Pumping With Optical Or Radiant Energy Patents (Class 372/70)
  • Patent number: 8542710
    Abstract: An optical fiber amplifier (2) includes: a first pumping source (10); a second pumping source (20); an amplification optical fiber (3) in which an active element is doped; a first optical filter (15) coupled to the first pumping source (10) and one end of the amplification optical fiber (30), the first optical filter (15) transmitting a light at a wavelength the same as the wavelength of a first pumping light and reflecting a light at a wavelength the same as the wavelength of a second pumping light; and a second optical filter (25) coupled to the second pumping source (20) and the other end of the amplification optical fiber (3), the second optical filter (25) transmitting a light at a wavelength the same as the wavelength of the second pumping light and reflecting a light at a wavelength the same as the wavelength of the first pumping light.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: September 24, 2013
    Assignee: Fujikura Ltd.
    Inventor: Tomoharu Kitabayashi
  • Publication number: 20130230071
    Abstract: In a laser (12, 18) with a laser resonator (13), the laser resonator (13) comprises a non-linear optical loop mirror (1, 1?), NOLM, which is adapted to guide counter-propagating portions of laser pulses, and to bring the counter-propagating portions of laser pulses into interference with each other at an exit point (4) of the NOLM (1, 1?). The invention is characterized by the non-linear optical loop mirror (1, 1?) comprising a non-reciprocal optical element (7, 7?).
    Type: Application
    Filed: February 27, 2013
    Publication date: September 5, 2013
    Inventors: Wolfgang HAENSEL, Ronald HOLZWARTH, Ralf DOUBEK, Michael MEI
  • Patent number: 8526480
    Abstract: A semiconductor laser device comprising an optically pumped surface emitting vertical emitter which emits in a vertical main radiation direction, and at least one monolithically integrated pump radiation source for optically pumping the vertical emitter, wherein the pump radiation source emits pump radiation in a pump main radiation direction extending transversely with respect to the vertical main radiation direction. In accordance with the invention, suitably dimensioned vertical sections are provided such that modes of the pump radiation are forced completely or at least partly in a vertical direction from this section to reduce absorption losses of the pump radiation at conductive layers.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: September 3, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Wolfgang Schmid, Martin Müller
  • Patent number: 8520713
    Abstract: An array of Surface Emitting Laser (SEL) elements can be used to efficiently pump a disk or rod of solid-state laser glass or crystal, or harmonic-generating crystal. Placing the laser array chip against or near the surface of this solid-state material provides very high and uniform optical power density without the need for lenses or fiber-optics to conduct the light from typical edge-emitting lasers, usually formed in a stack of bars. The lasers can operate in multi-mode output for highest output powers. Photolithography allows for an infinite variety of connection patterns of sub-groups of lasers within the array, allowing for spatial contouring of the optical pumping power across the face of the solid-state material. The solid-state material may be pumped either within (intra-cavity) or externally (extra-cavity) to the SEL laser array.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: TriLumina Corporation
    Inventor: John R Joseph
  • Publication number: 20130215924
    Abstract: According to one embodiment described herein, a method for assembling a multi-emitter laser pump package, includes providing a base substrate comprising a laser riser block. A chip-on-hybrid laser assembly is bonded to the laser riser block with a solder preform. A scalar module is bonded to the base substrate with an adhesive such that an output of the chip-on-hybrid laser assembly is optically coupled into an input of the scalar module. A sidewall ring is adhesively bonded to the base substrate with a non-hermetic adhesive, the sidewall ring comprising a fiber interconnect fitting and at least one electrical connector. A first end of a fiber interconnect is optically coupled to an output of the scalar module and a second end of the fiber interconnect is positioned in the fiber interconnect fitting of the sidewall ring.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 22, 2013
    Inventors: John McKenna Brennan, Wanchai Chinpongpan, Woraphat Dockchoorung, Sanyapong Puthgul, Amorn Runarom
  • Patent number: 8514898
    Abstract: A wavelength-tunable, ultrafast laser includes a resonator having an optically-pumped gain-medium. The resonator includes a pair of group-delay-dispersion compensating prisms and a bandwidth limiting stop. Both prisms and stop are fixed in a predetermined position relative to one another. In one embodiment, a movable beam shifting reflector is placed between the prisms. The reflector shifts the dispersed beam with respect to the second prism and the stop. The stop is arranged, cooperative with the second prism, to select a pulse wavelength within the gain-bandwidth. Tuning of the selected pulse-wavelength is accomplished by translating the beam shifting reflector. Alternatively, a two-reflector arrangement may also select pulse-wavelengths, accomplished by a combination of rotation and translation of the two reflectors.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: August 20, 2013
    Assignee: Lighthouse Photonics, Inc.
