With Charge Pump Or Up And Down Counters Patents (Class 375/374)
  • Patent number: 8681915
    Abstract: A method for transmitting synchronization messages in a communications network including a plurality of nodes having a first node and at least one second node, wherein in order to take into account differences in a reference clock frequency of a reference clock and an internal clock frequency of an internal clock of the at least one second node, a compensation interval, with which the second clock count state is adjusted on measurement of a delay time, is subdivided into smaller compensation timespans, and the smaller compensation timespans are used to determine a compensated time value for the delay time with a high degree of accuracy, where the compensated time value is then used to update the time information in the synchronization message.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Bernhard Buhl, Dragan Obradovic, Günter Steindl, Philipp Wolfrum
  • Patent number: 8675800
    Abstract: Disclosed herein is a synchronizing circuit including: a first PLL circuit; a second PLL circuit; a first output circuit; a second output circuit; a first detection circuit; a second detection circuit; a control circuit; and a holding section.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 18, 2014
    Assignee: Sony Corporation
    Inventors: Tetsuhiro Futami, Ikko Okamoto
  • Publication number: 20140064423
    Abstract: An exemplary clock and data recovery circuit includes a serial data input node arranged for receiving a serial data; a reference clock input node arranged for receiving a reference clock; a control circuit arranged for generating a control signal to selectively configure the clock and data recovery to operate in one of a plurality of phases; a detective circuit arranged for generating a first adjusting signal while the clock and data recovery operates in a frequency locking phase, and for generating a second adjusting signal while the clock and data recovery circuit operates in a clock and data recovery phase; and a controllable oscillator arranged for generating a recovered clock according to the first adjusting signal in the frequency locking phase, and for generating the recovered clock according to the second adjusting signal in the clock and data recovery phase.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: Realtek Semiconductor Corp.
    Inventors: Wei-Zen Chen, Ming-Chiuan Su, Yu-Hsiang Chen
  • Publication number: 20140037036
    Abstract: A circuit may include a phase difference selector, a clock signal generator, a reference clock phase detector, and a data signal phase detector. The phase difference selector may be configured to select one of multiple reference clock phase difference signals generated by the reference clock phase detector based on a difference in phase between multiple clock signals and a reference clock. The clock signal generator may be configured to generate the multiple clock signals based on the selected reference clock phase difference signal. The data signal phase detector may be configured to generate a data phase difference signal based on differences in phase between the clock signals and a data signal. The data phase difference signal may be used by the phase difference selector to select one of the reference clock phase difference signals.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Nikola NEDOVIC
  • Patent number: 8638896
    Abstract: A circuit for clocking includes an input data path, a receiver, a set of flip-flops, at least one interpolator and a controller. The receiver is coupled to the input data path for receiving input data. The flip-flops, coupled to the receiver, sample the input data. A first interpolator, coupled to one or more of the flip-flops, receives the sampled input data. The controller, coupled to the first interpolator, controls the first interpolator by providing phase information regarding the input data to the first interpolator. The circuit reduces any jitter transferred from the input path to an output path.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: January 28, 2014
    Assignee: Netlogic Microsystems, Inc.
    Inventors: Dean Liu, Marc J. Loinaz, Stefanos Sidiropoulos
  • Patent number: 8634506
    Abstract: Generate a series of digital data according to a pair of differential signals received from a low speed universal serial bus. Calibrate coarsely a frequency of an oscillator according to a width of an end-of-packet of the series of digital data. And calibrate finely the frequency of the oscillator according to a width of a SYNC pattern of the series of digital data.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 21, 2014
    Assignee: Weltrend Semiconductor Inc.
    Inventors: Fu-Yuan Hsiao, Ke-Ning Pan
  • Patent number: 8619938
    Abstract: A clock generation device provided for a transmitter is provided and comprises a clock generator, a calculator and a first phase locked loop (PLL) circuit. The clock generator generates a first clock signal. The calculator calculates a frequency difference between the first and second clock signals. The first PLL circuit generates an output clock signal according to a first reference clock signal related to the first clock signal, and a frequency of the output clock signal is changed according to the frequency difference. The transmitter transmits data according to the output clock signal.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: December 31, 2013
    Assignee: Mediatek Inc.
