for data writing. A diode-connected transistor is electrically connected in series with a word line electrically connected to a gate of an n-channel selection transistor. A capacitor is provided between the word line and a bit line electrically connected to one of a source and a drain of the selection transistor; alternatively, the capacitance between the bit line and the word line is used. In data writing, the timing of selecting the word line is earlier than the timing of selecting the bit line.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yutaka Shionoiri
  • Patent number: 8547721
    Abstract: Disclosed is a resistive memory device. In the resistive memory device, at least one variable resistance region and at least one switching device may be horizontally apart from each other, rather than being disposed on the same vertical axis. At least one intermediate electrode, which electrically connects the at least one variable resistance region and the at least one switching device, may be between the at least one variable resistance region and the at least one switching device.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seungeon Ahn, Kihwan Kim, Changjung Kim, Myungjae Lee, Bosoo Kang, Changbum Lee
  • Patent number: 8531861
    Abstract: One time programming memory and methods of storage and manufacture of the same are provided. Examples relate to microelectronic memory technology and manufacture. The one time programming memory includes a diode (10) having a unidirectional conducting rectification characteristic and a variable-resistance memory (20) having a bipolar conversion characteristic. The diode (10) having the unidirectional conducting rectification characteristic and the variable-resistance memory (20) having the bipolar conversion characteristic are connected in series. The one time programming memory device of this example takes the bipolar variable-resistance memory (20) as a storage unit, programming the bipolar variable-resistance memory (20) into different resistance states so as to carry out multilevel storage, and takes the unidirectional conducting rectification diode (10) as a gating unit.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 10, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Ming Liu, Qingyun Zuo, Shibing Long, Changqing Xie, Zongliang Huo
  • Patent number: 8514649
    Abstract: Power sources, backup power circuits, power source control circuits, data storage devices, and methods relating to controlling application of power to a node are disclosed. An example power source includes an input, backup power source, and a backup power source control circuit. The input is configured to be coupled to a primary power source and further configured to couple the primary power source to the output when the input is coupled to the primary power source. The backup power source control circuit is configured to control a current path from the backup power source to the output based at least in part on a voltage applied to the input.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Todd Hayden
  • Patent number: 8462580
    Abstract: A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: June 11, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Peter Rabkin, George Samachisa, Roy E. Scheuerlein
  • Patent number: 8358531
    Abstract: Spin torque transfer magnetic random access memory devices configured to be programmed unidirectionally and methods of programming such devices. The devices include memory cells having two pinned layers and a free layer therebetween. By utilizing two pinned layers, the spin torque effect on the free layer from each of the two pinned layers, respectively, allows the memory cells to be programmed with unidirectional currents.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: January 22, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Patent number: 8335100
    Abstract: Methods, systems, structures and arrays are disclosed, such as a resistive memory array which includes access devices, for example, back-to-back Zener diodes, that only allow current to pass through a coupled resistive memory cell when a voltage drop applied to the access device is greater than a critical voltage. The array may be biased to reduce standby currents and improve delay times between programming and read operations.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: December 18, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, David Porter
  • Patent number: 8325557
    Abstract: A memory device having a plurality of storage locations disposed along a plurality of generally parallel lines includes, connected to the lines, a decoder circuit for selecting one line, and, connected to each line, a line-disabling circuit for selectively preventing the line from being energized during line selection.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 4, 2012
    Assignee: Contour Semiconductor, Inc.
