Pumping With Optical Or Radiant Energy Patents (Class 372/70)
  • Patent number: 8149887
    Abstract: A planar waveguide laser device forms a waveguide by a plate-like laser medium having birefringence and clad attached to at least one of the surfaces of the laser medium perpendicular to its thickness direction, amplifies laser light by a gain produced by excitation light incident on the laser medium, and performs laser oscillation. The laser medium is formed of a material having an optic axis on a cross section perpendicular to the light axis, which is the laser travelling direction. The clad is formed of a material having a refractive index in a range between refractive indexes of two polarized lights that travel along the light axis in the laser medium and have oscillation surfaces that are orthogonal to each other. The planar waveguide laser device readily oscillates linearly polarized laser light.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 3, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takayuki Yanagisawa, Yoshihito Hirano, Shuhei Yamamoto, Yasuharu Koyata
  • Patent number: 8144744
    Abstract: A polymer film laser is provided that comprises a plurality of extruded polymer layers. The plurality of extruded polymer layers comprises a plurality of alternating dielectric layers of a first polymer material having a first refractive index and a second polymer material having second refractive index different than the first refractive index.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: March 27, 2012
    Assignee: Case Western Reserve University
    Inventors: Kenneth Singer, Eric Baer, Anne Hiltner, Christoph Weder
  • Patent number: 8143956
    Abstract: An atomic clock at optical frequency based on atomic beam and a method for generating the atomic clock comprises: The atomic beam (8) is ejected from a pile mouth after heating an atomic pile (1) in a vacuum chamber (2); A laser (4) corresponding to frequency of a clock transition transfers the atomic beam (8) from a ground state of the clock transition to an excited state of the clock transition in a adiabatic passing mode; After interaction with the laser corresponding to the frequency of a clock transition, the atomic beam (8) passes a signal detection region with a detection laser (5), and after the interaction with the detection laser (5), each of the atoms gives off a photon of spontaneous emission; An emitted fluorescence photon signal from atoms which is excited by the detection laser (5) is explored; A clock laser (4) for exploring transition frequency of an atomic clock is modulated.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 27, 2012
    Assignee: Peking University
    Inventor: Jing-Biao Chen
  • Publication number: 20120065711
    Abstract: A high power source of electro-magnetic radiation having a multi-purpose housing is disclosed. The multi-purpose housing includes an interior filled with a material forming at least a light source and further comprising a reflector which can envelope a laser rod surrounded by light sources for providing light excitation to the laser rod. A material defining outer surfaces of the light sources extends out to and defines outer surfaces of the reflector. A high-reflectivity coating is disposed over an outer surface of the reflector, as is a protective coating. Also disposed over an outer surface of the reflector can be an optional heat sink, with cooling being performed by an optional arrangement of forced-air traveling over the heat sink. The light sources may be light source pumps, and the high-reflectivity coating may be formed to envelop the reflector.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 15, 2012
    Inventors: Vladimir S. Netchitailo, Dmitri Boutoussov, Julio Cely, Federico Pignatelli
  • Patent number: 8124995
    Abstract: A semiconductor light-emitting device includes a semiconductor light-emitting element emitting light in a region ranging from ultraviolet to visible, and a visible-light luminescent element absorbing light emitted from the semiconductor light-emitting element and outputting visible light. The visible-light luminescent element includes a substrate, a light-reflecting layer formed on the substrate and containing light scattering particles, and a luminescent layer containing phosphor particles. The luminescent layer absorbs light emitted from the semiconductor light-emitting element and output visible light. The luminescent layer further absorbs light that is emitted from the semiconductor light-emitting element, arrives at and is reflected from the light scattering particles, and output the visible light.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Hattori, Shinji Saito, Ryosuke Hiramatsu, Shinya Nunoue, Iwao Mitsuishi, Naotoshi Matsuda
  • Publication number: 20120044966
    Abstract: A light source, e.g., for optical excitation of a laser device, includes a diode laser having a large number of emitters and a light-guiding device, the light-guiding device including a large number of optical fibers. Each fiber has a first end and a lateral surface, the first ends being arranged relative to the emitters in such a manner that light generated by the emitters is coupled into the first ends of the optical fibers, the optical fibers being arranged in abutting relationship along their lateral surfaces at least in the region of their first ends. The optical fibers are connected in the region of their first ends to a fiber support.
