Particular Pulse Demodulator Or Detector Patents (Class 375/340)
  • Patent number: 9020078
    Abstract: A signal detection device includes: a band limiting filter in which cutoff frequency is changeable; a signal detection unit that detects whether or not a signal of a specific frequency is present, from a received signal; and a control unit that executes a first signal detection that causes the signal detection unit to detect a signal, with a cutoff frequency of the band limiting filter less than the Nyquist frequency of an A/D converter, and a second signal detection that causes the signal detection unit to detect a signal, with a cutoff frequency of the band limiting filter greater than or equal to the Nyquist frequency of the A/D converter.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 28, 2015
    Assignee: NEC Corporation
    Inventor: Naoki Oshima
  • Patent number: 9020080
    Abstract: A method of canceling sinusoidal interference from a received signal includes identifying a block of signal-free data containing sinusoidal interference. A model of the significant interference in the selected data block is constructed, scaled to subsequent data blocks and used to remove sinusoidal interference signals from the overall received signal.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 28, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Richard Wasiewicz, Thomas M. Parks
  • Patent number: 9020074
    Abstract: An apparatus provides a baseband signal for exploiting receive antenna diversity by means of a digital baseband processor. The apparatus includes a combiner configured to temporally delay a first received signal corresponding to a first receive antenna with respect to a second received signal corresponding to a second receive antenna, and to add the delayed first received signal and the second received signal to obtain a baseband representation of a combined signal at an output of the combiner as the baseband signal for exploiting receive antenna diversity.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 28, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Bernd Adler, Elmar Wagner, Christian Drewes, Clemens Buchacher
  • Patent number: 9020075
    Abstract: Methods and systems are described for improving a data at a receiver using one or more signal peak detectors. A signal is received having an initial signal level from the transmitter, the signal having a long bit and a short bit. The initial signal voltage of the signal is measured using a signal peak detector. A pre-emphasis value is determined using the signal voltage and is communicated to the transmitter, causing the transmitter to transmit the signal using an adjusted signal level. A second signal voltage of the initial signal is measured using a second signal peak detector, the second signal voltage being used to determine the pre-emphasis value. In another embodiment, a state machine having data relating to appropriate pre-emphasis is used in determining the pre-emphasis value. In another embodiment, one peak detector is used to measure the long bit and another peak detector is used to measure the short bit. In another embodiment, the signal does not have associated link training data.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: April 28, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Osamu Kobayashi, Gyo Un Choi
  • Publication number: 20150110225
    Abstract: The invention concerns a signal acquisition and processing method, comprising: a step of acquiring signals in at least two acquisition channels (A1, A2, . . . , AN); a step of detecting the acquired signals in at least two detection channels (V1, V2, . . . , VN) associated respectively with the two acquisition channels; a step of distributing the detected signal or signals that result from the detection step in at least one computing tile available in a set of computing tiles; a step of storing the detected signal or signals in the computing tile or tiles; and a step of processing the signals stored in the computing tile or tiles in order to obtain data characteristic of the detected signals. The invention applies to the acquisition and processing of non-deterministic data (nuclear instrumentation, laser instrumentation, radar detection, etc.).
    Type: Application
    Filed: March 12, 2013
    Publication date: April 23, 2015
    Inventors: Mathieu Thevenin, Gwenole Corre
  • Publication number: 20150110226
    Abstract: A data carrier device is disclosed. The data carrier device includes a demodulation device configured to demodulate a received modulated carrier signal and output the included encoded data signal and a decoding device configured to decode the encoded data signal and output data. The decoding device includes a first decoding stage and a second decoding stage, wherein the first decoding stage is configured to decode said data signal in conformity with a first method and the second decoding stage is configured to decode said data signal in conformity with a second method, wherein the first method is Manchester and the second method is Miller.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 23, 2015
    Inventors: Franz Amtmann, Dominik Josef Berger, Wolfgang Eber, Stefan Posch, Robert Rechberger
  • Publication number: 20150110228
    Abstract: In an embodiment, an apparatus includes a buffer to store incoming orthogonal frequency division multiplexed (OFDM) samples. This buffer is configured to output the OFDM samples according to a read pointer that can be adjusted by a sum value corresponding to a sum of a length of a symbol and a feedback value, to align the read pointer with the symbol. In addition, the apparatus further includes a feedback circuit coupled to the buffer to receive the output OFDM samples and generate the feedback value based at least in part on the output OFDM samples.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: SILICON LABORATORIES INC.
