With Superlattice Structure Patents (Class 372/45.012)
  • Publication number: 20120134381
    Abstract: A method of forming an optoelectronic device comprising growing a first multi-layer 2 representing a reflector on a first substrate and a second multilayer 4 representing an active region on a second substrate, the first and second substrates being lattice mismatched, fusing the first multi-layer 2 to a third substrate 3, wherein the material of the third substrate 3 is lattice matched with respect to the material of the second multi-layer 4, removing the first substrate to expose the first multi-layer 2, and fusing the first multi-layer to the second multi-layer 4.
    Type: Application
    Filed: July 1, 2010
    Publication date: May 31, 2012
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
    Inventors: Alexei Sirbu, Alexandru Mereuta, Andre Caliman
  • Publication number: 20120134380
    Abstract: A quantum cascade laser is configured to include a semiconductor substrate, and an active layer that is provided on the substrate and has a cascade structure formed by alternately laminating emission layers and injection layers by multistage-laminating unit laminate structures each consisting of the quantum well emission layer and the injection layer, and generates light by intersubband transition in a quantum well structure. In a laser cavity structure for light with a predetermined wavelength generated in the active layer, a front reflection film with a reflectance of not less than 40% and not more than 99% for laser oscillation light is formed on the front end face that becomes a laser beam output surface, and a back reflection film with a reflectance higher than that of the front reflection film for the laser oscillation light is formed on the back end face.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 31, 2012
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tadataka EDAMURA, Kazuue FUJITA, Tatsuo DOUGAKIUCHI, Masamichi YAMANISHI
  • Patent number: 8189639
    Abstract: A GaN-based edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, an N-side waveguiding layer, a P-side waveguiding layer, an N-type cladding layer, and a P-type cladding layer. The GaN substrate is characterized by a threading dislocation density on the order of approximately 1×106/cm2. The strain-thickness product of the N-side waveguiding layer exceeds its strain relaxation critical value. In addition, the cumulative strain-thickness product of the active region calculated for the growth on a the relaxed N-side waveguiding layer is less than its strain relaxation critical value. As a result, the N-side interface between the N-type cladding layer and the N-side waveguiding layer comprises a set of N-side misfit dislocations and the P-side interface between the P-type cladding layer and the P-side waveguiding layer comprises a set of P-side misfit dislocations. Additional embodiments are disclosed and claimed.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 29, 2012
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Dmitry Sizov
  • Publication number: 20120107991
    Abstract: A III-nitride-based light emitting device having a multiple quantum well (MQW) structure and a method for fabricating the device, wherein at least one barrier in the MQW structure is doped with magnesium (Mg). The Mg doping of the barrier is accomplished by introducing a bis(cyclopentadienyl)magnesium (Cp2Mg) flow during growth of the barrier using metalorganic chemical vapor deposition (MOCVD). The barriers of the MQW structure may be undoped, fully Mg-doped or partially Mg-doped. When the barrier is partially Mg-doped, only portions of the barrier are Mg-doped to prevent Mg diffusion into quantum wells of the MQW structure. The Mg-doped barriers preferably are high Al composition AlGaN barriers in nonpolar or semipolar devices.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 3, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chia-Yen Huang, Shuji Nakamura, Steven P. DenBaars, James S. Speck
  • Patent number: 8160116
    Abstract: The present invention provides a semiconductor laser including a first conductive type of a lower clad layer 12, an active layer 14 provided on the lower clad layer 12, the active layer 14 including a plurality of quantum dots, and a second conductive type of an upper clad layer 18, the upper clad layer 18 being provided on the active layer 14 so as to have an isolated ridge portion 30 such that W1?Wtop+0.4 ?m where Wtop is the width of a top of the ridge portion 30 and W1 is the width of the ridge portion 30 at a height of 50 nm from a bottom of the ridge portion 30. The present invention also provides a method for manufacturing such a semiconductor laser.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: April 17, 2012
    Assignee: QD Laser Inc.