    Inventor: Daniel R. Shepard
  • Patent number: 8295072
    Abstract: Non-volatile magnetic random access memory (MRAM) devices that include magnetic flip-flop structures that include a magnetization controlling structure; a first tunnel barrier structure; and a magnetization controllable structure that includes a first polarizing layer; and a first stabilizing layer, wherein the first tunnel barrier structure is between the magnetization controllable structure and the magnetization controlling structure and the first polarizing layer is between the first stabilizing layer and the first tunnel barrier structure, wherein the magnetic flip-flop device has two stable overall magnetic; configurations a second tunnel barrier structure and a reference layer, wherein the second tunnel barrier structure is between the magnetic flip-flop device and the reference layer.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Seagate Technology LLC
    Inventors: Dimitar V. Dimitrov, Olle Gunnar Heinonen, Yiran Chen, Haiwen Xi, Xiaohua Lou
  • Patent number: 8289799
    Abstract: Power sources, backup power circuits, power source control circuits, data storage devices, and methods relating to controlling application of power to a node are disclosed. An example power source includes an input, backup power source, and a backup power source control circuit. The input is configured to be coupled to a primary power source and further configured to couple the primary power source to the output when the input is coupled to the primary power source. The backup power source control circuit is configured to control a current path from the backup power source to the output based at least in part on a voltage applied to the input.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 16, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Todd Hayden
  • Patent number: 8238136
    Abstract: A high performance memory based computation system comprises an array of memory cells. Each memory cell stores a logic data corresponding to a chosen combination of inputs based on a specific logic function. For improved performance, the memory cell array can be divided into sub-blocks; and the sub-blocks can be serially disposed or juxtaposed. The performance of the memory based computation system can further be improved by removing the repeated memory cell rows, column, and/or sub-arrays.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Toshiba America Research, Inc.
    Inventor: Bipul C. Paul
  • Patent number: 8098521
    Abstract: A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: January 17, 2012
    Assignee: Spansion LLC
    Inventors: Michael A. VanBuskirk, Colin S. Bill, Zhida Lan, Tzu-Ning Fang
  • Patent number: 8089801
    Abstract: The present invention discloses a semiconductor memory device comprising a source, a drain, a floating gate, a control gate, a recess channel and a gated p-n diode. The said p-n diode connects said floating gate and said drain. The said floating gate is for charge storage purpose, it can be electrically charged or discharged by current flowing through the gated p-n diode. An array of memory cells formed by the disclosed semiconductor memory device is proposed. Furthermore, an operating method and a method for producing the disclosed semiconductor memory device and array are described.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: January 3, 2012
    Assignee: Suzhou Oriental Semiconductor Co., Ltd.
    Inventors: Peng-Fei Wang, Yi Gong
  • Patent number: 7968402
    Abstract: One aspect of this disclosure relates to a memory cell. In various embodiments, the memory cell includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode. In various embodiments, the memory cell is implemented in bulk semiconductor technology. In various embodiments, the memory cell is implemented in semiconductor-on-insulator technology. In various embodiments, the diode is gate-controlled. In various embodiments, the diode is charge enhanced by an intentionally generated charge in a floating body of an SOI access transistor. Various embodiments include laterally-oriented diodes (stacked and planar configurations), and various embodiments include vertically-oriented diodes.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7933137
    Abstract: Non-volatile magnetic random access memory (MRAM) devices that include magnetic flip-flop structures that include a magnetization controlling structure; a first tunnel barrier structure; and a magnetization controllable structure that includes a first polarizing layer; and a first stabilizing layer, wherein the first tunnel barrier structure is between the magnetization controllable structure and the magnetization controlling structure and the first polarizing layer is between the first stabilizing layer and the first tunnel barrier structure, wherein the magnetic flip-flop device has two stable overall magnetic configurations, and wherein a first unipolar current applied to the device will cause the orientation of the magnetization controlling structure to reverse its orientation and a second unipolar current applied to the electronic device will cause the magnetization controllable structure to switch its magnetization so that the device reaches one of the two stable overall magnetic configurations, wherein
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 26, 2011
    Assignee: Seagate Teachnology LLC