    Inventor: JAVIER ELENES
  • Publication number: 20150110221
    Abstract: Disclosed is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals that are transmitted in the same frequency bandwidth at the same time. According to the precoding method, one matrix is selected from among matrices defining a precoding process that is performed on the plurality of baseband signals by hopping between the matrices. A first baseband signal and a second baseband signal relating to a first coded block and a second coded block generated by using a predetermined error correction block coding scheme satisfy a given condition.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Patent number: 9014303
    Abstract: A carrier state modulator system is described in which a stream of digital data bits is encoded by modulating the amplitude or phase of a carrier wave. A transmitter modulates the amplitude of a selected number cycles of the carrier in accordance with the state of each digital data bit. A receiver decodes the carrier state modulated signal by determining a phase score for the specified number of cycles of the modulated signal, the phase score based on a number of samples of the amplitude on a positive side of each cycle of the modulated signal that is above a selected amplitude and a second number of samples of an amplitude on a negative side of each cycle of the modulated signal that is below the selected amplitude. The value of the encoded digital data bit of the modulated signal is determined from the phase score.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: April 21, 2015
    Assignee: Custom Link Corporation
    Inventor: William A. Ganter
  • Patent number: 9014310
    Abstract: An ultra-low power super-regenerative receiver and method thereof are provided. The ultra-low power super-regenerative receiver includes a quench waveform generator configured to generate a quench waveform. The ultra-low power super-regenerative receiver further includes a super-regenerative oscillator configured to generate an oscillation signal based on the quench waveform. The ultra-low power super-regenerative receiver further includes a bandwidth adjustor configured to control the quench waveform based on a bandwidth of a signal received by the ultra-low power super-regenerative receiver, to dynamically adjust a bandwidth of the oscillation signal.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Soon Park, Young Jun Hong, Joon Seong Kang
  • Patent number: 9014304
    Abstract: A satellite signal which carries a navigation message including satellite-specific information is received. Data of the navigation message is demodulated from received satellite signal. Error detection processing is carried out on demodulated data on a word basis of the navigation message. The number of bit transitions is counted at each corresponding bit transition position with respect to a first word in which an error is detected in the error detection processing and which carries the satellite-specific information, and plural second words belonging to a different frame from a frame to which the first word belongs and having a common part with the first word. A bit value of the first word is detected based on the number of bit transitions counted.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: April 21, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Hideo Sasahara
  • Patent number: 9013635
    Abstract: Methods and systems for encoding and decoding signals using a Multi-input Multi-output Time Encoding Machine (TEM) and Time Decoding Machine are disclosed herein.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 21, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Aurel A. Lazar, Eftychios A. Pnevmatikakis
  • Patent number: 9014308
    Abstract: A method includes receiving signals transmitted over a communication channel in multiple blocks transmitted in respective frequency bins during respective time intervals. An estimate of the communication channel, for a given block transmitted during a respective time interval, is computed by (i) computing respective interim filtering results for the blocks transmitted in the respective time interval in the respective frequency bins belonging to the predefined subset, by filtering a first group of the reference signals that are transmitted in odd-order frequency bins and in a first set of symbols, so as to produce odd-order interim filtering results, and filtering a second group of the reference signals that are transmitted in even-order frequency bins and in a second set of symbols that does not overlap the first set, so as to produce even-order interim filtering results; and (ii) combining the odd-order interim filtering results and the even-order interim filtering results.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Marvell International Ltd.
    Inventors: Kobby Pick, Yona Perets
  • Patent number: 9014309
    Abstract: Methods and systems are provided for enabling adaptive per-antenna rate control based on network conditions for a wireless communication device (WCD). The WCD and a radio access network (RAN) may form a communication link that has multiple data streams, each data stream received by a different antenna of the WCD. Each data stream may have a different encoding, and thus a different data rate. Additionally, each encoding may have an associated signal-to-interference-plus-noise ratio (SINR) requirement to decode. The more complicated an encoding, the higher the data rate the encoding supports. However, more complicated encodings also need a higher SINR to decode. By first decoding a data stream with a low-complexity encoding, the data can be subtracted from a data stream having a more complicated encoding. Therefore, the SINR of the data stream having a more complicated encoding may be increased, and increase the likelihood of it being decodable.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Sprint Spectrum L.P.