    Inventor: H. Yang Pang
  • Patent number: 8509588
    Abstract: An amplifying optical fiber includes a core containing oxides of elements selected from the group consisting of silicon, germanium, phosphorus, bismuth, aluminum, gallium with a concentration of bismuth oxide of 10-4-5 mol %, a total concentration of silicon and germanium oxides of 70-99.8999 mol %, a total concentration of aluminum and gallium oxides of 0.1-20 mol % wherein both aluminum and gallium oxide are present and a ratio of aluminum oxide to gallium oxide is at least two, and a concentration of phosphorus oxide from 0 to 10 mol %, and provides a maximum optical gain at least 10 times greater than the nonresonant loss factor in the optical fiber. An outside oxide glass cladding comprises fused silica. The core has an absorption band in the 1000 nm region, pumping to which region provides an increased efficiency of power conversion of pump light into luminescence light in the 1000-1700 nm range.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 13, 2013
    Assignee: Fiber Optics Research Center of The Russian Academy of Sciences
    Inventors: Evgeny Mikhailovich Dianov, Vladislav Vladimirovich Dvoirin, Valery Mikhailovich Mashinsky, Alexei Nikolaevich Guryanov, Andrei Alexandrovich Umnikov
  • Publication number: 20130188663
    Abstract: A refractive optics-based dispersion control structure for a low-noise solid state laser standing-wave resonator has at least one dispersive element, a gain medium, and a frequency doubling element disposed in the resonant beam path. The dispersive element provides geometric-based laser bandwidth control that minimizes the laser output power noise. The dispersive element in certain embodiments may be a prism. The dispersive element in certain other embodiments may be integrally formed with the gain medium. Numerous different architectures using these elements are disclosed.
    Type: Application
    Filed: September 25, 2012
    Publication date: July 25, 2013
    Inventor: Henry Yang Pang
  • Patent number: 8477825
    Abstract: Multi-pass optical imaging apparatus includes a concave mirror in combination with two retro-reflecting mirror pairs and at least one reflective surface. The mirror, the retro-reflecting mirror pairs and the reflecting surface are arranged such that a light-ray input into the apparatus parallel to and spaced apart from the optical axis of the concave mirror and incident on the concave mirror is caused to be incident on the thin-disk gain-medium at least four times, with each of the four incidences on the gain-medium being from a different direction. If the input ray is plane-polarized, the arrangement provides that the polarization orientation of the ray on each incidence on the gain-medium is in the same orientation.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: July 2, 2013
    Assignee: Coherent, Inc.
    Inventors: Michael Hertwig, Norman Hodgson
  • Patent number: 8467429
    Abstract: A laser comprises an end pump light source and a gain medium having a first end, a second end, and four sides comprising a first, a second, a third, and a fourth side. The end pump light source is optically coupled to the first end and pumps the gain medium. The first side and the third side are tapered inwardly from the first end to the first end to the second end at a taper angle ? relative to a longitudinal lasing axis and have a polished finish capable of reflecting light inside the gain medium. The second side and the fourth side are substantially parallel to the longitudinal lasing axis have a ground blasted finish. The first side is also tilted inwardly at a slant angle ? from the fourth side to the second side. A laser beam R0 exits the second end of the gain medium.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 18, 2013
    Assignee: Innova, Inc.