    Type: Application
    Filed: February 12, 2010
    Publication date: February 23, 2012
    Applicant: ROBERT BOSCH GMBH
    Inventors: Klaus Stoppel, Werner Herden, Hans-Jochen Schwarz, Andreas Letsch
  • Patent number: 8121156
    Abstract: A semiconductor laser light source emits a laser beam for pumping. An optical resonator includes a solid laser crystal to be excited by the incident of a laser beam to oscillate a fundamental wave and a pair of fundamental wave reflective coats arranged at the opposite sides of the solid laser crystal. A wavelength conversion element converts the fundamental wave into a plurality of harmonics. The wavelength conversion element is so arranged in the optical resonator that the optical axis of at least one of the plurality of harmonics, generated in the optical resonator is made different from that of the fundamental wave and the at least one harmonic whose optical axis is made different is output substantially in the same direction as the other harmonic. By this construction, it is possible to stabilize a harmonic output and utilize a plurality of harmonics without increasing the number of parts.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: February 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Toshifumi Yokoyama, Kiminori Mizuuchi, Tetsuro Mizushima, Tatsuo Itoh
  • Patent number: 8116347
    Abstract: The invention relates to a two-stage laser system well fit for semiconductor aligners, which is reduced in terms of spatial coherence while taking advantage of the high stability, high output efficiency and fine line width of the MOPO mode. The two-stage laser system for aligners comprises an oscillation-stage laser (50) and an amplification-stage laser (60). Oscillation laser light having divergence is used as the oscillation-stage laser (50), and the amplification-stage laser (60) comprises a Fabry-Perot etalon resonator made up of an input side mirror (1) and an output side mirror (2). The resonator is configured as a stable resonator.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 14, 2012
    Assignee: Komatsu Ltd.
    Inventors: Osamu Wakabayashi, Tatsuya Ariga, Takahito Kumazaki, Kotaro Sasano
  • Publication number: 20120033290
    Abstract: An optical system includes an electrically pumped laser light source and an optically pumped laser light source. An optical switch is located in a light path of the electrically pumped laser light source such that when the optical switch is in a first position light from the electrically pumped laser light source is directed toward the optically pumped laser light source and when the optical switch is in a second position light from the electrically pumped laser light source is directed away from the optically pumped laser light source.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 9, 2012
    Applicant: Photodigm, Inc.
    Inventors: Martin Achtenhagen, John Edward Spencer
  • Publication number: 20120027043
    Abstract: A multi-chip pump unit comprising a light source and a filter for directing light from the light source towards an optical fiber, wherein the filter exhibits one of either (i) relatively low transmissivity and high reflectivity at a wavelength of the light source, and relatively high transmissivity and low reflectivity at a wavelength greater than the wavelength of the light source; or (ii) relatively high transmissivity and low reflectivity at a wavelength of the light source, and relatively low transmissivity and high reflectivity at a wavelength greater than the wavelength of the light source.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 2, 2012
    Inventor: Bernhard Valk
  • Patent number: 8106717
    Abstract: A method includes causing a common-resonator mode resonating with a transition between |2>i and |3>i that are coupled to each other by a transition having a homogenous broadening ?Ehomo greater than an energy difference between |0>i and |1>i, an energy difference between |2>i and |3>i being greater than ?Ehomo, transferring states of m quantum bits represented by |0>k and |1>k to |4>k and |5>k, respectively, when a quantum-bit-gate operation using the common-resonator mode is executed between the quantum bits represented by m physical systems k, |E(|u>k)?E(|v>k)|>?Ehomo, u, v?{2, 3, 4, 5}, u?v, executing adiabatic passage between the physical systems k, using light that resonates with a transition between |3>k and |4>k and a transition between |3>k and |5>k, executing the quantum-bit-gate operation between the quantum bits, and transferring, to |0>k and |1>k, the states represented by |4>k and |5>k, respectively.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Ichimura, Hayato Goto
  • Publication number: 20120014403
    Abstract: A large number of passes of pump light through an active mirror in a solid state disk laser is realized using a pair of coupled imaging systems, where the optical axes of imaging systems are not coincident. Two imaging systems are optically coupled, so that an image of the first imaging system is an object of the second imaging system, and vice versa. An active mirror is disposed at the object or image plane, or at the focal plane of any one of the coupled imaging systems, where the position of the reflected pump beam during the multi-reflection between the first and second imaging systems is substantially unchanged.