    Inventors: Dimitar V. Dimitrov, Olle Gunnar Heinonen, Yiran Chen, Haiwen Xi, Xiaohua Lou
  • Patent number: 7920406
    Abstract: A method for forming a memory structure, includes: forming an array of individual memory cells arranged in a network of bit lines and word lines, each individual memory cell further comprising a resistive memory device that is capable of being programmed to a plurality of resistance states, each of the resistive memory devices coupled to one of the bit lines at a first end thereof; configuring a rectifying element in series with each of the resistive memory devices at a second end thereof; configuring an access transistor associated with each of the individual memory cells, the access transistors activated by a signal applied to a corresponding one of the word lines, with each access transistor connected in series with a corresponding rectifying element; and forming a common connection configured to short neighboring rectifying devices together along a word line direction, in groups of two or more.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Kailash Gopalakrishnan
  • Patent number: 7843715
    Abstract: A memory cell of a resistive semiconductor memory device, a resistive semiconductor memory device having a three-dimensional stack structure, and related methods are provided. The memory cell of a resistive semiconductor memory device includes a twin cell, wherein the twin cell stores data values representing one bit of data. The twin cell includes a main unit cell connected to a main bit line and a word line, and a sub unit cell connected to a sub bit line and the word line. Also, the main unit cell includes a first variable resistor and a first diode, and the sub unit cell includes a second variable resistor and a second diode.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-Min Park, Sang-Beom Kang, Hyung-Rok Oh, Woo-Yeong Cho
  • Patent number: 7782650
    Abstract: Under one aspect, a memory array includes word lines; bit lines; memory cells; and a memory operation circuit. Each memory cell responds to electrical stimulus on a word line and on a bit line and includes: a two-terminal non-volatile nanotube switching device having first and second terminals, a semiconductor diode element, and a nanotube fabric article capable of multiple resistance states. The semiconductor diode and nanotube article are between and in electrical communication with the first and second terminals, which are coupled to the word line bit line respectively. The operation circuit selects cells by activating bit and/or word lines, detects a resistance state of the nanotube fabric article of a selected memory cell, and adjusts electrical stimulus applied to the cell to controllably induce a selected resistance state in the nanotube fabric article. The selected resistance state corresponds to an informational state of the memory cell.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 7746690
    Abstract: A memory operable at a high speed is obtained. This memory comprises a plurality of word lines, first transistors each connected to each the plurality of word lines for entering an ON-state through selection of the corresponding word line, a plurality of memory cells including diodes having cathodes connected to the source or drain regions of the first transistors respectively and a data determination portion connected to the drain or source regions of the first transistors for determining data read from a selected memory cell.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 29, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kouichi Yamada
  • Patent number: 7660180
    Abstract: A thermally programmable memory has a programmable element (20) of a thermally programmable resistance preferably of phase change material, material and a blown antifuse (80) located adjacent to the programmable material. Such a blown antifuse has a dielectric layer (100) surrounded by conductive layers (90, 110) to enable a brief high voltage to be applied across the dielectric to blow a small hole in the dielectric during manufacture to form a small conductive path which can be used as a tiny electrical heater for programming the material. Due to the current confinement by the hole, the volume of the material that must be heated in order to switch to a highly-resistive state is very small. As a result the programming power can be low.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: February 9, 2010
    Assignee: NXP B.V.
    Inventors: Hans M. B. Boeve, Karen Attenborough, Godefridus A. M. Hurkx, Prabhat Agarwal, Hendrik G. A. Huizing, Michael A. A. In'T Zandt, Jan W. Slotboom
  • Patent number: 7660144
    Abstract: A memory cell embodiment includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7646622
    Abstract: A high performance memory based computation system comprises an array of memory cells. Each memory cell stores a logic data corresponding to a chosen combination of inputs based on a specific logic function. For improved performance, the memory cell array can be divided into sub-blocks; and the sub-blocks can be serially disposed or juxtaposed. The performance of the memory based computation system can further be improved by removing the repeated memory cell rows, column, and/or sub-arrays.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: January 12, 2010
    Assignee: Toshiba America Research, Inc.