    Inventor: M. Cem Gokay
  • Patent number: 8461560
    Abstract: An apparatus and method is disclosed which includes or employs an EUV light source comprising a laser device outputting a laser beam, a beam delivery system directing the laser beam to an irradiation site, and a material for interaction with the laser beam at the irradiation site to create an EUV light emitting plasma for use in processing substrates.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 11, 2013
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, Alexander N. Bykanov, Oleh V. Khodykin, Igor V. Fomenkov
  • Patent number: 8462827
    Abstract: The objective of the invention is to provide a photonic crystal device which enables efficient confinement of carriers while preventing the deterioration of device characteristics. Specifically a photonic crystal device has a photonic crystal in which media with different refractive indexes are regularly arranged, wherein an active region (11) includes an active layer (12) and carrier confinement layers (13, 14) provided on the top and bottom of the active layer (12) respectively for confining carriers. The photonic crystal is formed by a buried growth layer (15) with a larger bandgap than that of the active region (11).
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 11, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Matsuo, Takaaki Kakitsuka, Masaya Notomi, Akihiko Shinya
  • Patent number: 8457171
    Abstract: A laser amplifier arrangement includes an optical pump source and an axially arranged laser oscillator-amplifier configuration pumped by the pump radiation. The laser oscillator-amplifier configuration includes a laser oscillator excitable by a portion of the pump radiation to emit a laser beam, and a laser amplifier that amplifies the laser beam using the pump radiation. The laser oscillator and laser amplifier are arranged in a substantially coaxial or collinear manner relative to a longitudinal axis of the laser oscillator-amplifier configuration. The pump source includes a first beam source for producing a first pump radiation to pump the laser oscillator, a second beam source for producing a second pump radiation for the laser amplifier, and a pump radiation conducting device, by means of which both the first and the second pump radiation can be lead into the laser oscillator-amplifier configuration substantially in the direction of the longitudinal axis for longitudinal pumping.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: June 4, 2013
    Assignee: EADS Deutschland GmbH
    Inventors: Peter Peuser, Willi Platz
  • Publication number: 20130121353
    Abstract: Laser devices are presented in which a graphene saturable absorber and an optical amplifier are disposed in a resonant optical cavity with an optical or electrical pump providing energy to the optical amplifier.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 16, 2013
    Inventors: Francis J. Kub, Marc Currie
  • Publication number: 20130121363
    Abstract: A compact solid state laser that generates multiple wavelengths and multiple beams that are parallel, i.e., bore-sighted relative to each other, is disclosed. Each of the multiple laser beams can be at a different wavelength, pulse energy, pulse length, repetition rate and average power. Each of the laser beams can be turned on or off independently. The laser is comprised of an optically segmented gain section, common laser resonator with common surface segmented cavity mirrors, optically segmented pump laser, and different intra-cavity elements in each laser segment.
    Type: Application
    Filed: January 3, 2013
    Publication date: May 16, 2013
    Applicant: United States of America, as represented by the Secretary of the Army
    Inventor: United States of America as represented by the Secretary of the Army
  • Patent number: 8442090
    Abstract: A method and apparatus recycle residual energy in an optical parametric burst source.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 14, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: G. Paul Perryman, James Richard Wood, Mark K. Browder, Edward Miesak
  • Patent number: 8442089
    Abstract: [Object] An object of the invention is to provide a laser device having high optical amplification efficiency. [Solving Means] A laser device 100 includes: an optical fiber 20 which includes a core 21 and a clad 22 and through which seed light and pumping light propagate; and a glass rod 50 which is doped with rare earth elements, has a diameter larger than that of the core 21, wherein the seed light and the pumping light output from the optical fiber 20 are input to the glass rod 50 to have increased diameters, and output light including at least the amplified seed light is output from the glass rod 50.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 14, 2013
    Assignee: Fujikura Ltd.