    Type: Application
    Filed: August 10, 2011
    Publication date: January 19, 2012
    Applicant: Apollo Instruments
    Inventors: Zhijiang Wang, Ying Wang
  • Publication number: 20120008654
    Abstract: A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Applicants: OSAKA UNIVERSITY, MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji TAKESHITA, Shinya ISHII, Tomoko SAITO, Junji KAWANAKA, Noriaki MIYANAGA, Kazuo IMAZAKI, Taku SAIKI, Hiroaki FURUSE
  • Publication number: 20110309270
    Abstract: Provided is a laser device which is installed within a predetermined space and on a predetermined floor area, the laser device may includes: a master oscillator; at least one amplifier unit that amplifies a laser beam outputted from the master oscillator; at least one power source unit that supplies excitation energy to the at least one amplifier unit; and a movement mechanism which enables at least one among the at least one amplifier unit and the at least one power source unit to be moved in a direction parallel with a floor surface.
    Type: Application
    Filed: February 16, 2011
    Publication date: December 22, 2011
    Inventors: Yohichi Yamanouchi, Takashi Suganuma, Junichi Fujimoto, Osamu Wakabayashi, Hiroaki Nakarai, Hidenobu Kameda, Hitoshi Oga
  • Publication number: 20110310921
    Abstract: A system and method for producing a multi-output laser by reconfiguring and apportioning a plurality of electromagnetic beams produced by various wavelength beam combining techniques. The reconfiguring of beams includes individual rotation and selective repositioning of one or more beams with respect to beam's original input position.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 22, 2011
    Applicant: TERADIODE, INC.
    Inventors: Bien Chann, Robin Huang
  • Patent number: 8081669
    Abstract: A method of driving an ultrashort pulse and ultrahigh power laser diode device having a simple composition and a simple structure is provided. In the method of driving a laser diode device, light is injected from a light injection means into a laser diode device driven by a pulse current having a value 10 or more times as large as a value of a threshold current.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 20, 2011
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda
  • Patent number: 8068523
    Abstract: A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 29, 2011
    Assignees: Mitsubishi Heavy Industries, Ltd., Osaka University
    Inventors: Kenji Takeshita, Shinya Ishii, Tomoko Saito, Junji Kawanaka, Noriaki Miyanaga, Kazuo Imazaki, Taku Saiki, Hiroaki Furuse
  • Publication number: 20110249695
    Abstract: Concepts of the present disclosure may be employed to optimize optical pumping and ensure high modal gain in the active region of an optically pumped laser source by establishing an optical coupling gap such that the pump waveguide mode field overlaps the active gain region associated with the signal waveguide. The optical coupling gap is tailored to be sufficiently large to ensure that a significant active gain region length is required for absorption and sufficiently small to ensure that the pump waveguide mode field P overlaps the active gain region. In accordance with one embodiment of the present disclosure, the pump waveguide core is displaced from the signal waveguide core by an optical coupling gap g in a lateral direction that is approximately perpendicular to the optical pumping axis.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 13, 2011
    Inventors: Dmitri Vladislavovich Kuksenkov, Dmitry Sizov, James Andrew West
  • Publication number: 20110249698
    Abstract: Multi-pass optical imaging apparatus includes a concave mirror in combination with two retro-reflecting mirror pairs and at least one reflective surface. The mirror, the retro-reflecting minor pairs and the reflecting surface are arranged such that a light-ray input into the apparatus parallel to and spaced apart from the optical axis of the concave mirror and incident on the concave mirror is caused to be incident on the thin-disk gain-medium at least four times, with each of the four incidences on the gain-medium being from a different direction. If the input ray is plane-polarized, the arrangement provides that the polarization orientation of the ray on each incidence on the gain-medium is in the same orientation.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 13, 2011
    Applicant: Coherent, Inc.