    Inventors: Tomoyuki Akiyama, Mitsuru Sugawara
  • Publication number: 20120069863
    Abstract: Group III nitride-based laser diodes comprise an n-side cladding layer formed of n-doped (Al,In)GaN, an n-side waveguide layer formed of n-doped (Al)InGaN, an active region, a p-side waveguide layer formed of p-doped (Al)InGaN, and a p-side cladding layer formed of p-doped (Al,In)GaN. Optical mode is shifted away from high acceptor concentrations in p-type layers through manipulation of indium concentration and thickness of the n-side waveguide layer. Dopant and compositional profiles of the p-side cladding layer and the p-side waveguide layer are tailored to reduce optical loss and increased wall plug efficiency.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Inventors: Dmitry Sizov, Rajaram Bhat, Chung-En Zah
  • Patent number: 8126024
    Abstract: An optical device having a structured active region configured for one or more selected wavelengths of light emissions of 500 nm and greater, but can be others.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: February 28, 2012
    Assignee: Soraa, Inc.
    Inventor: James W. Raring
  • Patent number: 8121165
    Abstract: Multi-quantum well laser structures are provided comprising active and/or passive MQW regions. Each of the MQW regions comprises a plurality of quantum wells and intervening barrier layers. Adjacent MQW regions are separated by a spacer layer that is thicker than the intervening barrier layers. The bandgap of the quantum wells is lower than the bandgap of the intervening barrier layers and the spacer layer. The active region may comprise active and passive MQWs and be configured for electrically-pumped stimulated emission of photons or it may comprises active MQW regions configured for optically-pumped stimulated emission of photons.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 21, 2012
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Jerome Napierala, Dmitry Sizov, Chung-En Zah
  • Publication number: 20120039350
    Abstract: Semiconductor structures and laser devices including the semiconductor structures are provided. The semiconductor structures have a quantum cascade laser (QCL) structure including an electron injector, an active region, and an electron extractor. The active region of the semiconductor structures includes a configuration of quantum wells and barriers that virtually suppresses electron leakage, thereby providing laser devices including such structures with superior electro-optical characteristics.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Dan Botez, Jae Cheol Shin
  • Publication number: 20120033699
    Abstract: Provided is a surface-emitting laser including a periodic gain structure, which is capable of improving uniformity of carrier injection into multiple active regions and carrier confinement, to thereby improve laser characteristics. The surface-emitting laser includes: a first DBR layer; a first cladding layer; multiple active regions each including a multiple quantum well structure; an interbarrier layer disposed between the multiple active regions; a second cladding layer; a current confinement structure; and a second DBR layer. The multiple active regions are disposed at multiple positions at which light intensity of a gain region is maximum, and the interbarrier layer has an energy level at a bottom of a conduction band thereof which is higher than an energy level at a bottom of a conduction band of a barrier layer of the multiple quantum well structure of each of the multiple active regions, which are disposed at the multiple positions.
    Type: Application
    Filed: July 26, 2011
    Publication date: February 9, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yoshinobu Sekiguchi
  • Patent number: 8111726
    Abstract: A semiconductor laser device includes: an n-type cladding layer, a p-type cladding layer, an active layer located between the n-type cladding layer and the p-type cladding layer, an n-side guiding layer located on the same side of the active layer as the n-type cladding layer, and a p-side guiding layer located on the same side of the active layer as the p-type cladding layer. The n-side guiding layer, the active layer, and the p-side guiding layer are undoped or substantially undoped. The sum of the thicknesses of the n-side guiding layer, the active layer, and the p-side guiding layer is not less than 0.5 times the lasing wavelength of the semiconductor laser device and is not more than 2 ?m. The p-side guiding layer is thinner and has a lower refractive index than the n-side guiding layer.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: February 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kimio Shigihara
  • Patent number: 8098701
    Abstract: A DFB quantum cascade laser element that can reliably CW-oscillate a single-mode light even at room temperature or a temperature in proximity thereof is provided. In a quantum cascade laser element 1, a top-grating approach for which a diffraction grating 7 is formed on a laminate 3 is adopted, and thus in comparison with a buried-grating approach, deterioration in temperature characteristics of the laser element and decline in the yield and reproducibility are suppressed. In addition, since the thickness of a cladding layer 5 located between an active layer 4 and the diffraction grating 7 is within a range of 42±10% of the oscillation wavelength, weakening of light seeping from the active layer 4 to the diffraction grating 7 or an increase in light leakage is prevented. Consequently, by the quantum cascade laser element 1, a single-mode light can be reliably CW-oscillated even at room temperature or a temperature in proximity thereof.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 17, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Atsushi Sugiyama, Takahide Ochiai, Kazuue Fujita, Naota Akikusa, Tadataka Edamura, Shinichi Furuta
  • Publication number: 20120002695
    Abstract: An ultrashort pulse/ultra-high power laser diode with a simple structure and configuration is provided. In a method of driving a laser diode, the laser diode is driven by a pulse current which is 10 or more times higher than a threshold current value. The width of the pulse current is preferably 10 nanoseconds or less, and the value of the pulse current is specifically 0.4 amperes or over.