    Inventor: Michihiro Nakai
  • Patent number: 8432943
    Abstract: A compact, light weight laser beam combiner includes a pair of concentric annular shells defining an annular cavity of an annular ring resonator having an annular solid laser gain medium disposed therein. The output ends of a plurality of low power and brightness fiber lasers are coupled into the cavity of the resonator such that fiber laser beams cause the gain medium in the resonator cavity to lase and produce an annular beam of laser light. Optical elements of the resonator are operable to feed a first portion of the laser light back through the resonator cavity to support regenerative lasing of the laser medium and to couple off a second portion of the laser light in the form of a circular beam of high power and high brightness laser light. A fluid may be circulated through the resonator cavity to cool the laser medium.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: April 30, 2013
    Assignee: The Boeing Company
    Inventors: Alan Z. Ullman, Dennis G. Harris
  • Patent number: 8428094
    Abstract: A surface-emitting semiconductor laser is described, with a semiconductor chip (1), which has a substrate (2), a DBR-mirror (3) applied to the substrate (2) and an epitaxial layer sequence (4) applied to the DBR mirror (3), said layer sequence comprising a radiation-emitting active layer (5), and with an external resonator mirror (9) arranged outside the semiconductor chip (1). The DBR mirror (3) and the substrate (2) are partially transmissive for the radiation (6) emitted by the active layer (5) and the back (14) of the substrate (2) remote from the active layer (5) is reflective to the emitted radiation (6).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 23, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans Lindberg, Stefan Illek
  • Patent number: 8416830
    Abstract: A gain module, operative to output a laser light coupled into a laser system, is structured with at least one gain element radiating the laser light and a spectrally-selective element. The spectrally-selective element includes a slab of photosensitive material and two parallel feedback and isolating Bragg mirrors recorded in the slab. The feedback Bragg mirror is operative to provide a wavelength-dependent feedback so as to cause the laser chip to generate the laser light at the resonance wavelength of the feedback Bragg mirror. The isolating Bragg mirror is automatically adjusted to retroreflect a backreflected signal light, which is generated by the laser system at a signal wavelength different from the resonance wavelength, upon positioning the feedback mirror orthogonally to the laser light.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 9, 2013
    Assignee: IPG Photonics Corporation
    Inventors: Alex Ovtchinnikov, Alexey Komissarov, Nikolai Strougov, Vadim Chuyanov
  • Patent number: 8406267
    Abstract: A solid-state gain element including a thin doped region in which an optical signal propagates through the thin doped region at a large angle with respect to the normal to the thin doped region, reflects at a boundary of the thin doped region, and passes through the thin doped region again. An optical pump beam propagates through the thin doped region also at a large angle with respect to the normal to the thin doped region. In one example, the gain element and source of the pump beam are configured such that there is total internal reflection of the pump beam at the boundary of the thin doped region for a second pumping pass through the thin doped region. In another example, an elliptically symmetric laser beam is used to create a circularly symmetric gain region in the thin doped region.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel J Ripin, Tso Yee Fan, Anish K Goyal, John Hybl
  • Patent number: 8406260
    Abstract: A device for emitting a laser beam comprises a cylindrical solid amplifier medium, having a fluorescence wavelength ?, delimited by a surface ? connecting two faces and intended to be pumped through both the faces, or one of them, in order to become a gain medium. It comprises a cooling fluid of thermal conductivity Cr in contact with the amplifier medium over one of the faces, and an index matching liquid that absorbs or scatters the fluorescence wavelength, of thermal conductivity Ci<0.3 Cr, in contact with the amplifier medium over its surface ?.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: March 26, 2013
    Assignee: Thales
    Inventor: Stéphane Branly
  • Publication number: 20130070802
    Abstract: Disclosed is a method of controlling a laser apparatus, which has a laser light irradiation unit, an excitation unit including a flash lamp, a laser light shielding unit, and a control unit configured to control light shielding by the light shielding unit and release of the light shielding and control setting conditions of the flash lamp. The control unit performs a process of blocking the laser light by the light shielding unit when irradiation of the laser light is stopped, then performs a process of controlling the setting condition so that consumption of the flash lamp is reduced, performs, when the irradiation is restarted, a process of controlling the setting conditions so that the laser light is stably irradiated, and then performs a process of releasing the light shielding.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 21, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Publication number: 20130064264
    Abstract: The invention relates to a light source, comprising an optical resonator (1) and an optical medium (2) arranged therein that can be excited so as to emit light, wherein the optical medium (2) comprises at least one two-level system, in particular a two-level system that is not population-inverted, having an at least metastable lower state, and the optical length of the resonator (1) comprising at least one curved mirror (1) is selected such that the free spectral bandwidth of the resonator is equal to or greater than the absorption bandwidth and/or fluorescence bandwidth of the optical medium (2) and only a single longitudinal mode and a plurality of transversal modes of the resonator (1) are arranged within the fluorescene bandwidth.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 14, 2013
    Inventors: Frank Vewinger, Martin Weitz, Jan Klaers
  • Patent number: 8396092
    Abstract: An optically pumped semiconductor apparatus having a surface-emitting semiconductor body (1) which has a radiation passage area (1a) which faces away from a mounting plane of the semiconductor body (1), and an optical element (7) which is suitable for directing pump radiation (17) onto the radiation passage area (1a) of the semiconductor body (1).