    Inventors: Kuan-Hua Chao, Chuan Liu, Tse-Hsiang Hsu
  • Patent number: 8619937
    Abstract: An integrated CMOS clock generator with a self-biased phase locked loop circuit comprises a phase-frequency detector with a reference signal input, a feedback signal input and an output. A first charge pump of the clock generator has an input connected to the output of the phase-frequency detector and an output that supplies a control voltage. A loop capacitor is connected to the output of the first charge pump. The clock generator further has a second charge pump with an input connected to the output of the phase-frequency detector and an output. In particular, the clock generator has two oscillator blocks.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: December 31, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Joern Naujokat
  • Patent number: 8605846
    Abstract: Various embodiments of the present invention relate to systems, devices and methods of oversampling electronic components where high frequency oversampling clock signals are generated internally. The generated oversampling clock is automatically synchronous with the input clock and the input serial data in a serial data link, and is adaptive to predetermined parameters, such as bit depth and oversampling rate.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: December 10, 2013
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Matthew Felder, Mark Summers
  • Patent number: 8599985
    Abstract: In accordance with an embodiment of the present disclosure a phase-locked loop comprises a voltage controlled oscillator (VCO) configured to generate an output signal based on an input reference signal. The phase-locked loop further comprises a first charge pump communicatively coupled to a control input of the VCO and configured to generate, for a duration of time following occurrence of an event, a first control signal. The first control signal is independent of the output signal and is for causing the output signal to have a first frequency based on a second frequency of the input reference signal. The phase-locked loop further comprises a second charge pump communicatively coupled to the control input of the VCO. The second charge pump is configured to generate, after the duration of time, a second control signal.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: December 3, 2013
    Assignee: Intel IP Corporation
    Inventor: Rizwan Ahmed
  • Patent number: 8588358
    Abstract: A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. A delay locked loop (DLL) is configured to receive the clock signal from the LCVCO and generate multiple clock phases. A charge pump is configured to control the LCVCO. A phase detector is configured to receive a data input and the multiple clock phases from the DLL, and to control the first charge pump in order to align a data edge of the data input and the multiple clock phases.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Chih-Chang Lin, Ming-Chieh Huang, Fu-Lung Hsueh
  • Patent number: 8582710
    Abstract: Embodiments allow for the use of the SS modulation technique (and thus for significant reduction of EMI due to clock transmission) in scenarios involving tight synchronization requirements between two devices. In particular, embodiments can be used in high-speed communication networks (e.g., high-speed Ethernet) where a clock signal embedded in the data stream at the transmitter and recovered from the data stream at the receiver is the only source for synchronization between the transmitter and the receiver (i.e., no other synchronization channel available). Embodiments are also especially useful in communication systems utilizing echo cancellers.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 12, 2013
    Assignee: Broadcom Corporation
    Inventors: Neven Pischl, Joseph Cordaro, Yongbum Kim
  • Patent number: 8571149
    Abstract: A single chip radio transceiver includes circuitry that enables received wideband RF signals to be down converted to base band frequencies and base band signals to be up converted to wideband RF signals prior to transmission without requiring conversion to an intermediate frequency. The circuitry includes a low noise amplifier, automatic frequency control circuitry for aligning the LO frequency with the frequency of the received RF signals, signal power measuring circuitry for measuring the signal to signal and power ratio and for adjusting frontal and rear amplification stages accordingly, and finally, filtering circuitry to filter high and low frequency interfering signals including DC offset.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: October 29, 2013
    Assignee: Broadcom Corporation
    Inventors: Zhongming Shi, Ahmadreza (Reza) Rofougaran, Arya Reza Behzad
  • Patent number: 8571161
    Abstract: It is described an electronic device for generating a fractional synthesized frequency. The device comprises a multi-phase controlled oscillator configured to generate, from a control signal, a plurality of signals phase-shifted each other and comprises a phase detector configured to receive a selected signal from the plurality of phase-shifted signals, to receive a reference signal and to measure a difference between a phase of the selected signal and a phase of the reference signal. The electronic device further comprises control means for estimating, from the measured phase difference, a phase error affecting the generation of at least one of the plurality of phase-shifted signals, and for generating a corrected measure of the phase difference taking into account the estimated phase error, the corrected measure being used to provide the control signal.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 29, 2013
    Assignee: Politechnico di Milano
    Inventors: Salvatore Levantino, Carlo Samori, Marco Zanuso
  • Patent number: 8559575
    Abstract: Systems and methods are provided for calibrating the internal oscillator of a microcontroller from a remote clock source. In some embodiments, an electronic device can request timing information from a third party device using a timing independent signal. The timing information received from the third party device may be used to calibrate the microcontroller clock of the electronic device. In some embodiments, the internal oscillator may be calibrated based on timing information received from multiple third party devices. Once calibrated, the microcontroller may initiate timing dependent communication with other electronic devices using a timing dependent protocol, such as a serial protocol.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: October 15, 2013
    Assignee: Apple Inc.