    Inventors: Michael HERTWIG, Norman Hodgson
  • Patent number: 8026768
    Abstract: Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: September 27, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Eric A. Burt, Shervin Taghavi, Robert L. Tjoelker
  • Publication number: 20110228806
    Abstract: In a fiber laser, a stable laser oscillation is easily realized. A fiber laser includes an optical amplification unit which has a first end and a second end, receives pump light, and emits spontaneous emission light from the first end, and receives the spontaneous emission light at the second end, and emits stimulated emission light from the first end, and a light passing unit (PM fibers, single mode fiber) which connects the first end and the second end with each other, and passes the spontaneous emission light and the stimulated emission light, where the light passing unit includes the PM fibers (polarization plane maintaining units) which present a small change in the polarization plane of passing light and a single mode fiber (polarization plane changing unit) which presents a large change in the polarization plane of passing light.
    Type: Application
    Filed: October 14, 2009
    Publication date: September 22, 2011
    Applicant: ADVANTEST CORPORATION
    Inventor: Shin Masuda
  • Publication number: 20110222573
    Abstract: Disclosed is a fiber laser to which an isolation technique for preventing damage to a pump light source is applied. The fiber laser, which includes a fiber laser cavity that includes a gain medium, and a pump light source that supplies pump light to the fiber laser cavity, comprises an isolator that is formed in an inline shape between the pump light source and the fiber laser cavity in order to prevent damage to the pump light source which is caused by the ray reflected from the output terminal of the fiber laser.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 15, 2011
    Inventors: Swook Hann, Young Eun Im, Hanguel Kim
  • Publication number: 20110216801
    Abstract: The present invention especially concerns the field of lasers. Specifically, the object of the invention is a process for the emission of pulsed laser radiation generated by at least one laser crystal which is located in a cavity containing a first and a second mirror and pumped by des pumping means, wherein said process includes a first stage which consists of generating a first pumping laser radiation with an intensity of Jc which is capable of bringing the crystal at least to the laser emission threshold and a second stage which consists of generating a second pumping laser radiation with an intensity of Jp in the form of a step, whereby said second radiation is superimposed, at least in part, on said first radiation or immediately succeeds it, and whereby the intensity Jp, in the latter case, is greater than the intensity Jc of said first radiation, as well as a laser source capable of activating said process.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: INSTITUT FRANCO-ALLEMAND DE RECHERCHES DE SAINT-LOUIS
    Inventors: Antoine HIRTH, Christelle KIELECK
  • Patent number: 8014433
    Abstract: A large number of passes of pump light through an active mirror in a solid state disk laser is realized using a pair of coupled imaging systems, where the optical axes of imaging systems are not coincident. Two imaging systems are optically coupled, so that an image of the first imaging system is an object of the second imaging system, and vice versa. An active mirror is disposed at the object or image plane, or at the focal plane of any one of the coupled imaging systems, where the position of the reflected pump beam during the multi-reflection between the first and second imaging systems is substantially unchanged.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: September 6, 2011
    Assignee: Apollo Instruments
    Inventors: Zhijiang Wang, Ying Wang
  • Publication number: 20110206084
    Abstract: A laser gain medium and laser system include a host material, a plurality of quantum dots dispersed throughout the host material, and a plurality of laser active ions surrounding each of the quantum dots. The laser active ions are disposed in close proximity to the quantum dots such that energy absorbed by the quantum dots is transferred to the ions, thereby exciting the ions to produce laser output. In an illustrative embodiment, each quantum dot is surrounded by an external shell doped with the laser active ions.