    Inventors: Sreekar Marupaduga, Patrick Schmidt, Andy Wurtenberger
  • Patent number: 9014285
    Abstract: An object of the present invention is to provide a receiving apparatus and a receiving method capable of preventing phase rotation of a signal after FFT from occurring on a frequency domain. Further, the receiving apparatus according to the present invention is provided with: a window control unit configured to control a position of an FFT window in which FFT is performed to the time domain signal, and output FFT data corresponding to the FFT window; a signal delaying unit configured to generate, from the time domain signal, a plurality of delay signals with different delay amounts; and a signal switching unit having a switch for outputting by switching between two of the time domain signal and the plurality of delay signals based on a predetermined switch timing, the signal switching unit being configured to output the FFT data including the output signal of the switch.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: April 21, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yukihiro Kadota, Takashi Fujiwara
  • Patent number: 9014289
    Abstract: Disclosed is a method of transmitting dual digital signals through a single antenna. The method includes receiving, by a transmitter, a first data stream and a second data stream which use the same carrier frequency, modulating, by the transmitter, each of the first data stream and the second data stream, lowering, by the transmitter, a power level of the modulated second data stream, combining, by the transmitter, the modulated first data stream and the second data stream with the lowered power level, and transmitting, by the transmitter, the added first data stream and second data stream to a single antenna in the same channel.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 21, 2015
    Assignee: GCT Semiconductor, Inc.
    Inventors: Eal Wan Lee, Dae Hong Kim, Jeong Min Kim
  • Patent number: 9014307
    Abstract: A multichannel radio receiver may include a radio frequency (RF) subsystem and a digital subsystem. The RF subsystem may be configured to provide analog information associated with a radio band to an analog to digital converter (ADC). The ADC samples the analog input and sends digital output to the digital subsystem. The digital subsystem may be configured with one or more channelizers and one or more decoders. A channelizer within the digital subsystem may filter and re-sample the digital output to result in a channel plan having a desired bandwidth and a desired sample rate. The sample rate may be selected for compatibility with a decoder. The decoder may have design specifications based in part on a modulation scheme to be decoded. The design specifications may indicate the desired sample rate to be provided by the channelizer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 21, 2015
    Assignee: Itron, Inc.
    Inventor: Danny Ray Seely
  • Patent number: 9014313
    Abstract: Described embodiments recover timing and data information from a signal received via a communication channel. An analog-to-digital converter (ADC) operating at a baud rate of the communication channel generates an actual ADC value corresponding to each bit sample of the received signal. A fast symbol estimation module estimates, based on the actual ADC value, a bit value corresponding to each bit sample. The fast symbol estimation module operates at a digital clock rate. The estimated bit values are provided to a timing recovery module. An ADC reconstruction module, based on a first number of pre-cursor estimated bit values, an estimated cursor bit value, and a second number of post-cursor estimated bit values, generates a reconstructed ADC value corresponding to each bit sample. Based on the reconstructed ADC values, the estimated bit values, and the actual ADC values, a corrected bit value is generated for each bit sample.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 21, 2015
    Assignee: LSI Corporation
    Inventor: Erik V. Chmelar
  • Publication number: 20150103944
    Abstract: A transmission apparatus configured to transmit four OFDM signals from four transmission antennas includes: a pilot signal insertion unit configured to generate four types of OFDM symbols by inserting pilot signals of different patterns into four types of transmission signals; and an OFDM signal generation unit configured to generate four OFDM signals by modulating respective carriers of the four types of OFDM symbols.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: NIPPON HOSO KYOKAI
    Inventors: Takuya SHITOMI, Kenichi MURAYAMA, Makoto TAGUCHI, Shingo ASAKURA, Kazuhiko SHIBUYA
  • Publication number: 20150103959
    Abstract: Methods and apparatus are described for improving receiver performance in a multicarrier communication network in which an encoded symbol is transmitted over a transmission channel in the communications system. A model of the transmission channel is estimated, said model characterising an effect of intercarrier interference on at least one carrier in the multicarrier system. The received symbol is decoded using the estimated model to remove a predicted effect of intercarrier interference. A pre-processor is also described for operation in conjunction with a communications receiver in the network. The pre-processor includes a channel estimator operable to estimate at least one feature of the communication channel based on a received signal. The pre-processor modifies the received signal dependent on the at least one estimated feature and provides the modified signal to the communications receiver.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Paul Dean Alexander, Paul Kingsley Gray, David Victor Lawrie Haley, John Lawrence Buetefuer, Alexander James Grant, Phuc Ngoc Pham, Joshua Charles Sutton, Martin Suter
  • Patent number: 9008229
    Abstract: A device for obtaining a RCC signal and related methods are described herein improves the reliability of the RCC signal reception and demodulation. In one aspect, a device configured to obtain a RCC signal includes: a receiving circuit to receive an analog AM RCC signal and to process said analog AM RCC signal to generate a digital AM RCC signal; and a demodulation circuit in connection with said receiving circuit, to demodulate said digital AM RCC signal to generate the RCC signal. In another aspect, a method for obtaining a RCC signal includes: processing a received analog AM RCC signal to generate a digital AM RCC signal; and demodulating said digital AM RCC signal to generate said RCC signal. Since the digital processing method is more reliable than the analog processing method, the reliability of RCC signal reception and demodulation are improved.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 14, 2015
    Assignee: Beijing KT Micro, Ltd.