    Inventors: John M. Ananny, Nicholas R. Kalayjian, Stanley Rabu, Terry Tikalsky
  • Patent number: 8553828
    Abstract: A clock data restoration device (1A) includes a sampler portion (11), a phase comparison portion (12), a drive portion (13), a charge pump (14), a capacitive element (15), a potential adjustment portion (16) and a voltage control oscillator (17). The phase comparison portion (12) outputs a signal (UP) that becomes a significant value when the phase of a clock (CKX) delays with respect to an input digital signal, and outputs a signal (DN) that becomes a significant value when the phase advances. The drive portion (13) increases or decreases a value ? to or from a variable ? when the signals (UP) and (DN) become a significant value, and increases or decrease a value N to or from the variable ? when the value of the variable ? is equal to or more than +N or when the value of the variable ? is equal to or less than ?N, and signals (UPFRQ) and (DNFRQ) are output to the charge pump (14).
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 8, 2013
    Assignee: Thine Electronics, Inc.
    Inventors: Seiichi Ozawa, Shuhei Yamamoto
  • Patent number: 8553827
    Abstract: A Phase-Locked Loop (PLL) includes a Phase-to-Digital Converter (PDC), a programmable digital loop filter, a Digitally-Controlled Oscillator (DCO), and a loop divider. Within the PDC, phase information is converted into a stream of digital values by a charge pump and an Analog-to-Digital Converter (ADC). The stream of digital values is supplied to the digital loop filter which in turn supplies digital tuning words to the DCO. A number of types of ADCs can be used for the ADC including a continuous-time delta-sigma oversampling Digital ADC and a Successive Approximation ADC. The voltage signal on the charge pump output is a small amplitude midrange voltage signal. The small voltage amplitude of the signal leads to numerous advantages including improved charge pump linearity, reduced charge pump noise, and lower supply voltage operation of the overall PLL.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 8, 2013
    Assignee: Qualcomm Incorporated
    Inventor: Gang Zhang
  • Patent number: 8542043
    Abstract: In an embodiment, a primary charge pump and replica charge pump may be coupled to matching control mechanisms and loads. In an embodiment, the replica charge pump may produce an error current originating from charge pump timing mismatches in a steady locked loop state. The error current produced by the replica charge pump may be measured by a difference amplifier to adjust at least one current source to compensate for the error current originating from the timing mismatches. To adjust the current sources, the amplifier may cause the current source to produce an equal but opposite current to cancel the effects of the error current, resulting in a constant output voltage.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Ralph Moore
  • Patent number: 8536913
    Abstract: Output driver feedback circuitry limits output slew rates across a wide range of output loads. A transition time lock loop architecture of the feedback circuitry compares a transition time pulse with a reference pulse to adjusts transition time of an output signal for various process-voltage-temperature (PVT) process corners, output voltage domains and output capacitances. Reference pulse generation circuitry provides a reference pulse in phase with the transition time pulse for each rise and fall of the output signal.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Wilson J. Chen, Chiew-Guan Tan
  • Patent number: 8532243
    Abstract: A technique that is readily implemented in monolithic integrated circuits includes a method including generating an output clock signal during a presence of a reference clock signal based, at least in part, on a digital control value indicating a phase difference between a feedback signal of a PLL and a reference clock signal. The method includes generating the output clock signal during an absence of the reference clock signal and based, at least in part, on an average digital control word indicating an average value of a number of samples of the digital control value during the presence of the reference clock signal, the number of samples preceding the absence of the reference clock signal by a delay period. The number of samples is selected from a plurality of numbers of samples and the delay period is selected from a plurality of delay periods.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: September 10, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Srisai R. Seethamraju, Jerrell P. Hein, Kenneth Kin Wai Wong, Qicheng Yu