    Type: Application
    Filed: March 10, 2011
    Publication date: August 25, 2011
    Applicant: RAYTHEON COMPANY
    Inventors: Kalin SPARIOSU, Alexander A. BETIN
  • Patent number: 8002413
    Abstract: There is provided a light source unit which includes a luminescent light source which receives excitation light so as to emit light of a predetermined wavelength band, excitation light sources which shine excitation light on to the luminescent light source, a reflection space having the luminescent light source in an interior thereof and an emission space which emits luminescent light source light emitted from the reflection space from an emission port whose area is made smaller than the area of the luminescent light source and a projector which employs the light source unit.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 23, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Tetsuro Narikawa
  • Patent number: 8000371
    Abstract: A semiconductor light emitting device includes a pump light source, a gain structure, and an out-coupling mirror. The gain structure is comprised of InGaN layers that have resonant excitation absorption at the pump wavelength. Light from the pump light source causes the gain structure to emit light, which is reflected by the out-coupling mirror back to the gain structure. A distributed Bragg reflector causes internal reflection within the gain structure. The out-coupling mirror permits light having sufficient energy to pass therethrough for use external to the device. A frequency doubling structure may be disposed between the gain structure and the out-coupling mirror. Output wavelengths in the deep-UV spectrum may be achieved.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 16, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Andre Strittmatter, Christopher L. Chua, Peter Kiesel, Noble M. Johnson
  • Patent number: 7995638
    Abstract: A laser configuration producing up to 100's of Watts of output is provided, based on a solid-state gain medium, a source of pump energy which is detuned from the maximum absorption wavelength for the gain medium, and optics arranged to deliver the pump energy through an end of the gain medium to propagate along the length of the gain medium. The length of the gain medium and the doping concentration in the gain medium are sufficient the absorption length is on the order of 10's of millimeters, and more than ? of the length, and that 90 percent or more of the pump energy is absorbed within two or fewer passes of the gain medium. A pump energy source that supplies 100 Watts to 1000 Watts or more.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 9, 2011
    Assignee: Laserscope
    Inventor: Gerald Mitchell
  • Publication number: 20110164648
    Abstract: Laser-induced damage in an optical material can be mitigated by creating conditions at which light absorption is minimized. Specifically, electrons populating defect energy levels of a band gap in an optical material can be promoted to the conduction band—a process commonly referred to as bleaching. Such bleaching can be accomplished using a predetermined wavelength that ensures minimum energy deposition into the material, ideally promoting electron to just inside the conduction band. In some cases phonon (i.e. thermal) excitation can also be used to achieve higher depopulation rates. In one embodiment, a bleaching light beam having a wavelength longer than that of the laser beam can be combined with the laser beam to depopulate the defect energy levels in the band gap. The bleaching light beam can be propagated in the same direction or intersect the laser beam.
    Type: Application
    Filed: May 3, 2010
    Publication date: July 7, 2011
    Applicant: KLA-Tencor Corporation
    Inventors: Vladimir Dribinski, Yung-Ho Alex Chuang
  • Publication number: 20110164649
    Abstract: A pump module comprises a power source, a plurality of laser diodes, a controller and light combining optics. The laser diodes each have an activated state and a deactivated state. The laser diodes receive current from the power source and output light when in the activated state and do not receive current from the power source when in the deactivated state. The controller switches the plurality of laser diodes from a first power mode, in which a first subset of the laser diodes is in the activated state, to a second power mode, in which a second subset of the laser diodes is in the activated state, responsive to a power mode setting. The light combining optics are configured to combine the light from the activated laser diodes and output the combined light as pump energy. A laser system comprises a pump module and a gain medium. The pump module is configured to output pump energy having a wavelength that is within a wavelength range of 874-881 nm.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 7, 2011
    Applicant: AMS RESEARCH CORPORATION
    Inventors: Rongwei Jason Xuan, Michael R. Hodel, Douglas G. Stinson, Ramond Adam Nemeyer
  • Patent number: 7974318
    Abstract: The present invention relates in particular to the field of lasers and in particular to a laser source having a neodymium-doped crystal (2; 23) or fiber and pumpable by pumping means (3; 25) and a non-linear Raman effect converter stimulated in methane (4; 32), characterized in that the crystal (2; 23) or fiber pumped by said pumping means (3; 25) is able to emit a laser radiation at a wavelength between 1.31 and 1.36 ?m and in that the Raman converter (4; 32) is able to convert the radiation generated by the crystal (2; 23) or by the fiber into at least one second radiation (7; 36) with a wavelength between 2 and 2.3 ?m.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: July 5, 2011
    Assignee: Institut Franco-Allemand de Recherches de Saint-Louis
    Inventors: Antoine Hirth, Christelle Kieleck
  • Patent number: 7970030
    Abstract: A medical laser device is described that generates a laser beam controllable with presets as to pulse duration, pulse repetition rate, power and energy per pulse. The device also provides presets with respect to water and air outputs. Parametric values for power, pulse duration, pulse repetition rate, and energy per pulse as well as for water and air settings may be programmed by an end user and stored as presets.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: June 28, 2011
    Assignee: Biolase Technology, Inc.