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 12, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Ulrich Steegmüller, Frank Singer, Thomas Schwarz, Michael Kühnelt
  • Patent number: 8369374
    Abstract: A light source device wherein the high-temperature plasma state after the start of the lighting is maintained stably and the light emission can be maintained stably and a decrease of the lighting life cycle by means of a heating of the light emission tube is suppressed comprises a light emission tube, in which a light emitting means is enclosed, and a pulsed laser oscillator part emitting a pulsed laser beam towards said light emission tube, wherein a continuous-wave laser oscillator part is provided emitting a continuous-wave laser beam towards said light emission tube.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 5, 2013
    Assignees: Ushio Denki Kabushiki Kaisha, Energetiz Technology, Inc.
    Inventor: Toshio Yokota
  • Patent number: 8368040
    Abstract: A radiation system includes a target material supply configured to supply droplets of target material along a trajectory, and a laser system that includes an amplifier and optics. The optics are configured to establish a first beam path which passes through the amplifier and through a first location on the trajectory, and to establish a second beam path which passes through the amplifier and through a second location on the trajectory. The laser system is configured to generate a first pulse of laser radiation when photons emitted from the amplifier are reflected along the first beam path by a droplet of target material at the first location on the trajectory. The laser system is configured to generate a second pulse of laser radiation when photons emitted from the amplifier are reflected along the second beam path by the droplet of target material at the second location on the trajectory.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 5, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Erik Roelof Loopstra, Vladimir Vitalevich Ivanov, Johannes Hubertus Josephina Moors, Gerardus Hubertus Petrus Maria Swinkels, Andrei Mikhailovich Yakunin, Dennis De Graaf, Uwe Bruno Heini Stamm
  • Patent number: 8355415
    Abstract: In a method for operating an ignition device for an internal combustion engine, in particular of a motor vehicle, having a laser device which includes a laser-active solid having a passive Q-switching system as well as an optical amplifier connected downstream from the passive Q-switching system (46), the laser device generates a laser pulse for radiating into a combustion chamber, and the ignition device having a pump light source which provides a pump light for the laser-active solid and the optical amplifier (70) of the laser device. The energy of the laser pulse is controlled by varying a wavelength of the pump light.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: January 15, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Manfred Vogel, Heiko Ridderbusch
  • Patent number: 8351479
    Abstract: An optoelectronic semiconductor component has a semiconductor body (1) comprising a surface emitting vertical emitter region (2) comprising a vertical emitter layer (3), at least one pump source (4) provided for optically pumping the vertical emitter layer (3), and a radiation passage area (26) through which electromagnetic radiation (31) generated in the vertical emitter layer leaves the semiconductor body (1), wherein the pump source (4) and the vertical emitter layer (3) are at a distance from one another in a vertical direction.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Stephan Lutgen, Peter Brick, Tony Albrecht
  • Publication number: 20130003775
    Abstract: Efficient laser diode excited Thulium (Tm) doped solid state systems, directly matched to a combination band pump transition of Carbon Dioxide (CO2), have matured to the point that utilization of such in combination with CO2 admits effectively a laser diode pumped CO2 laser. The laser diode excited Tm solid state pump permits Continuous Wave (CW) or pulsed energy application. Appropriate optical pumping admits catalyzer free near indefinite gas lifetime courtesy of the absence of significant discharge driven dissociation and contamination. As a direct consequence of the preceding arbitrary multi isotopologue CO2, symmetric and asymmetric, gas mixes may be utilized without significant degradation or departure from initial mix specifications. This would admit, at raised pressure, a system continuously tunable from ˜9 ?m to ˜11.5 ?m, or sub picosecond amplification.