  • Patent number: 8509369
    Abstract: A frequency synthesis system with self-calibrated loop stability and bandwidth, which outputs an output signal based on an input signal and includes a detector, a charge pump, a filter, a controllable oscillator and a programmable frequency divider. The detector produces a detection signal based on a logic level difference between the input signal and a feedback signal. The charge pump is connected to the detector in order to produce a control signal based on the detection signal. The filter is connected to the charge pump in order to produce a tuning signal based on the control signal. The controllable oscillator is connected to the filter in order to produce the output signal based on the tuning signal. The programmable frequency divider is connected to the controllable oscillator in order to produce the feedback signal based on the output signal. The filter is a discrete time loop filter.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: August 13, 2013
    Assignee: Sunplus Technology Co., Ltd.
    Inventors: Chun-Liang Chen, Hui-Chun Hsu
  • Patent number: 8509371
    Abstract: A continuous-rate clock and data recovery circuit includes a delay locked loop with a first integrator and a phase locked loop with a separate integrator. The delay locked loop and the phase locked loop are in a dual loop architecture. The first integrator is a digital accumulator that wraps upon exceeding a maximum or minimum value. The second integrator is a digital accumulator that saturates at its maximum or minimum value.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 13, 2013
    Assignee: Analog Devices, Inc.
    Inventor: John G. Kenney
  • Patent number: 8503501
    Abstract: A spread spectrum clock generation circuit and a controlling method thereof are disclosed, which provide clocks having less jitter and ideal spread spectrum and enable a reduction in circuit scale and in power consumption. To this end, a current control type modulator 19a is equipped with a current source Ia (current 4i). A charger unit CGa and a discharger unit DGa are designed such that currents i, 2i and 4i are allowed to flow, for example, by properly setting the sizes of transistors. Modulation cycles CIa to CIIIa are repeated and an output code is generated from a switching control circuit 20a according to each modulation cycle. A switching unit SSa is controlled according to the output code, thereby charging or discharging a capacitor element C1 with a charge/discharge current CDI corresponding to the output code. Hence, charge amounts and discharge amounts for all the modulation cycles CIa to CIIIa have the same value, i.e., 6i [A·clock].
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: August 6, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Syuichi Saito, Koji Okada
  • Patent number: 8472580
    Abstract: A clock and data recovery circuit injects a noise waveform into the control loop to offset the data sampling point artificially in order to induce errors. The amplitude of the injected waveform can be varied to ascertain the effect on the bit error rate (BER) so as to be able to evaluate the temporal noise margin.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan Paul Milton, Richard Simpson, Eugenia Carr Cordero Crespo
  • Patent number: 8472515
    Abstract: A phase detection and decision feedback equalization circuit is provided. A first latch and a second latch are coupled to an input of the circuit. A third latch and a fourth latch are respectively coupled in series to outputs of the first latch and second latch. The first and fourth latches are enabled by a clock signal, and the second and third latches are enabled by a complement of the clock signal. A first feedback circuit is configured to provide a signal output from the first latch and a first feedback signal derived from the output of the fourth latch to an input of the third latch. A second feedback circuit is configured to provide a signal output from the second latch and a second feedback signal derived from the output of the third latch to an input of the fourth latch.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 25, 2013
    Assignee: Xilinx, Inc.
