Having Oxidized Region Patents (Class 372/46.013)
  • Patent number: 11831129
    Abstract: In some implementations, a surface emitting laser may have an emitter design with a short oxidation length and/or a large number of trenches. For example, the surface emitting laser may comprise a metallization layer comprising multiple extended portions extending outwards from a circumference of an inner ring portion, and multiple tabs extending laterally from the multiple extended portions in a partial ring shape. The surface emitting laser may further comprise multiple via openings connecting the metallization layer to a plating metal, where each via opening is positioned over a corresponding tab, of the multiple tabs. The surface emitting laser may comprise multiple oxidation trenches that are each formed in an angular gap between a pair of extended portions, of the multiple extended portions, such that the multiple tabs and the multiple via openings are exclusively outside outer radii of the multiple oxidation trenches.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: November 28, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Ajit Vijay Barve, Mohammad Ali Shirazi Hosseini Dokht
  • Patent number: 11605934
    Abstract: A method for manufacturing a light emitting device can include providing a substrate; forming a first active layer with a first electrical polarity; forming a light emitting region configured to emit light with a target wavelength between 200 nm and 300 nm; forming a second active layer with a second electrical polarity; forming a first electrical contact layer, optionally comprising a first optical reflector; removing a portion of the first electrical contact layer, the second active layer, the light emitting region, and the first active layer to form a plurality of mesas; and forming a second electrical contact layer. Each mesa can include a mesa width smaller than 10 times the target wavelength that confines the emitted light from the light emitting region to fewer than 10 transverse modes, or a mesa width smaller than twice a current spreading length of the light emitting device.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: March 14, 2023
    Assignee: Silanna UV Technologies Pte Ltd
    Inventors: Johnny Cai Tang, Petar Atanackovic
  • Patent number: 11522343
    Abstract: A surface-emitting laser includes a substrate; semiconductor layers provided on the substrate, the semiconductor layers including a lower reflector layer, an active layer, and an upper reflector layer, the semiconductor layers forming a mesa; a first insulating film covering the mesa; and a second insulating film covering the first insulating film, wherein the mesa has a polygonal shape in a direction in which the substrate extends, and a vertex of the mesa in the direction in which the substrate extends has a chamfered portion.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 6, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro Tsuji
  • Patent number: 11381060
    Abstract: An optoelectronic device includes a semiconductor substrate with a first set of epitaxial layers formed on an area of the substrate defining a lower distributed Bragg-reflector (DBR) stack. A second set of epitaxial layers formed over the first set defines a quantum well structure, and a third set of epitaxial layers, formed over the second set, defines an upper DBR stack. At least the third set of epitaxial layers is contained in a mesa having sides that are perpendicular to the epitaxial layers. A dielectric coating extends over the sides of at least a part of the mesa that contains the third set of epitaxial layers. Electrodes are coupled to the epitaxial layers so as to apply an excitation current to the quantum well structure.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: July 5, 2022
    Assignee: APPLE INC.
    Inventors: Arnaud Laflaquière, Marc Drader, Christophe Vérove
  • Patent number: 11373971
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a substrate having one or more devices formed thereon, one or more bonding pads disposed over the substrate, and a first passivation layer disposed over the one or more bonding pads. The first passivation layer includes a first passivation sublayer having a first dielectric material, a second passivation sublayer disposed over the first passivation sublayer, and the second passivation sublayer has a second dielectric material different from the first dielectric material. The first passivation layer further includes a third passivation sublayer disposed over the second passivation sublayer, and the third passivation sublayer has a third dielectric material different from the second dielectric material. At least two of the first, second, and third passivation sublayers each includes a nitride.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Chi Chen, Hsun-Ying Huang, Chih-Ming Lee, Shang-Yen Wu, Chih-An Yang, Hung-Wei Ho, Chao-Ching Chang, Tsung-Wei Huang
  • Patent number: 11313873
    Abstract: Disclosed herein is a velocity measuring device to be used in a moving frame to determine the velocity of the moving frame. At least one beam of light is emitted from a site in the moving frame and travels to a mirror disposed in the moving frame and back to the site at which the emission occurred, after which the beam is detected by a detector. By measuring the round trip time of the light beam from emission to detection, a factor gamma can be determined from which the velocity of the moving frame can be computed.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: April 26, 2022
    Inventors: Edwin Eugene Klingman, Jonathan Wilcox
  • Patent number: 11178392
    Abstract: An opto-electronic device includes a semiconductor substrate having a planar surface. An emitter is formed on the substrate and configured to emit a beam of light away from the planar surface. A reflective layer is formed on the planar surface adjacent to the emitter. A transparent layer is formed over the planar surface and has a curved outer surface including a first segment positioned vertically over the emitter and configured to internally reflect the emitted beam of light toward the reflective layer, and a second segment positioned and configured to collimate and transmit the beam reflected from the reflective layer.