    Inventor: Zhen Li
  • Patent number: 9008159
    Abstract: In some embodiments, a method includes receiving, at a receiver of a first device via a channel of a communication medium, multiple data transmissions. Each data transmission of the multiple data transmissions has a guard interval of multiple guard intervals, wherein the multiple guard intervals have different lengths. The method includes determining, based on signal characteristics of the multiple data transmissions, the data transmission from among the multiple data transmissions having a preferred physical data rate. The method includes setting a length of an adjusted guard interval for the channel for data communication from a transmitter of a second device to the receiver of the first device via the communication medium, to a length of the guard interval for the data transmission having the preferred physical data rate.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 14, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Hassan Afkhami, Purva R. Rajkotia, Manjunath Anandarama Krishnam
  • Patent number: 9008218
    Abstract: Disclosed are a broadcast signal transmitter, a broadcast signal receiver, and a method for transceiving a broadcast signal in the broadcast signal transmitter/receiver. A method for transmitting a broadcast signal comprises the following steps: signaling in-band signaling information to at least one of a service component physical layer pipe (PLP) including at least one service component of a broadcast service, a first information PLP including first service information applied to one broadcast service and a second information PLP including second service information applied commonly to a variety of broadcast services; performing the FEC encoding on data included in each PLP; performing time-interleaving on the FEC encoded data; generating a transmission frame including the time-interleaved data; and modulating the transmission frame and transmitting a broadcast signal including the modulated transmission frame.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 14, 2015
    Assignee: LG Electronics Inc.
    Inventors: Woosuk Ko, Seoyoung Back, Sangchul Moon
  • Patent number: 9008230
    Abstract: In one embodiment, an apparatus is provided that includes a first circuit configured and arranged to provide a modulated carrier signal in response to a signal provided from the antenna. The modulated carrier signal conveys data using peaks or amplitudes of the carrier signal. A second circuit is configured to rectify the modulated carrier signal and integrate the rectified signal in response to a first clock signal. A third circuit is coupled to an output of the second circuit and is configured to sample the integrated signal values and provide therefrom a sample-based approximation of the modulated carrier signal.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: April 14, 2015
    Assignee: NXP B.V.
    Inventors: Remco C. VandeBeek, Massimo Ciacci, Ghiath Al-kadi
  • Patent number: 9008161
    Abstract: A method for calibrating mismatches of an in-phase signal path and a quadrature signal path of a transmitter, including: additionally configuration at least one mixer calibration coefficient at a transmitting part of the transmitter; obtaining at least one mixer testing signal from the transmitting part via loopback for spectrum analysis to derive at least one mixer spectrum analysis result; adjusting the mixer calibration coefficient of the transmitting part according to the mixer spectrum analysis result; and additionally utilizing an in-phase signal path finite impulse response filter and a quadrature signal path finite impulse response filter to calibrate mismatches between a low pass filter of the in-phase signal path of the transmitting part of the transmitter and a low pass filter of the quadrature signal path of the transmitting part of the transmitter. A similar mismatch calibration operation may be applied to a receiver.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: April 14, 2015
    Assignee: Realtek Semiconductor Corp.