    Inventor: Jafar Savoj
  • Patent number: 8467490
    Abstract: A communication system includes: a transmitter adapted to transmit a synchronizing clock and serial data synchronous with the synchronizing clock over a line at low amplitude; and a receiver adapted to receive the serial data and synchronizing clock from the transmitter. The receiver includes an amplifier adapted to amplify the received synchronizing clock of low amplitude to restore the clock to its original amplitude, a latched comparator adapted to latch the received serial data in synchronism with a reproduction clock, and a phase-locked circuit.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: June 18, 2013
    Assignee: Sony Corporation
    Inventors: Takaaki Yamada, Hiroki Kihara, Tatsuya Sugioka, Hisashi Owa, Taichi Niki, Yukio Shimomura
  • Patent number: 8457269
    Abstract: A clock and data recovery (CDR) architecture which includes a frequency detector, a phase detector, a phase charge pump circuit, a frequency charge pump circuit and a voltage controlled oscillator is provided. The phase detector is configured to only include four AND gates to receive and evaluate the intermediate signals, generated by the frequency detector, and accordingly generate a phase control signal. The voltage controlled oscillator is configured to output a plurality of clock signals with different phases according to the current signals outputted from the phase and frequency charge pump circuits, and select at least one of the plurality of clock signals with different phases for sampling a data signal.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: June 4, 2013
    Assignees: NCKU Research and Development Foundation, Himax Technologies Limited
    Inventors: Soon-Jyh Chang, Yen Long Lee, Chung-Ming Huang
  • Patent number: 8451970
    Abstract: The present disclosure provides a variable delay circuit comprising a delay circuit that includes a first delay unit and a second delay unit and delays an input signal to generate an output signal; a selection signal generation unit that detects a delay value of the delay circuit and generates a selection signal to select a delay unit for delaying the input signal from the first delay unit and the second delay unit; a first control unit that controls a delay value of the delay unit selected by the selection signal in response to a delay increase/decrease signal; and a second control unit that controls a delay value of the delay unit which is not selected by the selection signal.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 28, 2013
    Assignee: Korea University Research and Business Foundation
    Inventors: Chul Woo Kim, Young Ho Kwak
  • Patent number: 8442178
    Abstract: A linear phase detector includes an up/down pulse generator operating in response to received data signals and a recovered clock signal. The phase detector generates up and down pulses that have pulse widths proportional to the phase differences between transitions of the received data signals and edges of the recovered clock signal. By generating up and down pulses using a linear phase detector in proportion to a phase error, data signals are effectively recovered, even data signals with significant jitter.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 14, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul-Woo Kim, Seok-Soo Yoon, Young-Ho Kwak, In-Ho Lee, Ki-Hong Kim
  • Patent number: 8437441
    Abstract: A phase locked loop includes a voltage controlled oscillator operable to generate an output signal corresponding to a reference signal in response to a control voltage signal outputted by a filter in response to a current signal, and a variable frequency divider operable to perform frequency division on the output signal using a variable divisor so as to generate a divided feedback signal. A charge pump outputs the current signal in response to a phase detecting output from a phase/frequency detector indicating phases of the divided feedback signal and the reference signal. A phase error comparator outputs, in accordance with the phase detecting output, a digital output indicating whether the divided feedback signal lags or leads the reference signal and further indicating a phase difference between the divided feedback signal and the reference signal.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: May 7, 2013
    Assignee: National Taiwan University
    Inventors: Tsung-Hsien Lin, Wei-Hao Chiu, Yu-Hsiang Huang
  • Publication number: 20130108001