    Type: Grant
    Filed: August 11, 2019
    Date of Patent: November 16, 2021
    Assignee: APPLE INC.
    Inventors: Assaf Avraham, Refael Della Pergola, Roei Remez
  • Patent number: 10978854
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer and a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p-DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 13, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan, Wayne Victor Sorin
  • Patent number: 10886702
    Abstract: A vertical-cavity surface-emitting laser for near-field illumination of an eye includes a semiconductor substrate, a first reflector, a mesa region, a first electrical contact, and a second electrical contact. The first reflector is disposed on a first side of the semiconductor substrate and the mesa region is disposed on the first reflector. The mesa region includes a second reflector and an active region, where the mesa region is configured to generate a diverging infrared beam. The first electrical contact is disposed on a second side of the semiconductor substrate, opposite the first side, for electrically coupling to the first reflector. The second electrical contact is also disposed on the second side of the semiconductor substrate for electrically coupling to the second reflector.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: January 5, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Karol Constantine Hatzilias, Christopher Yuan-Ting Liao, Robin Sharma, Gregory Olegovic Andreev, Paul Armen Tchertchian, Andrew John Ouderkirk
  • Patent number: 10840675
    Abstract: A vertical cavity surface emitting laser (VCSEL) array may comprise a first subset of VCSELs of a plurality of VCSELs, and a second subset of VCSELs of the plurality of VCSELs. One or more first beams to be emitted by the first subset of VCSELs, when the VCSEL array is powered, and one or more second beams to be emitted by the second subset of VCSELs, when the VCSEL array is powered, may have different patterns of areas of energy intensity. The different patterns of areas of energy intensity may include respective areas of high energy intensity and respective areas of low energy intensity.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 17, 2020
    Assignee: Lumentum Operations LLC
    Inventors: Xiaohua Lou, Delai Zhou, Hery Djie
  • Patent number: 10784408
    Abstract: An optoelectronic semiconductor chip includes a semiconductor body including a first semiconductor region, a second semiconductor region and an active zone disposed between the first and second semiconductor regions, an electrically conductive contact layer arranged on a side of the first semiconductor region facing away from the second semiconductor region, and an electrically conductive mirror layer arranged between the first semiconductor region and the electrically conductive contact layer, and laterally protruding at the edge by the first semiconductor region and the electrically conductive contact layer so that between the first semiconductor region and the electrically conductive contact layer there is an interspace in which a protective layer is arranged for protecting the mirror layer, wherein the electrically conductive contact layer extends laterally to an edge of the first semiconductor region, and the electrically conductive contact layer consists of Ni.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 22, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Lutz Höppel
  • Patent number: 10530129
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer end a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p-DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: January 7, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan, Wayne Victor Sorin
  • Patent number: 10170890
    Abstract: A surface-emitting semiconductor laser has a semiconductor structure that includes a first side, a second side opposite to the first side, and a side surface that extends from the second side to the first side; a first electrode provided on the first side of the semiconductor structure; and a second electrode provided on the first side of the semiconductor structure. The semiconductor structure also includes a substrate, a first stacked semiconductor layer disposed on the substrate, an active layer disposed on the first stacked semiconductor layer, and a second stacked semiconductor layer disposed on the active layer. The first stacked semiconductor layer includes a first distributed Bragg reflector, and the second stacked semiconductor layer includes a second distributed Bragg reflector. The semiconductor structure side surface has at least an upper surface that is free of chipping.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: January 1, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro Tsuji
  • Patent number: 10153615
    Abstract: Disclosed herein are various embodiments for stronger and more powerful high speed laser arrays. For example, an apparatus is disclosed that comprises (1) a single laser emitting epitaxial structure that comprises a plurality of laser regions, each laser region of the single laser emitting epitaxial structure being electrically isolated within the single laser emitting epitaxial structure itself relative to the other laser regions of the single laser emitting epitaxial structure, and (2) an electrical waveguide configured to provide current to the laser regions.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 11, 2018
    Assignee: OPTIPULSE, INC.