    Type: Application
    Filed: August 18, 2011
    Publication date: January 5, 2012
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda, Takao Miyajima, Hideki Watanabe
  • Publication number: 20110292958
    Abstract: A GaN edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, an N-side waveguiding layer, a P-side waveguiding layer, an N-type cladding layer, and a P-type cladding layer. The GaN substrate defines a 20 21 crystal growth plane and a glide plane. The N-side and P-side waveguiding layers comprise a GaInN/GaN or GaInN/GaInN superlattice (SL) waveguiding layers. The superlattice layers of the N-side and P-side SL waveguiding layers define respective layer thicknesses that are optimized for waveguide planarity, the layer thicknesses being between approximately 1 nm and approximately 5 nm. In accordance with another embodiment of the present disclosure, planarization can be enhanced by ensuring that the N-side and P-side GaN-based waveguiding layers are grown at a growth rate that exceeds approximately 0.09 nm/s, regardless of whether the N-side and P-side GaN-based waveguiding layers are provided as a GaInN/GaN or GaInN/GaInN SL or as bulk waveguiding layers.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Inventor: Rajaram Bhat
  • Patent number: 8068528
    Abstract: A quantum cascade laser includes a semiconductor substrate, and an active layer which is provided on the semiconductor substrate, and has a cascade structure in which unit laminate structures 16 having quantum well emission layers 17 and injection layers 18 are laminated in multiple stages. Further, the quantum cascade laser is configured such that the unit laminate structure 16 has an emission upper level Lup, an emission lower level Llow, and a relaxation miniband MB including an energy level lower than the emission lower level in its subband level structure, and light is generated by an intersubband transition of electrons from the upper level to the lower level, and the electrons after the intersubband transition are relaxed from the lower level Llow to the miniband MB through LO phonon scattering, to be injected from the injection layer 18 to the latter stage emission layer via the miniband MB.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 29, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tadataka Edamura, Naota Akikusa, Kazuue Fujita, Atsushi Sugiyama, Takahide Ochiai
  • Patent number: 8050304
    Abstract: A laser diode comprising a first separate confinement heterostructure and an active region on the first separate confinement heterostructure. A second separate confinement heterostructure is on the active region and one or more epitaxial layers is on the second separate confinement heterostructure. A ridge is formed in the epitaxial layers with a first mesa around the ridge. The first mesa is 0.1 to 0.2 microns above the second confinement heterostructure.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 1, 2011
    Assignee: Cree, Inc.
    Inventors: Steven Denbaars, Shuji Nakamura, Monica Hansen
  • Patent number: 8050305
    Abstract: A semiconductor device having high reliability, a long lifetime and superior light emitting characteristics by applying a novel material to a p-type cladding layer is provided. A semiconductor device includes a p-type semiconductor layer on an InP substrate, in which the p-type semiconductor layer has a laminate structure formed by alternately laminating a first semiconductor layer mainly including Bex1Mgx2Znx3Te (0<x1<1, 0?x2<1, 0<x3<1, x1+x2+x3=1) and a second semiconductor layer mainly including Bex4Mgx5Znx6Te (0<x4<1, 0<x5<1, 0?x6<1, x4+x5+x6=1).