    Type: Application
    Filed: March 2, 2012
    Publication date: January 3, 2013
    Inventor: Robert Neil Campbell
  • Publication number: 20130003774
    Abstract: Efficient laser diode excited Thulium (Tm) doped solid state systems, directly matched to a combination band pump transition of Carbon Dioxide (CO2), have matured to the point that utilization of such in combination with CO2 admits effectively a laser diode pumped CO2 laser. The laser diode excited Tm solid state pump permits Continuous Wave (CW) or pulsed energy application. Appropriate optical pumping admits catalyzer free near indefinite gas lifetime courtesy of the absence of significant discharge driven dissociation and contamination. As a direct consequence of the preceding arbitrary multi isotopologue CO2, symmetric and asymmetric, gas mixes may be utilized without significant degradation or departure from initial mix specifications. This would admit, at raised pressure, a system continuously tunable from ˜9 ?m to ˜11.5 ?m, or sub picosecond amplification.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Inventor: Robert Neil Campbell
  • Publication number: 20120320935
    Abstract: An optical fibre laser or amplifier comprising an optical fibre and a pump radiation source configured to generate pump radiation which is received through an input end of the optical fibre. The optical fibre may include a doped core which is configured to guide the pump radiation and to generate or amplify and guide signal radiation when pump radiation passes through it. The optical fibre laser or amplifier may include a first reflector configured to reflect pump radiation and further comprises a second reflector configured to selectively reflect a portion of pump radiation. The selection of the portion of pump radiation to be reflected by the second reflector depends upon one or more of: the spatial position of the pump radiation, the direction of the pump radiation, and the polarisation of the pump radiation.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: LASER QUANTUM INC.
    Inventor: Alan Cox
  • Patent number: 8315288
    Abstract: To reduce the laser threshold by efficiently exciting a light-emitting body in a solid-state dye laser with light having high density, thereby facilitating emission of laser beams, and to miniaturize a solid-state dye laser including an excitation light source. A solid-state dye laser capable of emitting laser beams by efficiently introducing light from an excitation light source to a light-emitting body incorporated in an optical resonator structure and exciting the light-emitting body with light with high density, is realized.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mikio Yukawa, Tetsuo Tsutsui
  • Patent number: 8284812
    Abstract: A resonantly pumped, trivalent thulium ion (Tm3+) doped, crystal laser with improved efficiency is disclosed. Embodiments are pumped from the 3H6 ground state manifold to the 1st excited 3F4 state manifold by photons with wavelengths between 1.4 and 2.2 microns and laser wavelengths ranging from 1.5 to 2.4 microns arising from 3F4 to 3H6 transitions ensue, with output wavelengths dependant upon the choice of pump wavelength, crystalline host, and resonator optics.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 9, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: York E. Young, Evan P. Chicklis
  • Publication number: 20120250719
    Abstract: A laser includes a Ti:sapphire gain-medium in the form of a thin-disk. The thin-disk gain-medium is optically pumped by pump-radiation pulses having a wavelength in the green region of the electromagnetic spectrum. The pump-radiation pulses have a duration less than twice the excited-state lifetime of the gain-medium.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 4, 2012
    Applicant: Coherent, Inc.