    Inventor: John Richard Joseph
  • Patent number: 9742153
    Abstract: A surface emitting laser may include an isolation layer including a first center portion and a first plurality of outer portions extending from the first center portion, and a metal layer including a second center portion and a second plurality of outer portions extending from the second center portion. The metal layer may be formed on the isolation layer such that a first outer portion, of the second plurality of outer portions, is formed over one of the first plurality of outer portions. The surface emitting laser may include a passivation layer including a plurality of openings. An opening may be formed over the first outer portion. The surface emitting laser may include a plurality of oxidation trenches. An oxidation trench may be positioned at least partially between the first outer portion and a second outer portion of the second plurality of outer portions.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 22, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Ajit Vijay Barve, Albert Yuen
  • Patent number: 9705283
    Abstract: A semiconductor vertical resonant cavity light source includes an upper mirror and a lower mirror that define a vertical resonant cavity. A first active region is within the vertical resonant cavity for light generation between the upper mirror and lower mirror. The vertical resonant cavity includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) is within the outer current blocking region of at least one of the upper mirror, lower mirror, and first active region. A conducting channel within the inner mode confinement region is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during operation of the light source. A cavity length within the inner mode confinement region equals or exceeds the cavity length formed in the DHCBR.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: July 11, 2017
    Assignees: University of Central Florida Research Foundation, Inc., sdPhotonics, LLC
    Inventors: Dennis G. Deppe, Guowei Zhao
  • Patent number: 9634166
    Abstract: Photovoltaic cells, photovoltaic devices, and methods of fabrication are provided. The photovoltaic cells include a transparent substrate to allow light to enter the photovoltaic cell through the substrate, and a light absorption layer associated with the substrate. The light absorption layer has opposite first and second surfaces, with the first surface being closer to the transparent substrate than the second surface. A passivation layer is disposed over the second surface of the light absorption layer, and a plurality of first discrete contacts and a plurality of second discrete contacts are provided within the passivation layer to facilitate electrical coupling to the light absorption layer. A first electrode and a second electrode are disposed over the passivation layer to contact the plurality of first discrete contacts and the plurality of second discrete contacts, respectively. The first and second electrodes include a photon-reflective material.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hans-Juergen Eickelmann, Ruediger Kellmann, Hartmut Kuehl, Markus Schmidt
  • Patent number: 9407064
    Abstract: A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: August 2, 2016
    Assignee: Sony Corporation
    Inventors: Tomoyuki Oki, Yuji Masui, Yoshinori Yamauchi, Rintaro Koda, Takahiro Arakida
  • Patent number: 9407066
    Abstract: III-V lasers integrated with silicon photonic circuits and methods for making the same include a three-layer semiconductor stack formed from III-V semiconductors on a substrate, where a middle layer has a lower bandgap than a top layer and a bottom layer; a mirror region monolithically formed at a first end of the stack, configured to reflect emitted light in the direction of the stack; and a waveguide region monolithically formed at a second end of the stack, configured to transmit emitted light.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: August 2, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Cheng-Wei Cheng, Frank R. Libsch, Tak H. Ning, Uzma Rana, Kuen-Ting Shiu
  • Patent number: 9269862
    Abstract: A light-emitting device includes: a Distributed Bragg reflector comprising alternate first semiconductor layers and second semiconductor layers, wherein each first semiconductor layer comprises a low-refractive-index part having a depth; and a light-emitting semiconductor stack associated with the Distributed Bragg reflector; wherein the depths of the low-refractive-index parts of the first semiconductor layers are gradually changed in a direction toward the light-emitting semiconductor stack.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: February 23, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Wu-Tsung Lo, Yu-Chih Yang, Chien-Ming Wu, Kai-Yi Hong
  • Patent number: 9088134
    Abstract: VCSELs and methods having improved characteristics. In some embodiments, these include a semiconductor substrate; a vertical-cavity surface-emitting laser (VCSEL) on the substrate; a first electrical contact formed on the VCSEL; a second electrical contact formed on the substrate, wherein the VCSEL includes: a first resonating cavity having first and second mirrors, at least one of which partially transmits light incident on that mirror, wherein the first second mirrors are electrically conductive. A first layer is between the first mirror and the second mirror and has a first aperture that restricts the path of current flow. A second layer is between the first layer and the second mirror and also restricts the electrical current path. A multiple-quantum-well (MQW) structure is between the first mirror and the second mirror, wherein the first and second apertures act together to define a path geometry of the current through the MQW structure.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 21, 2015
    Assignee: Vixar Inc.