    Abstract: A clock and data recovery (CDR) architecture which includes a frequency detector, a phase detector, a phase charge pump circuit, a frequency charge pump circuit and a voltage controlled oscillator is provided. The phase detector is configured to only include four AND gates to receive and evaluate the intermediate signals, generated by the frequency detector, and accordingly generate a phase control signal. The voltage controlled oscillator is configured to output a plurality of clock signals with different phases according to the current signals outputted from the phase and frequency charge pump circuits, and select at least one of the plurality of clock signals with different phases for sampling a data signal.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicants: HIMAX TECHNOLOGIES LIMITED, NCKU RESEARCH AND DEVELOPMENT FOUNDATION
    Inventors: Soon-Jyh CHANG, Yen Long Lee, CHUNG-MING HUANG
  • Patent number: 8433023
    Abstract: A computer system with a phase detector that generates a phase dependent control signal according to the phase relationship between a first and second clock signal. The phase detector includes first and second phase detector circuits receiving the first and second clock signals and generating select signals having duty cycles corresponding to the phase relationship between the clock edges of the first and second clock signals. The phase detector also includes a charge pump that receives select signals from the phase detector circuits and produces an increasing or decreasing control signal when the first and second clock signals do not have the predetermined phase relationship, and a non-varying control signal when the first and second clock signals do have the predetermined phase relationship. The delay value of a voltage-controlled delay circuit and the phase relationship between the first and second clock signals to a predetermined phase relationship are thereby adjusted.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: April 30, 2013
    Assignee: Round Rock Research, LLC
    Inventor: Ronnie M. Harrison
  • Patent number: 8428207
    Abstract: A system and method are provided for determining a time for safely sampling a signal of a clock domain. In one embodiment, a frequency estimate of a first clock domain is calculated utilizing a frequency estimator. Additionally, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the frequency estimate. In another embodiment, a frequency estimate of a first clock domain is calculated utilizing a frequency estimator. Further, a phase estimate of the first clock domain is calculated based on the frequency estimate, utilizing a phase estimator. Moreover, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the phase estimate.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 23, 2013
    Assignee: NVIDIA Corporation
    Inventors: William Dally, Stephen G. Tell
  • Patent number: 8422947
    Abstract: A communication device includes a communication circuit part, a transmission path for signals, a ground, a coupler electrode, and a resonance part. The coupler electrode includes an upper flat part as an electrode, a support, and a connecting portion. The support supports the upper flat part. Thus, the upper flat part faces the ground and is separately placed therefrom at a height only enough to ignore the wavelength of the signal, while having a flexible portion which is elastically deformable in the height direction. On the connecting portion, the other end of the support is connected to the transmission path. The resonance part enlarges a current flowing into the coupler electrode through the transmission path. A micro dipole is a line segment connecting between the center of accumulated electric charge in the coupler electrode and the center of mirror charge accumulated in the ground.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 16, 2013
    Inventor: Satoshi Konya
  • Patent number: 8420997
    Abstract: A system accountably maintains an accumulated charge of a photo-detector charge well at or around a predefined level.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 16, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward K. Y. Jung, Lowell L. Wood, Jr.
  • Patent number: 8406366
    Abstract: Disclosed herein is a synchronization circuit including: a first phase-locked loop circuit; a second phase-locked loop circuit; a first output circuit; a second output circuit; a first detection circuit; a second detection circuit; and a control circuit.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Sony Corporation
    Inventors: Masayuki Hattori, Tetsuhiro Futami, Yuichi Hirayama, Keita Izumi
  • Patent number: 8407508
    Abstract: A serial bus clock frequency calibration system and a method thereof are disclosed herein. The system utilizes a first frequency calibration device, a second frequency calibration device and a third frequency calibration device to share the same oscillator as so to perform multi-stage clock frequency resolution calibrations for different frequency-tuning ranges. This can bring an optimal frequency resolution, greatly reduce system complexity and save element cost.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: March 26, 2013
    Assignee: Genesys Logic, Inc.