    Inventors: Yuan-Shuo Chang, Ching-Chia Cheng
  • Patent number: 9008236
    Abstract: Symbol detection and soft demapping methods and systems are provided. Individual subset symbol detection according to one or more embodiments involves identifying a search subset of a transmission symbol set for a transmission symbol. For each other transmission symbol in communication signals, multiple search subsets of the transmission symbol set are identified. The multiple search subsets include respective search subsets based on each transmission symbol in either the search subset for the first identified one of the transmission symbols or each of the multiple search subsets identified for a different one of the other transmission symbols. Symbol detection errors may be detected by identifying competing symbols and computing competing distances. Soft demapping may be provided by calculating soft decision results based on detected symbols and weighting the soft decision result.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: April 14, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ming Jia, Peiying Zhu, Wen Tong, Jianglei Ma
  • Patent number: 9008237
    Abstract: A method for symbol detection includes assigning a received symbol to at least one particular candidate symbol of a set of candidate symbols of a finite candidate symbol alphabet based on a metric between the received symbol and the at least one particular candidate symbol, the metric comprising contributions with respect to channel-based information and contributions with respect to a priori information.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: April 14, 2015
    Assignee: Intel IP Corporation
    Inventors: Franz Eder, Tobias Kurpjuhn, Ernst Martin Witte
  • Patent number: 9008167
    Abstract: Logic may comprise a single phase tracking implementation for all bandwidths of operation and the logic may adaptively change pre-defined and stored track parameters if the receiving packet is 1 MHz bandwidth. Logic may detect a packet and long training fields before performing a 1 MHz classification. Logic may auto-detect 1 MHz bandwidth transmissions by a property of the long training field sequences. Logic may auto-detect 1 MHz bandwidth transmissions by detecting a Binary Phase Shift Keying (BPSK) modulated first signal field symbol rather than the Quadrature Binary Phase Shift Keying (QBPSK) associated with the 2 MHz or greater bandwidth transmissions. Logic may perform an algorithm to determine an estimated phase correction value for a given orthogonal frequency division multiplexing symbol and several embodiments integrate this value with an intercept multiplier that may be 0.2 for 1 MHz transmissions and, e.g., 0.5 for 2 MHz or greater bandwidth communication.
    Type: Grant
    Filed: December 29, 2012
    Date of Patent: April 14, 2015
    Assignee: Intel Corporation
    Inventors: Shahrnaz Azizi, Eldad Perahia, Thomas J. Kenney
  • Patent number: 9008235
    Abstract: An auxiliary reduced power analog-to-digital converter (ADC) is provided for use during sleep periods of a receiver. The auxiliary ADC has a reduced dynamic range but sufficient accuracy to allow demodulation of signaling information contained in an input signal and to update control parameters used for synchronization and channel estimation. As such, a main higher power, higher dynamic range ADC can be turned off during sleep periods, reducing receiver power consumption. The main ADC is turned on at the end of a sleep period, and the receiver can be ready for receiving data immediately using the main ADC because the control parameters are maintained up to date during the sleep period using the auxiliary ADC.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 14, 2015
    Assignee: Broadcom Corporation
    Inventors: Ravikiran Rajagopal, Jeffrey Scott Putnam, Ramon Gomez
  • Patent number: 9008234
    Abstract: A method for transmitting and receiving a signal and an apparatus for transmitting and receiving a signal are disclosed. The method includes receiving the signal from a first frequency band in a signal frame including at least one frequency band, demodulating the received signal by an orthogonal frequency division multiplexing (OFDM) method and parsing the signal frame, acquiring a symbol stream of a service stream from the at least one frequency band included in the parsed signal frame, demapping symbols included in the symbol stream and outputting the demapped symbols to sub streams, multiplexing the output sub streams and outputting one bit stream, and deinterleaving and error-correction-decoding the output bit stream.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: April 14, 2015
    Assignee: LG Electronics Inc.