    Inventors: Mary K. Hibbs-Brenner, Klein L. Johnson, Matthew M. Dummer
  • Patent number: 9014225
    Abstract: A vertical cavity surface emitting laser (VCSEL) device includes a bottom distributed Bragg reflector (DBR); a top DBR; an optical cavity with an active layer stack formed between the bottom DBR and the top DBR, arranged for generating light with a predetermined emission wavelength; a top electrode layer with a first window formed above the top DBR; and a first heat dissipation layer sandwiched between the top DBR and the top electrode layer. The VCSEL device utilizes thicker, heavily doped semiconductor contact window for efficient heat dissipation from active region. Besides heat dissipation on the top side of VCSEL device, it also increases the bandwidth of VCSEL through top DBR reflectivity changes that reduce the photon lifetime via a surface relief structure etching on the top side of VCSEL device. Further, the invented VCSEL contains adjusted Aluminum molefractions in multiple sections of top and bottom DBRs to effectively dissipate heat from active region of VCSEL.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 21, 2015
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventor: Babu Dayal Padullaparthi
  • Patent number: 9014231
    Abstract: A vertical cavity surface emitting laser (VCSEL) nanoscope is provided. The VCSEL nanoscope combines a VCSEL with a nano-scale aperture using a support member to separate the aperture from the VCSEL emission face. The resulting device is a useful near-field probe with a wide variety of applications.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sonny Vo, James S. Harris, Jr.
  • Patent number: 8937982
    Abstract: A method of manufacturing a surface-emitting laser element having a light-emitting mesa structure with an emitting area including a high-reflectance portion and a low-reflectance portion includes forming a layered body that includes a lower reflecting mirror, a cavity structure, and an upper reflecting mirror on a substrate; forming a first area on an upper surface of the layered body; forming a second area having the same size as the first area on the upper surface of the layered body; forming a light-emitting mesa structure and a monitoring-mesa structure by etching the first area and the second area, respectively; forming a confinement structure including a current passage area surrounded by an oxide in the light-emitting mesa structure and the monitoring-mesa structure; and measuring the size of the current passage area of the monitoring-mesa structure.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 20, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Yasuhiro Higashi, Kazuhiro Harasaka
  • Publication number: 20150010032
    Abstract: A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
    Type: Application
    Filed: May 8, 2014
    Publication date: January 8, 2015
    Applicant: SONY CORPORATION
    Inventors: Tomoyuki Oki, Yuji Masui, Yoshinori Yamauchi, Rintaro Koda, Takahiro Arakida
  • Patent number: 8891571
    Abstract: A disclosed vertical cavity surface emitting laser device emits light orthogonally in relation to a substrate and includes a resonator structure including an active layer; and semiconductor multilayer reflectors disposed in such a manner as to sandwich the resonator structure between them and including a confinement structure which confines an injected current and transverse modes of oscillation light at the same time. The confinement structure has an oxidized region which surrounds a current passage region. The oxidized region is formed by oxidizing a part of a selective oxidation layer which includes aluminum and includes at least an oxide. The selective oxidation layer is at least 25 nm in thickness. The semiconductor multilayer reflectors include an optical confinement reducing section which reduces optical confinement in a transverse direction. The optical confinement reducing section is disposed on the substrate side in relation to the resonator structure.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 18, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Naoto Jikutani, Shunichi Sato, Satoru Sugawara, Hiroshi Motomura
  • Patent number: 8867581
    Abstract: A semiconductor laser includes: a semiconductor layer including an active layer and a ridge portion, the ridge portion facing a current injection region of the active layer; and an embedded film covering a side surface of the ridge portion and a top surface of the semiconductor layer, wherein the embedded film includes a first layer configured of a silicon oxide film, a second layer made of a silicon compound having a refractive index lower than that of the active layer and having a silicon content higher than a stoichiometric ratio, and a third layer made of an inorganic insulating material in this order of closeness to the ridge portion and the semiconductor layer.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 21, 2014
    Assignee: Sony Corporation
    Inventors: Hiroyasu Matsugai, Kei Satou
  • Patent number: 8824517
    Abstract: A surface-emission laser device comprises an active layer, cavity spacer layers provided at both sides of the active layer, reflection layers provided at respective sides of the cavity spacer layers, the reflection layers reflecting an oscillation light oscillated in the active layer and a selective oxidation layer. The selective oxidation layer is provided between a location in the reflection layer corresponding to a fourth period node of the standing wave distribution of the electric field of the oscillating light and a location in the reflection layer adjacent to the foregoing fourth period node in the direction away from the active layer and corresponding to an anti-node of the standing wave distribution of the electric field of the oscillation light.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 2, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Naoto Jikutani, Shunichi Sato