    Inventors: Ioana M. Rizoiu, Dmitri Boutoussov
  • Publication number: 20110150013
    Abstract: Laser apparatus comprises a solid-state laser-resonator including a thin-disk solid-state gain-medium. The thin-disk gain medium is optically pumped using radiation circulating in an OPS-laser resonator. The solid-state laser-resonator can be a passively mode-locked or actively Q-switched laser-resonator.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: Coherent, Inc.
    Inventors: Luis A. Spinelli, Andrea Caprara
  • Patent number: 7961771
    Abstract: A laser amplifier includes a laser active slab with a source of pump power to amplify an input laser beam, the laser active slab including a block of laser active material having opposed lateral faces defining a wedge lateral dihedral angle specified to minimize parasitic amplified spontaneous emission. The laser amplifier may include one or more external mirrors highly reflecting at the lasing wavelength positioned and oriented to provide for zig-zag passes through the gain sheet for the input laser beam to yield a multi-pass-amplified laser beam. The source of pump power may be one or more laser diode bars and microlenses producing a gain sheet in the laser active slab.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 14, 2011
    Inventor: Jeffrey G. Manni
  • Patent number: 7961763
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 14, 2011
    Assignee: Applied Materials South East Asia Pte. Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20110134946
    Abstract: A solid state laser device is provided. The active element has a double slope portion defining a right angle between the slopes, wherein the pump light beam is directed into one of the slopes, and wherein an output coupler configured to output a laser beam from the active element is located on a portion of the active element, opposite of the double slope portion, the double slope portion is configured such that the laser beam travels at least twice along the long axis of the active element; and a second double slopes portion located at the edge opposite of the first double sloped portion, wherein the second double slopes portion is perpendicular to the first double slopes portion, and wherein the second double slopes portion is configured such that the laser beam travels back and forth along the long axis of the active element at least one more time.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 9, 2011
    Applicant: ELBIT SYSTEMS ELECTRO-OPTICS ELOP LTD.
    Inventors: Yaniv VIDNE, Nissim ZAFRANI, Shmuel GREENSTEIN, Dov ABRAMOVICH, Yoav LAVON
  • Patent number: 7957440
    Abstract: A laser device that includes a dual pulse-width laser-pumping circuit generates long and short laser pulses. The laser-pumping circuit employs a single power supply with dual high voltage outputs that are selectable under control of a user. The laser device conveniently generates long and short laser pulses or a mix of the two for performing specialized surgical procedures.
    Type: Grant
    Filed: February 10, 2008
    Date of Patent: June 7, 2011
    Assignee: Biolase Technology, Inc.
    Inventor: Dmitri Boutoussov
  • Patent number: 7944954
    Abstract: A laser apparatus with all optical-fiber includes a plurality of pumping light sources in different wave bands and an optical-fiber laser system. The optical-fiber laser system includes an optical fiber at least doped with erbium (Er) element and doped with or not doped with ytterbium (Yb) element according to a need. The optical-fiber laser system outputs a laser light through the pumping light source.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: May 17, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yao-Wun Jhang, Chien-Ming Huang, Hsin-Chia Su, Shih-Ting Lin, Li-Ting Wang, Hong-Xi Cao
  • Publication number: 20110103408
    Abstract: A laser head generating ultrashort pulses is integrated with an active beam steering device in the head. Direct linkage with an application system by means of an adequate interface protocol enables the active device to be controlled directly by the application system.