    Inventors: Woo Suk Ko, Sang Chul Moon
  • Patent number: 9008215
    Abstract: Methods, systems, and computer readable media for asymmetric multimode interconnect (MMI) are disclosed. According to one aspect, a system for receiver-side asymmetric MMI includes a receiver that receives binary-encoded input signals from a multichannel interconnect, encodes the received binary-encoded signals according to a multimode encoding equation to produce multimode-encoded signals having voltage levels according to the multimode encoding equation, adjusts the timing of the multimode-encoded signals to compensate for multichannel interconnect channel delays to produce delay-adjusted multimode-encoded signals, and decodes the delay-adjusted multimode-encoded signals according to a multimode decoding equation to produce binary-encoded output signals.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 14, 2015
    Assignee: North Carolina State University
    Inventors: Chanyoun Won, Hoon Seok Kim, Paul D. Franzon, Zhuo Yan
  • Patent number: 9008203
    Abstract: A receiver comprises a demodulator configured to detect a signal representing the OFDM symbols and to generate a sampled digital version of the OFDM symbols in the time domain. A Fourier transform processor is configured to receive the time domain digital version of the OFDM symbols and to form a frequency domain version of the OFDM symbols, from which the pilot symbol bearing sub-carriers and the data symbol bearing sub-carriers can be recovered. A detector is configured to recover the data symbols from the data bearing sub-carriers of the OFDM symbols and to recover the pilot symbols from the pilot bearing sub-carriers of the OFDM symbols in accordance with the scattered pilot symbol pattern and the continuous pilot symbol pattern. The scattered pilot symbol pattern is one of a plurality of scattered pilot symbol patterns and the continuous pilot pattern is independent of the scattered pilot symbol pattern.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: April 14, 2015
    Assignee: Sony Corporation
    Inventor: Gholam Hosein Asjadi
  • Patent number: 9008250
    Abstract: A method for canceling adjacent channel interference includes: receiving signal of a first channel, where an interference signal of a second channel remains in the signal of the first channel, and the second channel and the first channel are adjacent channels; receiving a cancellation signal provided by the second channel for canceling the interference signal; filtering the received cancellation signal; adjusting a frequency of the filtered cancellation signal; multiplying the cancellation signal with the adjusted frequency by a gain factor to obtain a signal to be cancelled; and subtracting the signal to be cancelled from the signal of the first channel, and canceling the interference signal to obtain a signal to be decoded. According to the technical solutions provided in the embodiments of the present invention, interference signals of adjacent channels are cancelled, and the signal to noise ratio is improved.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 14, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Guixue Zhao
  • Publication number: 20150098529
    Abstract: A method and system for pseudorandom noise (“PN”) phase detection in digital terrestrial multimedia broadcast (“DTMB”) receivers. This method selects a detection range of symbols from a frame of the received signal; applies FFT to the PN portion of each of the symbols in the detection range to generate Hn(k); applies phase rotation to Hn(k) to obtain phase rotated for the PN portion of the symbols in the detection range; applies differential operations to to generate Hpd ; sums the Hpd to generated Hsum; calculates a value Q as a function of Hsum; and determines the PN phase offset as a function of Q and a predefined threshold.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Amlogic Co., Ltd.
    Inventors: Jinhong Zhang, Guogang Li
  • Publication number: 20150098520
    Abstract: An identification provider provides predetermined identification data to an input signal, and generates a first signal. A differential encoder performs a differential encoding of a data series that is an aggregate of data having a matching number of elements to that contained in the first signal, and generates a second signal. A modulator modulates each of the first and second signals using a primary modulation, and generates first and second modulated data. An IFFT calculator performs an inverse fast Fourier transformation on each of the first and second modulated data, and generates first and second inverse transformed data. A selector compares peak-to-average power ratios calculated by baseband signals associated with the first and second inverse transformed data, and selects a baseband signal having the lower peak-to-average power ratio. A transmitter generates a transmission signal based on the selected baseband signal, and transmits the transmission signal.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 9, 2015
    Inventor: Nobuyoshi Nishikawa
  • Publication number: 20150098530
    Abstract: A technique for detecting symbols includes performing an over-sized discrete Fourier transform (DFT) operation on a received signal that includes at least two repeated symbols. A sum of signal characteristics for subcarriers of one or more possible symbols are determined based on the DFT operation. A sum of signal characteristics for non-subcarriers of the one or more possible symbols is determined based on the DFT operation. Finally, a determination is made as to whether one or more of the one or more possible symbols is detected based on the sum of signal characteristics for the subcarriers and sum of signal characteristics for the non-subcarriers.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Inventors: Raja V. Tamma, Kevin Traylor
  • Patent number: 9001935