    Inventor: Bipul C. Paul
  • Patent number: 7613058
    Abstract: Radiation hardening, detection and protection design methods are disclosed. An example write drive circuit is disclosed having radiation hardened analog circuitry. A passive transistor is provided to generate a radiation photo-current to offset any net radiation photo-current of the operational circuitry. Using this technique, a radiation hardened reference-mirror control circuit provides a switched write current for setting the logical state of MRAM bits during a radiation event, for instance. A radiation detector and radiation hardened logic gates are further provided for inhibiting the write current when a radiation level is above a predetermined level.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 3, 2009
    Assignee: Honeywell International Inc.
    Inventor: Lance L. Sundstrom
  • Patent number: 7518900
    Abstract: A memory capable of reducing the memory cell size is provided. This memory includes a plurality of memory cells including diodes, a plurality of bit lines and a first conductive type first impurity region arranged to intersect with the bit lines for functioning as first electrodes of the diodes included in the memory cells and a word line. The first impurity region is divided every bit line group formed by a prescribed number of bit lines along a direction intersecting with the extensional direction of the first impurity region.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: April 14, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kouichi Yamada
  • Patent number: 7474548
    Abstract: A semiconductor memory device includes: a memory cell array region formed in a semiconductor region of a first conductivity type and having a plurality of memory cells arranged in rows and columns; a plurality of word lines each of which collectively connects ones of the plurality of memory cells aligned in the same row; and a protective diode region formed in the semiconductor region to be separated from the memory cell array region. In the protective diode region, a protective diode element is constructed by making a junction between a first diffusion layer of a second conductivity type formed in the upper portion of the semiconductor region and the semiconductor region. Each of the word lines extends to the protective diode region and is brought into direct connection to the first diffusion layer of the second conductivity type, thereby making electrical connection to the protective diode element.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: January 6, 2009
    Assignee: Panasonic Corporation
    Inventors: Yoshiya Moriyama, Yuji Harada, Keita Takahashi
  • Patent number: 7450416
    Abstract: The present invention is a method of undertaking a procedure on a memory-diode, wherein a memory-diode is provided which is programmable so as to have each of a plurality of different threshold voltages. A reading of the state of the memory-diode indicates the so determined threshold voltage of the memory-diode.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: November 11, 2008
    Assignee: Spansion LLC
    Inventors: Swaroop Kaza, Juri Krieger, David Gaun, Stuart Spitzer, Richard Kingsborough, Zhida Lan, Colin S. Bill, Wei Daisy Cai, Igor Sokolik
  • Patent number: 7447062
    Abstract: A memory structure, includes: an array of individual memory cells arranged in a network of bit lines and word lines, each individual memory cell further comprising a resistive memory device that is capable of being programmed to a plurality of resistance states, each of the resistive memory devices coupled to one of the bit lines at a first end thereof; a rectifying element in series with each of the resistive memory devices at a second end thereof; an access transistor associated with each of the individual memory cells, the access transistors activated by a signal applied to a corresponding one of the word lines, with each access transistor connected in series with a corresponding rectifying element; and a common connection configured to short neighboring rectifying devices together along a word line direction, in groups of two or more.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: November 4, 2008
    Assignee: International Business Machines Corproation
    Inventors: Geoffrey W. Burr, Kailash Gopalakrishnan
  • Patent number: 7277347
    Abstract: An antifuse cell includes a select transistor, a blocking transistor, and an antifuse. The select transistor allows for selection of the antifuse cell among an array of antifuse cells, while the blocking transistor limits the amount of voltage that may be directly applied to the select transistor. The antifuse including a capacitor. The capacitor may include a gate over a gate oxide and an n-well under the gate oxide. The n-well may have two n+ regions used as contact points for the n-well. Upon programming, an electrically conductive path (e.g., a short) is permanently burned through the gate oxide. The antifuse cell occupies a relatively small area while providing a relatively tight read current distribution.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: October 2, 2007
    Assignee: Cypress Semiconductor Corporation
    Inventor: Fredrick B. Jenne
  • Patent number: 7206247