  • Patent number: 8798112
    Abstract: The present invention relates to a lasing device for use in an optical module. The lasing device comprises a first reflector and a second reflector; a confinement layer adapted to confine current within a current-confining aperture; and an active layer between the first and second reflectors. The active layer comprises a main active region aligned with the current confining aperture and an auxiliary active region surrounding the main active region. The second reflector includes a first reflector region arranged on the current-confining aperture and a second reflector region surrounding the first reflector region. The second reflector region and the first reflector are configured to induce stimulated recombination in the auxiliary active region.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 5, 2014
    Assignee: Tyco Electronics Svenska Holdings AB
    Inventor: Nicolae Pantazi Chitica
  • Patent number: 8774245
    Abstract: A laser diode with which high density crystal defect and surface roughness are able to be inhibited from being generated is provided. The laser diode includes a laminated body including an active layer and a current narrowing layer on a substrate. The substrate is an inclined substrate having an off-angle larger than 0 degrees in the direction of [1-100] from (0001) C plane.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Yusuke Nakayama
  • Patent number: 8774242
    Abstract: A surface emitting laser diode comprises a substrate, a lower reflector formed over the substrate, an active layer formed over the lower reflector, an upper reflector formed over the active layer, a current restrict structure including a current confinement region surrounded by insulation region. The current restrict structure is disposed in an upper reflector or between an active layer and the upper reflector, and an upper electrode formed over the upper reflector includes an aperture which corresponds to an emission region from which light is emitted in a first direction perpendicular to a surface of a substrate. The emission region and the current restrict structure including the current confinement region are selectively configured to obtain high single transverse mode, stabilized polarization direction, isotropic beam cross section and small divergence angle, while allowing the device to be manufactured with high yield rate.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 8, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Akihiro Itoh, Kazuhiro Harasaka, Shunichi Sato, Naoto Jikutani
  • Patent number: 8755422
    Abstract: A surface emitting laser includes lower and upper multilayer mirrors, first-conductivity-type and second-conductivity-type contact layers formed between the lower and the upper multilayer mirrors, an active layer formed between the first-conductivity-type and the second-conductivity-type contact layers, a current confinement layer formed between the second-conductivity-type contact layer and the active layer, and first and second composition gradient layers formed facing each other across the current confinement layer. The first composition gradient layer and the second composition gradient layer are formed such that bandgap energy of each of the layers is monotonically decreased from the current confinement layer to an adjacent layer and approach bandgap energy of the adjacent layer in a growth direction.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: June 17, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hitoshi Shimizu, Yasumasa Kawakita
  • Patent number: 8731012
    Abstract: A surface emitting semiconductor laser includes a substrate; a first semiconductor distributed bragg reflector of a first conductive type; an active region; a second semiconductor distributed bragg reflector of a second conductive type; a current confinement layer that confines current in the active region; an optical confinement layer that confines light in the active region; and an optical loss unit including center and periphery portions in a predetermined direction, and gives a larger optical loss to the periphery portion than that of the center portion. Also, Do1<Do2 and Dn<Do2 are satisfied, where Do1 is a width of an optical confinement region of the optical confinement layer in the predetermined direction, Do2 is a width of a current confinement region of the current confinement layer in the predetermined direction, and Dn is a width of the center portion of the optical loss unit in the predetermined direction.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: May 20, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Takashi Kondo, Kazutaka Takeda
  • Patent number: 8649409
    Abstract: A surface-emitting laser device includes a lower reflector, a resonator structure having an active layer and an upper reflector on an inclined substrate, and an emission region emitting laser light enclosed by an electrode. The upper reflector includes a confinement structure having a current passing region enclosed by an oxide containing at least an oxide generated as a result of partial oxidation of a layer containing aluminum subject to selective oxidation, and a dielectric film formed within the emission region, the dielectric film at least enclosing a partial region including a center of the emission region. In viewing from a direction orthogonal to the emission region, a center of a region enclosed by the dielectric film is located at a position distant from the center of the emission region based on a size of the confinement structure relative to a direction orthogonal to an inclined axis of the inclined substrate.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 11, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Toshihide Sasaki, Kazuhiro Harasaka
  • Patent number: 8638829