    Abstract: The present invention relates to a receiving node, and to a related method of adjusting a frequency domain channel estimate in a receiving node of a wireless communication system using Orthogonal Frequency Division Multiplexing. The method comprises estimating (210) a phase rotation of the frequency domain channel estimate, and compensating (220) for the estimated phase rotation in the frequency domain channel estimate. It also comprises transforming (230) the compensated frequency domain channel estimate into a time domain channel estimate, filtering (240) the time domain channel estimate to suppress noise, transforming (250) the filtered time domain channel estimate back into a noise suppressed frequency domain channel estimate, and adding (260) the estimated phase rotation in the noise suppressed frequency domain channel estimate to achieve an adjusted and improved frequency domain channel estimate.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: April 7, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Zhiheng Guo, Ruiqi Zhang, Hai Wang
  • Patent number: 9001901
    Abstract: A receiver includes a positive pulse determination circuit and a negative pulse determination circuit. The positive pulse determination circuit outputs a first L-level between when a pulse signal having a negative amplitude is detected and when neither a pulse signal having a positive amplitude nor a pulse signal having a negative amplitude is detected; otherwise a first H-level if a pulse signal having a positive amplitude is detected during another period. The negative pulse determination circuit outputs a second L-level between when a pulse signal having a positive amplitude is detected and when neither a pulse signal having a positive amplitude nor a pulse signal having a negative amplitude is detected; otherwise a second H-level is output if a pulse signal having a negative amplitude is detected during the other period.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 7, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Takeda, Shunichi Kaeriyama
  • Patent number: 9001937
    Abstract: The present invention discloses a signal level decision device to determine the level of a source signal. Said source signal comprises a plurality of source messages along a time axis; each source message corresponds to one of a plurality of normal levels; and each normal level is equivalent to at least one of a plurality of extension levels. The signal decision device comprises: a storage circuit to store the level information of the normal level(s) and the equivalent extension level(s) thereof in connection with some or all of the source messages; a transition parameter calculation circuit to calculate a plurality of transition parameters of the normal level and its equivalent extension level(s) in connection with each of the source messages according to the level information; and a decision circuit to determine the level of each of the source messages according to the plurality of transition parameters.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: April 7, 2015
    Assignee: Realtek Semiconductor Corporation
    Inventors: Sheng-Fu Chuang, Liang-Wei Huang, Hsuan-Ting Ho, Ching-Yao Su
  • Patent number: 9001936
    Abstract: Effective management of a Hybrid-Automatic Repeat reQuest (HARQ) buffer in a wireless communication system is provided. A receiving terminal includes a first memory for storing Log Likelihood Ratio (LLR) values of at least one data block comprised in a received HARQ burst in a first memory, a channel decoder for decoding the at least one data block by using the LLR values, an error detection unit for detecting whether there are errors in the decoded at least one data block, and a second memory for storing at least one error-free data block in a decoded state among the data blocks in a second memory.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Sang Cho, Ji-Yun Seol
  • Patent number: 9001939
    Abstract: Provided is a transmitter for transmitting signals by means of the STBC method or the DSTBC method, wherein communication is carried out effectively. The transmitter for transmitting signals by means of the STBC method or the DSTBC method has the following configuration. A frame in which synchronization words are arranged at specified positions is used. An encoding means in the transmitter encodes the entire frame to be transmitted including the synchronization words, by means of the STBC method or the DSTBC method. It is also possible to implement a communication system and a communication method for communicating signals by means of the STBC method or the DSTBC method.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hiroyuki Akutagawa, Takehiko Kobayashi
  • Patent number: 9001938
    Abstract: A method of detecting a received signal, includes determining correlation between a received signal in a predetermined signal interval and training symbols, and determining a median absolute deviation (MAD) of the received signal in a predetermined reference interval. The method further includes detecting a presence of the received signal based on the correlation and the MAD.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 7, 2015
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Han Kim, Un Sun Cho, Young Jun Hong, Joon Seong Kang, Jae Seok Kim, Chang Soon Park
  • Publication number: 20150092649
    Abstract: Wireless devices, transmitters, systems and methods are provided that have a narrow band signaling channel and a wide band channel, for example an OFDM channel. In order to save power, the wireless device is nominally powered down with the exception of a receiver specific to the narrow band signaling channel. Once instructed to do so over the narrow band signaling channel, the wireless device wakes up the rest of its wide band receive circuitry.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventors: Shiquan Wu, Wen Tong, Claude Royer, Edward Sich
  • Publication number: 20150092883