    Type: Application
    Filed: December 13, 2010
    Publication date: May 5, 2011
    Applicant: IMRA AMERICA, INC.
    Inventors: Gyu C. CHO, Oleg BOUEVITCH
  • Patent number: 7936796
    Abstract: In one embodiment, a photo-darkening resistant optical fiber includes a waveguide having a numerical aperture less than 0.15. The waveguide includes a core having a refractive index n1 and a pedestal having a refractive index n2, and wherein the fiber includes a first cladding having a refractive index n3 surrounding the pedestal, wherein n1 is greater than n2, n2 is greater than n3. The core includes silica, a concentration of alumina of between approximately 0.3 to 0.8 mole percent, a concentration of phosphate of substantially 15 mole percent, a concentration of ytterbium substantially in the range 20000 to 45000 ppm. The pedestal can include silica, phosphate and germania. The core can have substantially zero thulium dopant.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 3, 2011
    Assignee: SPI Lasers UK Ltd
    Inventors: Michael Kevan Durkin, Stephen Roy Norman, Fabio Ghiringhelli, David Neil Payne, Louise Mary Brendan Hickey, Jayanta Kumar Sahu, Mikhail Nickolaos Zervas, Andy Piper, Andrew Michael Gillooly
  • Patent number: 7928417
    Abstract: An apparatus and method is disclosed which may comprise a laser produced plasma EUV system which may comprise a drive laser producing a drive laser beam; a drive laser beam first path having a first axis; a drive laser redirecting mechanism transferring the drive laser beam from the first path to a second path, the second path having a second axis; an EUV collector optical element having a centrally located aperture; and a focusing mirror in the second path and positioned within the aperture and focusing the drive laser beam onto a plasma initiation site located along the second axis. The apparatus and method may comprise the drive laser beam is produced by a drive laser having a wavelength such that focusing on an EUV target droplet of less than about 100 ?m at an effective plasma producing energy is not practical in the constraints of the geometries involved utilizing a focusing lens. The drive laser may comprise a CO2 laser. The drive laser redirecting mechanism may comprise a mirror.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 19, 2011
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, Alexander N. Bykanov, Oleh V. Khodykin, Igor V. Fomenkov
  • Patent number: 7924902
    Abstract: The invention relates to a highly repetitive laser system operating according to the reproducible amplifier principle. Said system comprises at least one amplified laser medium, a laser resonator provided with at least one resonator mirror and at least one modulator and a pump source, in particular, a laser diode source, which is used to pump the laser medium. The highly repetitive laser system is compact by virtue of the fact that a pulse extensor, having a highly dispersive effect as a result of the structure or material thereof, is integrated into the laser resonator.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: April 12, 2011
    Assignee: High Q Laser Production GmbH
    Inventors: Daniel Kopf, Maximilian Josef Lederer
  • Publication number: 20110075686
    Abstract: Methods and systems for generating high energy, mode locked, femtosecond and picosecond laser pulses are disclosed, including generating electromagnetic radiation from a pump laser; coupling the electromagnetic radiation to a rare Earth doped fiber using a pump/signal coupler; coupling the output from the rare Earth doped fiber to a first fiber; coupling a bandpass filter to the first fiber output and to a second fiber; coupling a first in-line polarization controller to the second fiber output and an in-line polarization beam splitter comprising a non-polarization maintaining fiber output and a polarization maintaining fiber output configured to emit an output laser pulse; coupling a polarization insensitive isolator to the non-polarization maintaining fiber output of the in-line polarization beam splitter and to a second in-line polarization controller; coupling a third fiber output to the second in-line polarization controller and to the pump/signal coupler. Other embodiments are described and claimed.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Inventor: Jian Liu
  • Publication number: 20110075687
    Abstract: A laser comprises an end pump light source and a gain medium having a first end, a second end, and four sides comprising a first, a second, a third, and a fourth side. The end pump light source is optically coupled to the first end and pumps the gain medium. The first side and the third side are tapered inwardly from the first end to the first end to the second end at a taper angle ? relative to a longitudinal lasing axis and have a polished finish capable of reflecting light inside the gain medium. The second side and the fourth side are substantially parallel to the longitudinal lasing axis have a ground blasted finish. The first side is also tilted inwardly at a slant angle ? from the fourth side to the second side. A laser beam R0 exits the second end of the gain medium.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 31, 2011
    Applicant: INNOVA, INC.