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: November 1, 2011
    Assignees: Sony Corporation, Hitachi, Ltd., Sophia School Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Koshi Tamamura, Kunihiko Tasai, Tsunenori Asatsuma, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Publication number: 20110243172
    Abstract: A semipolar plane III-nitride semiconductor-based laser diode or light emitting diode, comprising a semipolar Indium containing multiple quantum wells for emitting light, having Aluminum containing quantum well barriers, wherein the Indium containing multiple quantum well and Aluminum containing barriers are grown in a semipolar orientation on a semipolar plane.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 6, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: You-Da Lin, Hiroaki Ohta, Shuji Nakamura, Steven P. DenBaars, James S. Speck
  • Publication number: 20110243173
    Abstract: Multi-quantum well laser structures are provided comprising active and/or passive MQW regions. Each of the MQW regions comprises a plurality of quantum wells and intervening barrier layers. Adjacent MQW regions are separated by a spacer layer that is thicker than the intervening barrier layers. The bandgap of the quantum wells is lower than the bandgap of the intervening barrier layers and the spacer layer. The active region may comprise active and passive MQWs and be configured for electrically-pumped stimulated emission of photons or it may comprises active MQW regions configured for optically-pumped stimulated emission of photons.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Inventors: Rajaram Bhat, Jerome Napierala, Dmitry Sizov, Chung-En Zah
  • Publication number: 20110216797
    Abstract: There is provided a driving method of a self-oscillating semiconductor laser device including a first compound semiconductor layer having a first conductive type and composed of a GaN base compound semiconductor, a third compound semiconductor layer and a second compound semiconductor layer configuring an emission region and a saturable absorption region, are successively laminated, a second electrode formed on the second compound semiconductor layer, and a first electrode electrically connected to the first compound semiconductor layer. The second electrode is separated into a first portion to create a forward bias state by passing current to the first electrode via the emission region and a second portion to apply an electric field to the saturable absorption region by a separation groove. The current greater than a current value where kink is occurred in optical output-current characteristics is to be passed to the first portion of the second electrode.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 8, 2011
    Applicants: SONY CORPORATION, TOHOKU UNIVERSITY
    Inventors: Hideki Watanabe, Masaru Kuramoto, Takao Miyajima, Hiroyuki Yokoyama
  • Patent number: 8014430
    Abstract: A quantum cascade laser utilizing non-resonant extraction design having a multilayered semiconductor with a single type of carrier; at least two final levels (1 and 1?) for a transition down from level 2; an energy spacing E21 greater than ELO; an energy spacing E31 of about 100 meV; and an energy spacing E32 about equal to ELO. The carrier wave function for level 1 overlaps with the carrier wave function for level 2. Likewise, the carrier wave function for level 1? overlaps with the carrier wave function for level 2. In a second version, the basic design also has an energy spacing E54 of about 90 meV, and levels 1 and 1? do not have to be spatially close to each other, provided that level 2 has significant overlap with both these levels. In a third version, there are at least three final levels (1, 1?, and 1?) for a transition down from level 2. Each of the levels 1, 1?, and 1? has a non-uniform squared wave function distribution.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: September 6, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: C. Kumar N. Patel, Alexei Tsekoun, Richard Maulini, Arkadiy Lyakh, Christian Pflugl, Laurent Diehl, Qijie Wang, Federico Capasso
  • Patent number: 8000367
    Abstract: The present invention pertains to a unipolar quantum cascade laser consisting of several semiconductor multilayer structures (C) that are layered behind one another between two electrodes in a periodic sequence such that an active area (A) and a transitional or injection area (B) respectively alternate. The active areas (A) respectively have at least one upper and one lower energy level for electrons, between which electron transitions (T) emitting light take place. The transitional or injection areas (B) are realized in such a way that they allow the electron transport from the lower energy level of the preceding active area referred to the transport direction into the upper energy level of the following active area referred to the transport direction.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 16, 2011
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Quankui Yang, Christian Manz
  • Publication number: 20110188525
    Abstract: A laser device having a wave emission within a frequency range of 0.5 to 5 THz, includes a semiconductor heterostructure having a cylindrical form with a circular cross-section and including: a first optically nonlinear semiconductor material layer including an emitting medium configured to emit at least two optical whispering gallery modes belonging to the near-infrared spectrum, the two whispering gallery modes being confined within the first layer and enabling the generation, within the first layer, of radiation within an electromagnetic whispering gallery mode having a frequency of 0.
    Type: Application
    Filed: May 12, 2009
    Publication date: August 4, 2011
    Inventors: Julien Claudon, Jean-Michel Gérard, Vincent Berger, Giuseppe Leo, Alessio Andronico
  • Publication number: 20110176122
    Abstract: A surface emitting laser element includes a p-side spacer layer; an n-side spacer layer; and an active layer disposed between the p-side spacer layer and the n-side spacer layer. The p-side spacer layer includes an undoped region adjacent to the active layer in which no p-type dopant is contained. The entire n-side spacer layer is doped with an n-type dopant.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 21, 2011
    Applicant: RICOH COMPANY, LTD.