    Abstract: An antifuse cell includes a select transistor, a blocking transistor, and an antifuse. The select transistor allows for selection of the antifuse cell among an array of antifuse cells, while the blocking transistor limits the amount of voltage that may be directly applied to the select transistor. The antifuse may comprise a capacitor. Current used to program an antifuse cell is controlled using a programming current regulator. The programming current regulator may include components that form a current mirror with components of the antifuse cell to tightly control programming current through the antifuse. Dynamic current flowing through a substrate of an antifuse cell is limited using a current limiting resistor directly in series with an antifuse of the antifuse cell. The current limiting resistor minimizes or prevents excessive programming current.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 17, 2007
    Assignee: Cypress Semiconductor Corporation
    Inventor: Fredrick B. Jenne
  • Patent number: 7203129
    Abstract: In one example, an MRAM memory array includes a plurality of word lines, a plurality of bit lines crossing the word lines, and a plurality of first and second diodes, and magnetic tunnel junction memories. Each first diode includes a cathode, and an anode coupled to each bit line. Each second diode includes an anode, and a cathode coupled to each word line. The magnetic tunnel junction memories include a pinned layer, a free layer, and a non-magnetic layer. The non-magnetic layer is located between the pinned layer and the free layer. Each diode is positioned at crossing points of the bit lines and the word lines and connected between the first diode at the corresponding crossing bit line and the second diode at the corresponding crossing word line.
    Type: Grant
    Filed: February 16, 2004
    Date of Patent: April 10, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Danny D. Tang, Li-Shyue Lai
  • Patent number: 7071565
    Abstract: A three dimensional circuit structure including tapered pillars between first and second signal lines. An apparatus including a first plurality of spaced apart coplanar conductors disposed in a first plane over a substrate; a second plurality of spaced apart coplanar conductors disposed in a second plane, the second plane parallel to and different from the first plane; and a plurality of cells disposed between one of the first conductors and one of the second conductors, wherein each of the plurality of cells have a re-entrant profile.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 4, 2006
    Assignee: Sandisk 3D LLC
    Inventors: Calvin K. Li, N. Johan Knall, Michael A. Vyvoda, James M. Cleeves, Vivek Subramanian
  • Patent number: 7012846
    Abstract: A sense amplifier which senses whether current is present on a bit line, and generates one logical value if current is present and another logical value if current is not present. As the sense amplifier can be implemented to generate such logical values with a current signal of low strength, memory arrays with correspondingly low drive strength can be implemented. As a result, memory systems which consume minimal power and having high density can be provided. In addition, as the sense amplifiers can operate without any reference signals, the implementation of sense amplifiers may be simplified.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: March 14, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Suresh Balasubramanian, Stephen Wayne Spriggs, Bryan D. Sheffield, Mohan Mishra
  • Patent number: 6980465
    Abstract: An addressing circuit is operable to address one or more memory elements in a cross-point memory array. The addressing circuit includes first and second sets of address lines for addressing the cross-point memory array. The address circuit also includes pull-up and pull-down circuit elements. Both the pull-up and pull-down circuit elements and the address lines include cross-point resistive elements.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 27, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Carl Taussig, Warren Jackson, Hao Luo
  • Patent number: 6888747
    Abstract: Depletion-mode ferroelectric transistors are adapted for use as non-volatile memory cells. Various embodiments are described having a diode interposed between the bit line and a source/drain region of the transistor for added margin against read disturb. Various additional embodiments are described having an array architecture such that two memory cells sharing the same bit line also share the same program line. Using this configuration, non-selected cells are readily supplied with gate/source voltages sufficient to maintain the cells in a deactivated state during read and write operations on selected cells.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: May 3, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Craig T. Salling, Brian W. Huber
  • Patent number: 6826112