    Inventors: Wei-te Lee, Shin-te Yang, Wen-ming Huang
  • Patent number: 8406364
    Abstract: In the following B cycles, the second frequency-divided signal fA is maintained at a low level, while the third frequency-divided signal fB is maintained at a high level. The three-modulus prescaler 13 has a frequency division value (M?1) if the pseudo random values are negative values, and a frequency division value (M+1) if the pseudo random values are positive values, in accordance with the signs of the pseudo random values outputted from the ?? modulator 8. After that, the frequency division value becomes M. A frequency division value of (MN+A+Bx) including the pseudo random value Bx is obtained in the comparison frequency divider 4. A fractional frequency division operation can be realized through ?? modulation by using the pseudo random numbers including negative values, as they are.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 26, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Morihito Hasegawa
  • Patent number: 8396171
    Abstract: A data receiver circuit includes: a clock/data recovery circuit to recover a clock and data from a received signal; a fixed pattern generation circuit to generate fixed pattern data; a first selection circuit to select and output one of the fixed pattern data generated by the fixed pattern generation circuit and recovered data recovered by the clock/data recovery circuit; a second selection circuit to select and output one of a reference clock and recovered clock recovered by the clock/data recovery circuit; and a switching circuit to make the first selection circuit output the fixed pattern data and to make the second selection circuit output the reference clock, when an input signal is lost or the clock/data recovery circuit is in a loss-of-lock state.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: March 12, 2013
    Assignee: Fujitsu Limited
    Inventors: Tetsuji Yamabana, Satoshi Ide
  • Patent number: 8385394
    Abstract: Disclosed herein are embodiments of an improved built-in self-test (BIST) circuit and an associated method for measuring phase and/or cycle-to-cycle jitter of a clock signal. The embodiments of the BIST circuit implement a Variable Vernier Digital Delay Locked Line method. Specifically, the embodiments of the BIST circuit incorporate both a digital delay locked loop and a Vernier delay line, for respectively coarse tuning and fine tuning portions of the circuit. Additionally, the BIST circuit is variable, as the resolution of the circuit changes from chip to chip, and digital, as it is implemented with standard digital logic elements.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brandon R. Kam, Stephen D. Wyatt
  • Patent number: 8384454
    Abstract: A method of dynamically adjusting phase-chasing speed for increasing efficiency of a DLL circuit includes detecting an overall loop delay for an input clock signal in the DLL circuit, obtaining an optimal divisor according to the overall loop delay, and in the phase-locking period of the DLL circuit, dividing the frequencies of the input clock signal and a feedback clock signal corresponding to the input clock signal according to the optimal divisor.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 26, 2013
    Assignee: Etron Technology, Inc.
    Inventors: Yu-Sheng Lai, Feng-Chia Chang, Chun Shiah
  • Patent number: 8379786
    Abstract: A delay compensation circuit for a delay locked loop which includes a main delay line having a fine delay line comprising fine delay elements and a coarse delay line comprising coarse delay elements, the main delay line being controlled by a controller, the delay compensation circuit comprising: an adjustable fine delay for modeling a coarse delay element, a counter for controlling the adjustable fine delay to a value which is substantially the same as that of a coarse delay element, a circuit for applying a representation of the system clock to the delay compensation circuit, and a circuit for applying the fine delay count from the counter to the controller for adjusting the fine delay line of the main delay line to a value which is substantially the same as that of a coarse delay element of the main delay line.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: February 19, 2013
    Assignee: Mosaid Technologies Incorporated
    Inventors: Gurpreet Bhullar, Graham Allan
  • Patent number: 8379771
    Abstract: A data receiver identifies an alignment symbol in a parallel data stream including encoded symbols, generates a bit order indicator indicating a bit order of the alignment symbol identified in the parallel data stream, and generates a symbol stream including the encoded symbols. Further, the data receiver decodes symbols in the symbol stream and generates a bit polarity indicator indicating a bit polarity of the parallel data stream based on the decoded symbols. Additionally, the data receiver generates a formatted symbol stream having a predetermined bit order and a predetermined bit polarity, based on the symbol stream, the bit order indicator, and the bit polarity indicator. In some embodiments, the data receives a serial data stream and generates the parallel data stream by deserializing data in the serial data stream.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: February 19, 2013
    Assignee: Integrated Device Technology, Inc.