    Abstract: A semiconductor laser includes a columnar lamination structure including a first multi-layer reflection mirror, a first spacer layer, an AlxGayIn1-x-yP (where 0?x<1 and 0<y<1) based active layer, a second spacer layer, a second multi-layer reflection mirror, and a lateral mode adjusting layer on a substrate in this order from the substrate and including a current narrowing layer. The current narrowing layer includes an unoxidized region in an in-plane central region and a circular oxidized region in the circumference of the unoxidized region. The later mode adjusting layer includes a high reflection region to correspond to the unoxidized region and a circular low reflection region in the circumference of the high reflection region. On the assumption that a diameter of the unoxidized region is Dox and a diameter of the high reflection region is Dhr, the diameters Dox and Dhr satisfy an expression of 0.8<Dhr/Dox<1.5.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 28, 2014
    Assignee: Sony Corporation
    Inventors: Osamu Maeda, Takehiro Taniguchi, Takahiro Arakida
  • Patent number: 8630326
    Abstract: A hybrid integrated optical device includes a substrate comprising a silicon layer and a compound semiconductor device bonded to the silicon layer. The device also includes a bonding region disposed between the silicon layer and the compound semiconductor device. The bonding region includes a metal-semiconductor bond at a first portion of the bonding region. The metal-semiconductor bond includes a first pad bonded to the silicon layer, a bonding metal bonded to the first pad, and a second pad bonded to the bonding metal and the compound semiconductor device. The bonding region also includes an interface assisted bond at a second portion of the bonding region. The interface assisted bond includes an interface layer positioned between the silicon layer and the compound semiconductor device, wherein the interface assisted bond provides an ohmic contact between the silicon layer and the compound semiconductor device.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Patent number: 8611392
    Abstract: In one embodiment, a semiconductor laser includes a semiconductor laminated body formed in a ring shape and first and second electrodes. The semiconductor laminated body includes an active layer, first and second cladding layers formed on both sides of the active layer, first and second contact layers formed on the first and second cladding layers, and first and second modified layers. The first and second modified layers are formed by selectively modifying the inner peripheral sidewalls and the outer peripheral sidewalls of the first and second cladding layers so as to have a refractive index lower than the refractive indexes of the first and second cladding layers. The first and second contact layers are electrically connected to the first and second electrodes.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuya Ohira, Haruhiko Yoshida, Mizunori Ezaki
  • Patent number: 8537870
    Abstract: A laser diode includes a substrate having a lattice constant of GaAs or between GaAs and GaP, a first cladding layer of AlGaInP formed on the substrate, an active layer of GaInAsP formed on the first cladding layer, an etching stopper layer of GaInP formed on the active layer, a pair of current-blocking regions of AlGaInP formed on the etching stopper layer so as to define a strip region therebetween, an optical waveguide layer of AlGaInP formed on the pair of current-blocking regions so as to cover the etching stopper layer in the stripe region, and a second cladding layer of AlGaInP formed on the optical waveguide layer, wherein the current-blocking regions having an Al content substantially identical with an Al content of the second cladding layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 17, 2013
    Assignee: Ricoh Company, Limited
    Inventors: Naoto Jikutani, Shunichi Sato
  • Patent number: 8514905
    Abstract: A laser diode with which separation of a current narrowing layer is able to be prevented is provided. The laser diode includes a mesa that has a first multilayer film reflector, an active layer, and a second multilayer film reflector in this order, and has a current narrowing layer for narrowing a current injected into the active layer and a buffer layer adjacent to the current narrowing layer. The current narrowing layer is formed by oxidizing a first oxidized layer containing Al. The buffer layer is formed by oxidizing a second oxidized layer whose material and a thickness are selected so that an oxidation rate is higher than that of the first multilayer film reflector and the second multilayer film reflector and is lower than that of the first oxidized layer. A thickness of the buffer layer is 10 nm or more.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 20, 2013
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Rintaro Koda, Tomoyuki Oki, Takahiro Arakida, Naoki Jogan, Yoshinori Yamauchi
  • Publication number: 20130208067
    Abstract: A surface emitting laser array includes a light emitting unit having a lower reflection mirror, a resonator structure including an active layer, and an upper reflection mirror laminated on a substrate; an electrode for the light emitting unit; a wiring member that establishes electrical connection between the light emitting unit and the electrode; and the substrate on which more than one of the light emitting units, the electrodes, and the wiring members are arranged. The light emitting unit has anisotropic internal stress, and the distance between the center of a first light emitting unit and the center line of the corresponding wiring member is arranged to be different from the distance between the center of a second light emitting unit and the center line of the corresponding wiring member so that variations in the polarization directions of the light emitting units may be within a predetermined range.