    Inventors: Morimasa KAMINISHI, Shunichi Sato
  • Patent number: 7974322
    Abstract: A nitride semiconductor laser device includes: a substrate made of silicon in which a plane orientation of a principal surface is a {100} plane; and a semiconductor laminate that includes a plurality of semiconductor layers formed on the substrate and includes a multiple quantum well active layer, each of the plurality of semiconductor layers being made of group III-V nitride. The semiconductor laminate has a plane parallel to a {011} plane which is a plane orientation of silicon as a cleavage face and the cleavage face constructs a facet mirror.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Tetsuzo Ueda, Daisuke Ueda
  • Patent number: 7974324
    Abstract: A surface-emitting laser device includes: a substrate; a low refractive index layer with a refractive index nL and disposed on the substrate; a light emitting layered structure with a refractive index nH, where nH>nL, the light emitting layered structure being formed on the low refractive index layer and having first and second semiconductor layers and a multi-quantum well (MQW) disposed between the first and second semiconductor layers and capable of generating photons having a wavelength ?0; and a two-dimensional photonic crystal (2DPC) formed in the light emitting layered structure and having optical nanostructures arranged into a periodic pattern with a lattice constant a. The nanostructures extend from the first semiconductor layer through the MQW. The 2DPC has a normalized frequency, which is defined as a/?0, ranging from 0.25 to 0.70.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 5, 2011
    Assignee: National Chiao Tung University
    Inventors: Shih-Wei Chen, Tien-Chang Lu, Hao-Chung Kuo, Shing-Chung Wang
  • Publication number: 20110158278
    Abstract: A silicon vertical cavity laser with in-plane coupling comprises wafer bonding an active III-V semiconductor material above a grating coupler made on a silicon-on-insulator (SOI) wafer. This bonding does not require any alignment, since all silicon processing can be done before bonding, and all III-V processing can be done after bonding. The grating coupler acts to couple the vertically emitted light from the hybrid vertical cavity into a silicon waveguide formed on an SOI wafer.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Inventor: BRIAN R. KOCH
  • Publication number: 20110150020
    Abstract: Light sources are disclosed. A disclosed light source includes a III-V based pump light source (170) that includes nitrogen and emits light at a first wavelength. The light source further includes a vertical cavity surface emitting laser (VCSEL) that converts at least a portion of the first wavelength light (174) emitted by the pump light source (170) to at least a partially coherent light at a second wavelength (176). The VCSEL includes first and second mirrors (120, 160) that form an optical cavity for light at the second wavelength. The first mirror (120) is substantially reflective at the second wavelength and includes a first multilayer stack. The second mirror (160) is substantially transmissive at the first wavelength and partially reflective and partially transmissive and the second wavelength. The second mirror includes a second multilayer stack.
    Type: Application
    Filed: August 18, 2009
    Publication date: June 23, 2011
    Inventors: Michael A. Haase, Thomas J. Miller, Xiaoguang Sun
  • Patent number: 7965752
    Abstract: A semiconductor laser device operable to emit light having a desired wavelength in the green spectral range. The semiconductor laser device may include a pumping source and a laser structure including a substrate, a first cladding layer, and one or more active region layers. The one or more active region layers include a number of quantum wells having a spontaneous emission peak wavelength that is greater than about 520 nm at a reference pumping power density. The pumping source is configured to pump each quantum well at a pumping power density such that a stimulated emission peak of each quantum well is within the green spectral range, and the number of quantum wells within the one or more active region layers is such that a net optical gain of the quantum wells is greater than a net optical loss coefficient at the desired wavelength in the green spectral range.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Chad Stephen Gallinat, Jerome Napierala, Dmitry Sizov, Chung-En Zah
  • Patent number: 7957442
    Abstract: An edge-emitting semiconductor optical device comprises a first cladding layer, an active layer, and a second cladding layer. The first cladding layer is provided on a semiconductor substrate. The active layer is provided on the first cladding layer. The semiconductor substrate has a higher band gap than that of the active layer. The first cladding layer includes a first light-absorbing layer and a first light-transmitting layer. The first light-absorbing layer has a lower band gap than that of the active layer, and the first light-transmitting layer has a higher band gap than that of the active layer. The second cladding layer is provided on the active layer.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 7, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Jun-ichi Hashimoto
  • Publication number: 20110128984
    Abstract: A semiconductor laser device operable to emit light having a desired wavelength in the green spectral range. The semiconductor laser device may include a pumping source and a laser structure including a substrate, a first cladding layer, and one or more active region layers. The one or more active region layers include a number of quantum wells having a spontaneous emission peak wavelength that is greater than about 520 nm at a reference pumping power density. The pumping source is configured to pump each quantum well at a pumping power density such that a stimulated emission peak of each quantum well is within the green spectral range, and the number of quantum wells within the one or more active region layers is such that a net optical gain of the quantum wells is greater than a net optical loss coefficient at the desired wavelength in the green spectral range.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Rajaram Bhat, Chad Stephen Gallinat, Jerome Napierala, Dmitry Sizov, Chung-En Zah