    Inventors: Norman HODGSON, Michael Hertwig, H. Yang Pang
  • Patent number: 8275015
    Abstract: Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 25, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Steven X. Li
  • Patent number: 8270440
    Abstract: A laser light source is provided with a pump light source (1) comprising a semiconductor laser, a solid laser medium (2) which is excited by the semiconductor laser, and multi-mode means for changing at least either a longitudinal mode or a transverse mode of laser oscillation of the solid laser. The oscillation light of the laser medium excited by the light outputted from the pump light source is changed by the multi-mode means into output light (5) having a plurality of oscillation spectra and is outputted, thereby a small, high power, and highly efficient low coherent light source can be realized, and a laser light source having reduced speckle noises can be provided.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Kiminori Mizuuchi, Kazuhisa Yamamoto
  • Patent number: 8270070
    Abstract: An optical fiber arrangement has at least two optical fiber sections, each optical fiber section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fiber arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fiber. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fiber and a first multiplexer connected to the input fiber. Each amplifier is configured such that at least one of the amplifying optical fibers is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 18, 2012
    Assignee: SPI Lasers UK Ltd
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Patent number: 8270443
    Abstract: A side-pumped, diode-pumped solid-state laser cavity includes a conductively cooled housing having an opening for pump radiation from a diode array in close proximity to a laser rod. The pump light is absorbed by the rod and excites the laser ions. The cavity includes a thin, diffuse reflector encircling the rod, having a shaped opening for the collection and redirection of the pump light into the rod, and a good heat conductor as the heat sink and heat conductor. A split heat sink inhibits the flow of heat from the pump diodes into the laser rod, and pre-formed air spacings are designed to provide uniform temperature distribution around the laser rod.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: September 18, 2012
    Assignee: Israel Aerospace Industries Ltd.
    Inventors: Ram Oron, Doron Nevo, Moshe Oron
  • Patent number: 8270442
    Abstract: An optical fiber laser including: a master oscillator; and a power amplifier, the power amplifier including: a plurality of excitation light sources; excitation ports each of which is connected to the excitation light sources and which an excitation light emitted from each of the excitation light source enters; a signal port which a laser beam emitted from the master oscillator enters; an optical coupler with an exit port that outputs the excitation lights from the excitation ports together with the laser beam from the signal port; and an optical fiber connected to the exit port, in which the optical fiber is a photonic bandgap fiber, and the optical fiber has a loss wavelength characteristic in that a photonic bandgap region is narrower than a gain wavelength band in a graph with an axis of abscissa representing a wavelength and an axis of ordinate representing a loss amount.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: September 18, 2012
    Assignee: Fujikura Ltd.
    Inventor: Tomoharu Kitabayashi
  • Publication number: 20120230353
    Abstract: In at least one embodiment time separated pulse pairs are generated, followed by amplification to increase the available peak and/or average power. The pulses are characterized by a time separation that exceeds the input pulse width and with distinct polarization states. The time and polarization discrimination allows easy extraction of the pulses after amplification. In some embodiments polarization maintaining (PM) fibers and/or amplifiers are utilized which provides a compact arrangement. At least one implementation provides for seeding of a solid state amplifier or large core fiber amplifier with time delayed, polarization split pulses, with capability for recombining the time separated pulses at an amplifier output. In various implementations suitable combinations of bulk optics and fibers may be utilized. In some implementations wavelength converted pulse trains are generated.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 13, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Jingzhou XU, Gyu Cheon CHO
  • Patent number: 8259391
    Abstract: The present invention relates to an amplification device comprising an amplifying medium (2) of parallelepiped shape and pumping means comprising lamps (5) emitting first radiation in a frequency range useful for the amplification and second radiation capable of degrading the amplifying medium. It is characterized in that lamps (5) are integrated into a jacket (3) that absorbs at least some of the second radiation.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 4, 2012
    Assignee: Thales
    Inventor: Stéphane Branly
  • Patent number: 8238399
    Abstract: A laser amplifier includes a laser active slab with a source of pump power to amplify an input laser beam, the laser active slab including a block of laser active material having opposed lateral faces defining a wedge lateral dihedral angle, opposed longitudinal faces, and opposed parallel transverse faces, the wedge lateral dihedral angle specified to minimize parasitic amplified spontaneous emission. The source of pump power may be one or more laser diode bars and microlenses producing a gain sheet in the laser active slab. The lateral faces may include optical coatings highly transmitting at a wavelength of the pump power and highly reflecting at a lasing wavelength to provide a folded path for the input laser beam though the gain sheet.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 7, 2012