    Type: Application
    Filed: December 21, 2012
    Publication date: August 15, 2013
    Applicant: RICOH COMPANY, LTD.
    Inventors: Kazuma Izumiya, Kazuhiro Harasaka
  • Patent number: 8451706
    Abstract: A vertical cavity surface emitting laser includes a semiconductor substrate, a first semiconductor multilayer film reflector of a first conductivity type laminated on the semiconductor substrate, a resonator, and a second semiconductor multilayer film reflector of a second conductivity type laminated on the resonator. In each of the first and second semiconductor multilayer film reflectors, a pair of a high-refractive-index layer and a low-refractive-index layer is stacked. The resonator includes an active layer laminated on the first semiconductor multilayer film reflector. The resonator includes a pair of spacer layers and a resonator extending region. A composition of at least a layer included in the resonator extending region is different from any of compositions of the semiconductor substrate, the first semiconductor multilayer film reflector, and the second semiconductor multilayer film reflector.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: May 28, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Takashi Kondo
  • Patent number: 8421837
    Abstract: A surface-emitting laser element for emitting light in a direction perpendicular to a substrate, including a substrate with a normal direction of a principal plane inclining toward one direction of <1 1 1> with respect to one direction of <1 0 0> and a mesa structure formed on the substrate and having a narrowed structure with an oxide produced by oxidizing a part of a layer to be oxidized selectively, containing aluminum and surrounding an electric current passage area, wherein a cross-section of mesa structure being parallel to the substrate is parallel to a substrate surface and orthogonal to both one direction of <1 0 0> and one direction of <1 1 1> and a length in a first direction passing through a center of the electric current passage area is more than a length in a second direction parallel to a substrate surface and orthogonal to the first direction.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 16, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Akihiro Itoh, Shunichi Sato
  • Patent number: 8416824
    Abstract: A surface emitting laser is provided which can control a beam shape and can provide higher efficiency and higher power. The surface emitting laser includes a gain region that is provided between a first semiconductor multilayer film reflection mirror and a second semiconductor multilayer film reflection mirror, which are arranged so as to oppose to each other, and that has a first active layer and a second active layer. The surface emitting laser has a current constriction layer for constricting an electric current which is injected into the first active layer and the second active layer. The first active layer and the second active layer have different active layer structures from each other.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuya Takeuchi, Yoshinobu Sekiguchi
  • Publication number: 20130077647
    Abstract: A surface-emission laser device comprises an active layer, cavity spacer layers provided at both sides of the active layer, reflection layers provided at respective sides of the cavity spacer layers, the reflection layers reflecting an oscillation light oscillated in the active layer and a selective oxidation layer. The selective oxidation layer is provided between a location in the reflection layer corresponding to a fourth period node of the standing wave distribution of the electric field of the oscillating light and a location in the reflection layer adjacent to the foregoing fourth period node in the direction away from the active layer and corresponding to an anti-node of the standing wave distribution of the electric field of the oscillation light.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Inventors: Naoto JIKUTANI, Shunichi Sato
  • Patent number: 8385381
    Abstract: In a VCSEL, a first multilayer film reflector, an active layer having a light emitting central region, a second multilayer film reflector, and a transverse mode adjustment layer are layered in this order. The first multilayer film reflector has a quadrangle current injection region with an intersection of diagonal lines corresponding to the light emitting central region. The second multilayer film reflector has a light emitting window provided in a region corresponding to one diagonal line of the current injection region and a pair of grooves provided with the light emitting window in between. The transverse mode adjustment layer is provided correspondingly to the light emitting window, and reflectance of a peripheral region thereof is lower than that of a central region thereof.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 26, 2013
    Assignee: Sony Corporation
    Inventors: Osamu Maeda, Masaki Shiozaki, Norihiko Yamaguchi, Yoshinori Yamauchi, Yuji Masui