    Inventor: M. Cem Gokay
  • Patent number: 7912108
    Abstract: A solid-state laser emitting material for use in conjunction with a light source includes a polymer matrix functioning as host materials, containing laser dye of rhodamine 590 or rhodamine 610 as gain materials and nano-submicron particles as scatters therein. The lowest lasing threshold of the laser emitting material is approximately 5 mJ/cm2 for 585 nm emission and 2 mJ/cm2 for 630 nm emission.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: March 22, 2011
    Assignee: The Hong Kong Polytechnic University
    Inventors: Xiaoming Tao, Xiaohong Sun, Jianguo Deng, Kai-Cheong Kwan
  • Publication number: 20110064099
    Abstract: A semiconductor gain-structure functions as a gain-element in a laser-resonator. The gain-structure is bonded to a diamond heat-spreader that is peripherally cooled by a heat-sink configured to allow access to the gain-structure by laser-radiation circulating in the laser-resonator. In one example, the gain-structure is used as a transmissive gain-structure in a traveling-wave ring-resonator. In another example, the gain-structure surmounts a mirror-structure which functions as an end-mirror of a standing-wave laser-resonator.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 17, 2011
    Applicant: COHERENT, INC.
    Inventors: Sergei V. Govorkov, R. Russel Austin
  • Patent number: 7907655
    Abstract: A laser cavity structure is disclosed which pertains to laser resonator geometries possessing circular symmetry, such as in the case of disk or spherical lasers. The disclosed invention utilizes a very-high finesse Bragg reflector (VHF-BR) thin film reflectors of many layer pairs of very small refractive index difference, the VHF-BR deposited on a surface of revolution, thereby forming an optical cavity. These dielectric reflectors are disposed in such a way as to allow selection of preferred low order modes and suppression of parasitic modes while allowing a high cavity Q factor for preferred modes. The invention disclosed, in its preferred embodiments, is seen as particularly useful in applications requiring high efficiency in the production and coupling of coherent radiation. This is accomplished in a cavity design that is relatively compact and economical.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 15, 2011
    Inventor: Donald Bennett Hilliard
  • Patent number: 7903716
    Abstract: A surface emitting semiconductor laser includes a semiconductor chip (1), which emits radiation (12) and contains a first resonator mirror (3). A second resonator mirror (6) is arranged outside the semiconductor chip (1). The first resonator mirror (3) and the second resonator mirror (6) form a laser resonator for the radiation (12) emitted by the semiconductor chip (1). The laser resonator contains an interference filter (9, 17), which is formed from an interference layer system comprising a plurality of dielectric layers.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 8, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Ulrich Steegmüller, Michael Kühnelt
  • Patent number: 7894501
    Abstract: Laser light emission across a wide bandwidth emission spectrum is enabled in a laser device equipped with solid gain media. The laser device is equipped with: a resonator; a plurality of solid gain media, having fluorescent spectra that at least partially overlap with each other, provided within the resonator; and pumping means, for pumping the plurality of solid gain media. The entire fluorescent spectrum width of the plurality of solid gain media is greater than the fluorescent spectrum width of each solid gain medium.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: February 22, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Takashi Adachi
  • Patent number: 7894129
    Abstract: Laser light emission across a wide bandwidth emission spectrum is enabled in a laser amplifier equipped with solid gain media. The laser amplifier is equipped with: a resonator; a plurality of solid gain media, having fluorescent spectra that a least partially overlap with each other, provided within the resonator; and pumping means, for pumping the plurality of solid gain media. The entire fluorescent spectrum width of the plurality of solid gain media is greater than the fluorescent spectrum width of each solid gain medium.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: February 22, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Takashi Adachi