    Inventor: Jeffrey G. Manni
  • Publication number: 20120195343
    Abstract: A laser includes a pump source that provides pump energy at a first wavelength and a laser cavity. The laser cavity includes a laser gain medium that receives the pump energy from the pump source and creates gain at a second wavelength different from the first wavelength, and a mode stripping portion coupled to the laser gain medium. The mode stripping portion causes the laser cavity to have a low Fresnel number so as to allow only the lowest-order fiber mode to resonate in the laser cavity. Higher-order fiber modes are discriminated against so as to generate a laser output having a substantially diffraction limited beam in a single transverse mode at the second wavelength.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: RAYTHEON COMPANY
    Inventors: Robert D. STULTZ, David M. FILGAS, Michael USHINSKY
  • Patent number: 8218597
    Abstract: A diode pumped solid-state laser for high shock, high vibration environments such as those found in laser ignition systems for artillery systems.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 10, 2012
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Josiah W. Fay, Joseph Leone, Henry Kerwien, Thomas DeVoe, Gregory Burke, Arthur A. Karpinski
  • Patent number: 8208503
    Abstract: A broadband light source configured to emit a stable broadband optical beam is provided. The broadband light source includes at least one optical pump source, an optical system including a polarization beam combiner, and a solid state laser medium. The optical system is configured to receive at least one optical pump beam from a respective one of the at least one optical pump source. The solid state laser medium receives a substantially unpolarized pump beam from a first output of the optical system. Stable broadband amplified spontaneous emission is output from a second output of the optical system.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 26, 2012
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Steven J. Sanders
  • Publication number: 20120128014
    Abstract: A method for making a microchip laser includes preparing a laser-cavity chip assembly comprising a gain media, a first substantially flat surface, and a second substantially flat surface parallel to the first substantially flat surface. The method also includes forming a first reflective film on the first substantially flat surface to form a first cavity mirror, forming a second reflective film on the second substantially flat surface to form a second cavity mirror, and patterning at least one of the first reflective film or the second reflective film by removing at least a portion of the reflective film in the outer portion to form a center reflective portion in the one of the first reflective film or the second reflective film. The first cavity mirror and the second cavity mirror can suppress higher order transverse modes and produce a single TEM00 mode in the lasing light.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Shijie Gu, Jianyang Yang, Tyler You, Charlie Lu, Guanglei Ding
  • Patent number: 8175131
    Abstract: A laser medium comprises a solid-state host material and dopant species provided within the solid-state host material. A first portion of the dopant species has a first valence state, and a second portion of the dopant species has a second valence state. In an embodiment, a concentration of the first portion of the dopant species decreases radially with increasing distance from a center of the medium, and a concentration of the second portion of the dopant species increases radially with increasing distance from the center of the medium. The laser medium further comprises impurities within the solid-state host material, the impurities converting the first portion of the dopant species having the first valence state into the second portion of dopant species having the second valence state.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: May 8, 2012
    Assignee: Raytheon Company
    Inventors: Kevin W. Kirby, David S. Sumida
  • Patent number: 8170074
    Abstract: A method of estimating an injection power of seed light injected into an injection-seeded transmitter. A back face monitoring (BFM) response of the injection-seeded transmitter is determined, and data representative of the BFM response stored in a memory. During run-time, a controller of the injection-seeded transmitter, detects a temperature of the injection-seeded transmitter and an instantaneous BFM current. BFM response data is obtained from the memory based on the detected temperature, and the seed light injection power estimated based on the obtained data and the detected instantaneous BFM current.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 1, 2012
    Assignee: Nortel Networks Limited
    Inventors: Bin Cao, Douglas James Beckett, Tom Luk, Rong Chen
  • Patent number: 8165178
    Abstract: An optical parametric oscillator (OPO) is described that efficiently converts a near-infrared laser beam to tunable mid-infrared wavelength output. In some embodiments, the OPO includes an optical resonator containing a nonlinear crystal, such as periodically-poled lithium niobate. The OPO is pumped by a continuous-wave fiber-laser source having a low-power oscillator and a high-power amplifier, or using just a power oscillator. The fiber oscillator produces a single-frequency output defined by a distributed-feedback (DFB) structure of the fiber. The DFB-fiber-laser output is amplified to a pump level consistent with exceeding an oscillation threshold in the OPO in which only one of two generated waves (“signal” and “idler”) is resonant within the optical cavity.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 24, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Angus J. Henderson