    Abstract: The invention includes a logic gate. The logic gate includes a charge holding device. A charging circuit selectively provides a predetermined charge for the charge holding device. A logic gate output is a function of charge on the charge holding device. The logic gate further includes a plurality of inputs. The plurality of inputs are electrically connected to the charge holding device so that the charge of the charge holding device is modified if any of the plurality of inputs is a first voltage potential. The invention also includes an address decoder. The address decoder includes a charge holding device. A charging circuit selectively provides a predetermined charge for the charge holding device. An address decoder output is a function of charge on the charge holding device. The address decoder further includes a plurality of address lines.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: November 30, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Joseph Ku, James Robert Eaton
  • Patent number: 6813182
    Abstract: A donor/acceptor-organic-junction sheet employed within an electronic memory array of a cross-point diode memory. The donor/acceptor-organic-junction sheet is anistropic with respect to flow of electrical current and is physically unstable above a threshold current. Thus, the volume of the donor/acceptor-organic-junction sheet between a row line and column line at a two-dimensional memory array grid point serves both as the diode component and as the fuse component of a diode-and-fuse memory element and is electrically insulated from similar volumes of the donor/acceptor-organic-junction sheet between neighboring grid point intersections.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: November 2, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Craig M Perlov, Stephen Forrest
  • Patent number: 6768685
    Abstract: In a programmable memory array, multiple memory cells on a single bit line may be tested in parallel for the unprogrammed state by simultaneously selecting multiple word lines associated with a selected bit line within a sub-array. A read current flowing through each selected memory cell is added on the selected bit line, and may be sensed using the same bit line sense circuits used for normal read operations. In the test mode, the sense circuit preferably indicates a pass/fail condition for all N simultaneously selected memory cells, which may be directly conveyed as an output signal, or may be combined with other similar pass/fail signals from other selected bit line sense circuits to generate a combined pass/fail output signal. Multiple bit lines may be simultaneously selected within the same sub-array.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: July 27, 2004
    Assignee: Mtrix Semiconductor, Inc.
    Inventor: Roy E. Scheuerlein
  • Patent number: 6711046
    Abstract: Programmable semiconductor elements, such as zener diodes, are used in an optical array. In one embodiment, an array of zener diodes is formed on a substrate surface and selectively zapped (programmed) to create a reflective filament between anode and cathode contacts of the selected zener diodes. Light is then applied to the surface. The reflected (or transmitted) light pattern may be used for conveying optical information or exposing a photoresist layer. In one use of the array to selectively expose a photoresist layer, the array helps to determine which genes have been expressed in a BioChip. Devices other than zener diodes may also be programmed to create a reflective filament for optically conveying information, such as bipolar transistors, MOSFETS, and non-semiconductor devices. The reflective filament can be a portion of a fuse or anti-fuse.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: March 23, 2004
    Assignee: Micrel, Incorporated
    Inventor: Martin Alter
  • Patent number: 6661704
    Abstract: A method of and apparatus for connecting the sense current line in a cross-point memory array greatly reduces the effect of reverse leakage from unaddressed row or column lines. Separate sense line segments are coupled to separate stripes of row or column lines. Each sense line segment is connected to a sense diode, and each sense diode is connected to a sense bus. Each sense diode provides the current path for sensing on a selected row or column line, while allowing the leakage of only one diode per sense line segment for the unaddressed row or column lines. This arrangement results in wider margins for sensing the state of data cells in a cross-point memory array and simpler circuitry design for the memory array.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: December 9, 2003
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: James R. Eaton, Jr.
  • Patent number: RE41733
    Abstract: A read-only data storage and retrieval device is presented having no moving parts and requiring very low power. Addressing can be accomplished sequentially where the address increments automatically or can be accomplished randomly. High density storage is achieved through the use of a highly symmetric diode matrix that is addressed in both coordinate directions; its symmetry makes the Dual-addressed Rectifier Storage (DRS) Array very scaleable scalable, particularly when made as an integrated circuit. For even greater storage flexibility, multiple digital rectifier storage arrays can be incorporated into the device, one or more of which can be made removable and interchangeable.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: September 21, 2010
    Assignee: Contour Semiconductor, Inc.
    Inventor: Daniel R. Shepard