    Abstract: Provided are a transmitting apparatus, a receiving apparatus and methods of controlling the transmission and reception. The transmitting apparatus includes: a baseband packet generator configured to, in response to input of data, generate a baseband packet for mapping the data with a physical layer; a baseband frame generator configured to generate a baseband frame including the baseband packet; a signal processor configured to signal-process the baseband frame; and a transmitter configured to transmit the baseband frame after the signal processing, wherein the baseband packet includes signaling information which indicates that the data comprises at least one of base layer data and enhancement layer data.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-hee HWANG, Hyun-koo YANG
  • Publication number: 20150092882
    Abstract: A transmitting apparatus, a receiving apparatus and methods of controlling these apparatuses are provided. The transmitting apparatus includes: an input processor configured to process a plurality of input streams to generate a plurality of base band frames; a bit interleaved and coded modulation (BICM) processor configured to perform forward error correction (FEC) coding, constellation mapping, and interleaving on the plurality of baseband frames; a symbol generator configured to add signaling data to the plurality of baseband frames output from the BICM processor to generate an orthogonal frequency division multiplexing (OFDM) symbol; and a transmitter configured to select at least one of a plurality of pilot patterns based on a fast Fourier transform (FFT) size and a guard interval fraction, insert a pilot in the OFDM symbol according to the selected pilot pattern, and transmit a stream including the pilot-inserted OFDM symbol.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hak-ju LEE, Soon-chan KWON, Se-ho MYUNG, Jung-hyun PARK, Joo-sung PARK, Hyun-koo YANG, Jung-pil YU, Sung-ryul YUN, Hong-sil JEONG, Jung-Il HAN
  • Publication number: 20150092894
    Abstract: There is provided a receiving device including a receiving unit configured to receive encoded data encoded by one or more codes, a first decoding unit configured to decode the encoded data received by the receiving unit, a first delay unit configured to delay a part of decoding results obtained by the first decoding unit, and a reliability increasing unit configured to control decoding of the encoded data to increase reliability of the decoding results using a decoding result that is not delayed by the first delay unit among the decoding results after delay by the first delay unit.
    Type: Application
    Filed: May 22, 2013
    Publication date: April 2, 2015
    Inventors: Takashi Yokokawa, Yuji Shinohara, Koji Naniwada, Ryoji Ikegaya
  • Publication number: 20150092892
    Abstract: Provided with one or more first transistors of a first conductivity type each including a gate, a source, and a drain, the gate being connected to an input terminal, the source being configured to be connected to a first voltage source, the drain being connected to an output node, one or more second transistors of a second conductivity type each including a gate, a source, and a drain, the gate being connected to the input terminal, the source being configured to be connected to a second voltage source, the drain being connected to the output node, a first resistor that is inserted and connected between the input terminal and the output node, a first output terminal that is connected to the input terminal, and a second output terminal that is directly or indirectly connected to the output node.
    Type: Application
    Filed: May 14, 2013
    Publication date: April 2, 2015
    Inventors: Naoto Yoshikawa, Ken Yamamoto
  • Publication number: 20150092891
    Abstract: A method for determining timing synchronization for demodulating a signal by a receiver, comprises the steps of: generating a channel response for the signal; transforming the signal into the time domain using an inverse fast fourier transform (“IFFT”); determining a signal power for the transformed signal as a function of the generated channel response; and calculating the timing synchronization by the receiver as a function of the determined signal power.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: Amlogic Co., Ltd.
    Inventors: Jin Niu, Jinhong Zhang
  • Publication number: 20150092893
    Abstract: Methods and apparatuses to reduce resource consumption by a mobile wireless device when decoding control channel information, such as a physical downlink control channel (PDCCH), in a subframe received from an LTE wireless network are disclosed. Representative methods include demodulating a first set of one or more PDCCH OFDM symbols contained in the subframe based on a first channel estimate; obtaining a second channel estimate based on a second OFDM symbol before demodulating a second set of one or more PDCCH OFDM symbols contained in the subframe based on both the first channel estimate and the second channel estimate. When the PDCCH indicates no downlink assignments for the subframe, the mobile wireless device enters a reduced power consumption mode after demodulating the PDCCH.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Inventors: Tarik Tabet, Navid Damji, Syed A. Mujtaba, Johnson O. Sebeni
  • Patent number: 8994567
    Abstract: A digital-to-analog conversion circuit operates by selectively discharging members of a plurality of capacitors. Charging of the capacitors occurs during a reset period while digital-to-analog conversion occurs as the capacitors are discharged. Those capacitors that are discharged are selected from the plurality of capacitors based on a digital input. The analog output includes the charge discharged from the capacitors. The capacitors are optionally divided into separate capacitor banks.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Broadcom Europe Limited
    Inventors: Jonathan Ephraim David Hurwitz, Steven Collins