  • Patent number: 7953134
    Abstract: A semiconductor light-emitting device includes a substrate, a first cladding layer over the substrate, an active region on the first cladding layer, and a second cladding layer on the active region, wherein the active region includes a first type barrier layer that is doped and a second type barrier layer that is undoped, the first type barrier layer being closer to the first cladding layer than the second type barrier layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 31, 2011
    Assignee: Epistar Corporation
    Inventors: Ming-Ta Chin, Kuo-Feng Huang, Ping-Fei Shen, Ching-Jen Wang, Shih-Pang Chang
  • Publication number: 20110103414
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Inventors: Timothy Day, David F. Amone
  • Publication number: 20110103421
    Abstract: The present invention provides an applications-oriented nitride compound semiconductor substrate, and devices based on it, whose lattice constant can be tuned to closely match that of any nitride thin film or films deposited on it for specific electronic or optoelectronic device applications. Such application-oriented nitride substrates, which can be composed of ternary InxGa1-xN, AlyIn1-yN, AlzGa1-zN, or quaternary AlaInbGa1-a-bN alloy compounds, minimize lattice-mismatch-induced dislocations and defects between the epitaxial films and the substrate on which the device layers are grown, leading to substantially improved device performance.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 5, 2011
    Inventors: TARUN KUMAR SHARMA, Elias Towe
  • Patent number: 7935956
    Abstract: A device having an optically active region includes a silicon substrate and a SiGe cladding layer epitaxially grown on the silicon substrate. The SiGe cladding layer includes a plurality of arrays of quantum dots separated by at least one SiGe spacing layer, the quantum dots being formed from a compound semiconductor material.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: May 3, 2011
    Assignee: The Regents of the University of California
    Inventor: Ya-Hong Xie
  • Publication number: 20110080930
    Abstract: The present invention relates generally to highly power-efficient quantum cascade sources, such as highly power-efficient quantum cascade lasers having ultra-strong coupling between injector and active regions which may be configured to provide broadband quantum cascade lasers.
    Type: Application
    Filed: June 8, 2010
    Publication date: April 7, 2011
    Inventors: Qiang Liu, Yu Yao, Anthony J. Hoffman, Matthew Escarra, Kale J. Franz, Jacob Khurgin, Yamac Dikmelik, William O. Charles, Jianxin Chen, Claire F. Gmachl
  • Publication number: 20110080931
    Abstract: A semiconductor laser includes a laser resonator (1) having a planar active region (3), a first (2) and a second (6) wave-guide layer that define the active region (3). The resonator (1) has a shape that is defined by a perimeter, along which the first layer (2) radiation guide has a plurality of cuts (4) forming a lattice. The cuts are made as at least two adjacent slits (4a, 4b) and a zone between the slits in which an uncut portion (5a) of wave-guiding layer is present. In the case of a circular semiconductor laser, the number of cuts (4) is a prime number, or an odd number that is a multiple of a prime number, the prime number being greater than or equal to five. This way, it is avoided that resonance modes evolve outside of the zone with the cuts, or in any case with a component that is different from zero of the wave vector in a radial direction, and a pure whispering gallery operating mode is obtained, with maximum of the emitted radiation that evolves in a vertical direction, i.e.
    Type: Application
    Filed: November 5, 2010
    Publication date: April 7, 2011
    Applicant: SCUOLA NORMALE SUPERIORE
    Inventors: Alessandro TREDICUCCI, Fabio BELTRAM, Lucas MAHLER
  • Patent number: 7915607
    Abstract: A nitride semiconductor device include an n-type nitride semiconductor layer; a p-type nitride semiconductor layer; and an active layer formed between the n-type and p-type nitride semiconductor layers. The active layer has an alternately-layered structure of a plurality of quantum well layers and a plurality of quantum barrier layers, each alternately stacked on each of the quantum well layers. The alternately-layered structure includes a unit multi-layer structure and a thick quantum barrier well. The unit multi-layer structure includes a first quantum well layer, a second quantum well layer formed, a tunneling quantum barrier layer and a crystal quality-improving layer. The thick quantum barrier well may be formed adjacent to the first and second quantum well layers, with a thickness thereof greater than that of the first and second quantum well layers.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: March 29, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventors: Seong Suk Lee, Hee Seok Park, Jae Woong Han
  • Patent number: 7912104
    Abstract: A semiconductor laser diode capable of improving reliability and mass-productivity is disclosed. The semiconductor laser diode comprises a first clad layer; a first optical guide layer disposed on the first clad layer; an active layer disposed on the first optical guide layer; a second optical guide layer disposed on the active layer; and a second clad layer disposed on the second optical guide layer, having a greater band gap energy than the second optical guide layer, the band gap energy decreasing as being farther from the second optical guide layer.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: March 22, 2011
    Assignee: LG Electronics Inc.