  • Patent number: 8363687
    Abstract: A Vertical Cavity Surface Emitting Laser (VCSEL) capable of providing high output of fundamental transverse mode while preventing oscillation of high-order transverse mode is provided. The VCSEL includes a semiconductor layer including an active layer and a current confinement layer, and a transverse mode adjustment section formed on the semiconductor layer. The current confinement layer has a current injection region and a current confinement region. The transverse mode adjustment section has a high reflectance area and a low reflectance area. The high reflectance area is formed in a region including a first opposed region opposing to a center point of the current injection region. A center point of the high reflectance area is arranged in a region different from the first opposed region. The low reflectance area is formed in a region where the high reflectance area is not formed, in an opposed region opposing to the current injection region.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Osamu Maeda, Masaki Shiozaki, Takahiro Arakida
  • Patent number: 8355423
    Abstract: A vertical cavity surface emitting laser (VCSEL) (100) has a substrate (104), on which are disposed first and second distributed Bragg reflectors (DBRs) (106, 112), each DBR comprising a stack of layers of alternating refractive index, an active layer (108) disposed between the DBRs, and an aperture layer (110) disposed either between the DBRs or within one of the DBRs. The aperture layer (110) has a border (116) having an internal boundary with a plurality of indented portions defining one or more apertures. Such a VCSEL is easily manufacturable and provides a narrow bandwidth output, as well as mitigating at least some of the problems of prior art VCSELs. Mesa (102) may be etched to be non-circular and subsequent selective oxidation of aperture layer (110) results in a non-circular current confinement aperture (114) promoting higher-order lateral modes (LP21).
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 15, 2013
    Assignee: Oclaro Technology Limited
    Inventors: Michael Moser, Sven Eitel, Wolfgang Kaiser
  • Patent number: 8345719
    Abstract: A semiconductor laser device comprising a laser diode with an integrated photodiode, wherein one of the components of the laser diode with the integrated photodiode is also used for heating the laser diode. A simpler design of a wavelength-controlled semiconductor laser is thus obtained.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 1, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Holger M. Moench, Philipp Gerlach, Mark Carpaij, Alexander M. Van Der Lee
  • Patent number: RE45071
    Abstract: Provided are a semiconductor laser diode and a method of manufacturing the same. The semiconductor laser diode includes a lower cladding layer disposed on a substrate; a ridge including an optical waveguide layer, an active layer, an upper cladding layer, and an ohmic contact layer, which are sequentially stacked on the lower cladding layer, and having a predetermined width, which is obtained by performing a channel etching process on both sides of the ridge; an oxide layer disposed on surfaces of the upper and lower cladding layer to control the width of the ridge; a dielectric layer disposed on left and right channels of the ridge; an upper electrode layer disposed on the entire surface of the resultant structure to enclose the ridge and the dielectric layer; and a lower electrode layer disposed on a bottom surface of the substrate. The method is simpler than a conventional process of manufacturing a semiconductor laser diode.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: August 12, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Ui Hong, Jin Hong Lee, Jin Soo Kim, Ho Sang Kwack, Dae Kon Oh
  • Patent number: RE48577
    Abstract: A Vertical Cavity Surface Emitting Laser (VCSEL) capable of providing high output of fundamental transverse mode while preventing oscillation of high-order transverse mode is provided. The VCSEL includes a semiconductor layer including an active layer and a current confinement layer, and a transverse mode adjustment section formed on the semiconductor layer. The current confinement layer has a current injection region and a current confinement region. The transverse mode adjustment section has a high reflectance area and a low reflectance area. The high reflectance area is formed in a region including a first opposed region opposing to a center point of the current injection region. A center point of the high reflectance area is arranged in a region different from the first opposed region. The low reflectance area is formed in a region where the high reflectance area is not formed, in an opposed region opposing to the current injection region.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: June 1, 2021
    Assignee: Sony Corporation
    Inventors: Osamu Maeda, Masaki Shiozaki, Takahiro Arakida