    Inventor: Yoon Ho Choi
  • Publication number: 20110064108
    Abstract: A method of manufacturing a surface emitting laser element of a vertical cavity type in accordance with the present invention is characterized in that comprises the following steps of: applying a process of accumulations on a substrate, the process sequentially including accumulating a reflecting mirror of a multilayered film layer at a lower side thereof on to the substrate, and accumulating layers of a semiconductor as a plurality thereof on to the reflecting mirror of the multilayered film layer at the lower side thereof, that comprises an active layer and that further comprises a contact layer at a top layer thereof as well; forming a first layer of a dielectric substance as a process of a formation of the first layer of the dielectric substance at a part of regions on the contact layer; forming an electrode of an annular shape as a process of a formation of the electrode of the annular shape on the contact layer, that has an open part at a center thereof, in order to be arranged for the first layer of th
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Keishi Takaki, Norihiro Iwai, Koji Hiraiwa
  • Patent number: 7899104
    Abstract: An n-type cladding layer structure which has good luminescence properties without the use of substances corresponding to RoHS Directive and a high Cl-doping efficiency, i.e. which facilitates the manufacture of a semiconductor optical element and device with low crystal defects and high reliability, and an active layer and a p-type cladding layer therefor are provided. The n-type layer being lattice matched to an InP substrate and containing Group II-VI compound as a main ingredient is a Group II-VI compound semiconductor, in which the Group II elements consist of Mg, Zn, and Be and the Group VI elements consist of Se and Te. The n-type layer of the present invention is characterized by a large energy gap, high energy of the bottom of a conduction band that is effective for suppressing the Type II luminescence, high carrier concentration, and low crystal defects attributed to a good quality crystallinity.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 1, 2011
    Assignees: Hitachi, Ltd., Sophia School Corporation, Sony Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Tsunenori Asatsuma, Kunihiko Tasai, Koshi Tamamura, Hiroshi Nakajima, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Publication number: 20110044365
    Abstract: A surface-emitting laser device includes: a substrate; a low refractive index layer with a refractive index nL and disposed on the substrate; a light emitting layered structure with a refractive index nH, where nH>nL, the light emitting layered structure being formed on the low refractive index layer and having first and second semiconductor layers and a multi-quantum well (MQW) disposed between the first and second semiconductor layers and capable of generating photons having a wavelength ?0; and a two-dimensional photonic crystal (2DPC) formed in the light emitting layered structure and having optical nanostructures arranged into a periodic pattern with a lattice constant a. The nanostructures extend from the first semiconductor layer through the MQW. The 2DPC has a normalized frequency, which is defined as a/?0, ranging from 0.25 to 0.70.
    Type: Application
    Filed: February 19, 2010
    Publication date: February 24, 2011
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Shih-Wei Chen, Tien-Chang Lu, Hao-Chung Kuo, Shing-Chung Wang
  • Patent number: 7893424
    Abstract: The semiconductor layer structure includes a superlattice composed of stacked layers of III-V compound semiconductors of a first and at least one second type. Adjacent layers of different types in the superlattice differ in composition with respect to at least one element, at least two layers of the same type have a different content of the at least one element, the content of the at least one element is graded within a layer of the superlattice, and the layers of the superlattice contain dopants in predefined concentrations, with the superlattice comprising layers that are doped with different dopants. In this way, the electrical, optical and epitaxial properties of the superlattice can be adapted in the best possible manner to given requirements, particularly epitaxial constraints.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: February 22, 2011
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Christoph Eichler, Alfred Lell, Andreas Miler, Marc Schillgalies
  • Patent number: 7885307
    Abstract: A vertical-cavity surface-emitting (VCSEL) device has a layer structure including a top DBR mirror, an active layer, a current confinement oxide layer, and a bottom DBR mirror, the layer structure being configured as a mesa post. The current confinement oxide layer has a central current injection area and a peripheral current blocking area oxidized from the sidewall of the mesa post. The mesa post has a substantially square cross-sectional shape, thereby allowing an oxidation heat treatment to configure a substantially circular current injection area in the current-confinement oxide layer.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 8, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kinuka Tanabe, Yoshihiko Ikenaga, Norihiro Iwai, Takeo Kageyama, Koji Hiraiwa, Hirokazu Yoshikawa
  • Publication number: 20110026556
    Abstract: A quantum cascade laser is configured to include a semiconductor substrate and an active layer which is provided on the substrate and has a cascade structure formed by multistage-laminating unit laminate structures 16 each including an emission layer 17 and an injection layer 18. The unit laminate structure 16 has, in its subband level structure, a first emission upper level Lup1, a second emission upper level Lup2 of an energy higher than the first emission upper level, an emission lower level Llow, and a relaxation level Lr of an energy lower than the emission lower level, light is generated by intersubband transitions of electrons from the first and second upper levels to the lower level, and electrons after the intersubband transitions are relaxed from the lower level to the relaxation level and injected from the injection layer 18 into an emission layer 17b of a subsequent stage via the relaxation level.
    Type: Application
    Filed: May 18, 2010
    Publication date: February 3, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuue FUJITA, Masamichi Yamanishi, Tadataka Edamura, Naota Akikusa
  • Patent number: 7867798
    Abstract: A semiconductor laser using a nitride type Group III-V compound semiconductor includes: an n-side clad layer; an n-side optical waveguide layer over the n-side clad layer; an active layer over the n-side optical waveguide layer; a p-side optical waveguide layer over the active layer; an electron barrier layer over the p-side optical waveguide layer; and a p-side clad layer over the electron barrier layer. A ridge stripe is formed at an upper part of the p-side optical waveguide layer, the electron barrier layer and the p-side clad layer, and the distance between the electron barrier layer and a bottom surface in areas on both sides of the ridge stripe is not less than 10 nm.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 11, 2011
    Assignee: Sony Corporation
    Inventor: Masaru Kuramoto
  • Patent number: 7859745
    Abstract: A polarization-independent SOA having an InP substrate used as a semiconductor substrate, and an active layer taking an MQW structure formed of a barrier layer made of GaInAs with tensile strain applied thereto and a well layer made of GaInNAs with no strain applied thereto alternately laminated in a plurality of layers, here, four layers of the well layer and five layers of the barrier layer are alternately laminated, is proposed.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 28, 2010
    Assignee: Fujitsu Limited
    Inventors: Shinsuke Tanaka, Ken Morito, Susumu Yamazaki
  • Patent number: 7860140
    Abstract: A light-emitting device that reduces the leak current flowing along the sides of the mesa stripe is disclosed. The device provides the mesa stripe, the current blocking layer, and two intermediate layers put between the mesa stripe and the current blocking layer. One of intermediate layers has the p-type conduction and comes in directly contact with the mesa stripe, while, the other intermediate layer has the n-type conduction and put between the former intermediate layer and the current blocking layer. The double intermediate layers prevent impurities in the current blocking layer and in the mesa stripe from inter-diffusing each other.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Jun-ichi Hashimoto
  • Patent number: 7856042
    Abstract: An intersubband quantum cascade laser structure includes multiple coupled laser stages, wherein each stage has a multilayer structure including an electron injector, an active region with at least one quantum well, and an electron reflector. Electrons injected from the injector into the active region at a high energy level relax to a lower energy level with the emission of a photon at, for example, mid-infrared wavelengths. The reflector reflects electrons at the higher energy level at which they were injected and transmits electrons from the lower energy level after emission of a photon. Multiple layers of semiconductor are formed on each side of the multistage structure to provide conduction across the device and to provide optical confinement of the photons emitted.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 21, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Dapeng P. Xu, Luke J. Mawst
  • Patent number: 7856046
    Abstract: A surface emitting laser diode includes a ring-shaped first semiconductor layer including an n-type clad layer, a ring-shaped active layer provided on the first semiconductor layer, and a ring-shaped second semiconductor layer which is provided on the active layer and includes a p-type clad layer and a grating layer including grating units continuously arranged in a circumferential direction, each grating unit including a plurality of regions having different refractive indices and being adjacent to each other in the circumferential direction.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: December 21, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Soichiro Arimura