    Inventors: Alex C. Reed, IV, Shriram Kulkarni
  • Patent number: 8363773
    Abstract: This invention discloses a phase interpolation controller for a clock and data recovery circuit receiving an indication of a phase relationship between a first and a second signal, the phase interpolation controller comprises a plurality of serially coupled bi-directional shift-registers, wherein when the received indication indicates the first signal is ahead of the second signal in phase, the plurality of serially coupled bi-directional shift-registers shifts in one of the bi-directions, and when the received indication indicates the first signal is behind the second signal in phase, the plurality of serially coupled bi-directional shift-registers shifts in the other of the bi-directions.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jinn-Yeh Chien
  • Patent number: 8362817
    Abstract: The present disclosure provides a phase comparator including, a first latch, a second latch, a first detection circuit, a second detection circuit, and a charge-pump circuit having the function of a changeover switch.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Hidekazu Kikuchi, Hideo Morohashi
  • Patent number: 8358729
    Abstract: An example method includes receiving a phase correction signal representing a phase difference between a source signal and a reference signal, generating a first control voltage from the phase correction signal using a charge pump circuit, generating a second control voltage from the phase correction signal in response to a digitally filtered version of the phase correction signal, wherein the second control voltage corrects for an offset error present in the first control voltage, calculating a VCO control signal based on a linear combination of the first and the second control voltages; and generating the source signal in response to the VCO control signal.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: January 22, 2013
    Assignee: Finisar Corporation
    Inventors: Hyeon Min Bae, Naresh Ramnath Shanbhag, Andrew C. Singer
  • Patent number: 8345811
    Abstract: A method of achieving reduced modulation range requirement in a Digitally Controlled Oscillator (DCO) which is deployed as part of a DRP (Digital Radio Processor) and tuned to a tuning frequency range having operating-channel center-frequencies, wherein phase difference between consecutive samples is termed as FCW (Frequency Control Word), uses the steps of digitally modifying and limiting the FCW so that the FCW does not exceed known FCW thresholds, e.g., chosen from ?/2, ?/4, ?/8, and redistributing the FCWs while maintaining a cumulative sum of phases and without significant EVM (Error Vector Magnitude) degradation. The FCW threshold can be chosen arbitrarily and need not be in the form of ?/2n. The method uses a FCW limiting algorithm which reduces supply voltage sensitivity of the DCO and enables significant reduction in area of capacitor bank which would be otherwise needed.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sarma S. Gunturi, Jawaharlal Tangudu, Sthanunathan Ramakrishnan, Jayawardan Janardhanan, Debapriya Sahu, Subhashish Mukherjee
  • Patent number: 8306147
    Abstract: A 4× over-sampling data recovery system consists of a charge pump PLL, a 4× over-sampler, a data regenerator and a digital PLL. The charge pump PLL receives a clock signal and generates a plurality of multiplicative clock signals in response to the clock signal. The 4× over-sampler samples a serial data to generate a M-bit signal according to the plurality of multiplicative clock signals, wherein each bit in the serial data is sampled for four times. The data regenerator sequentially receives and combines two M-bit signals to generate a (M+N)-bit signal. The digital PLL divides the (M+N)-bit signal into (N+1) groups of M-bit data and selects a designated M-bit data from the (N+1) groups of M-bit data to generate a P-bit recovery data.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: November 6, 2012
    Assignee: Sunplus Technology Co., Ltd.
    Inventor: Chia-Hao Hsu
  • Patent number: 8289196
    Abstract: A parallel-serial converter includes a converter circuit that converts parallel data into serial data; a first sampling circuit that samples, according to a first clock signal, the serial data output from the converter circuit; a second sampling circuit that samples, according to a second clock signal that is an inverse of the first clock signal, replica data that is synchronized with the serial data; a third sampling circuit that samples, according to plural third signals respectively having different phases, output from the second sampling circuit; and a control circuit that controls sampling timing of the first sampling circuit, based on each output from the third sampling circuit.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: October 16, 2012
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Publication number: 20120257701
    Abstract: In accordance with an embodiment of the present disclosure a phase-locked loop comprises a voltage controlled oscillator (VCO) configured to generate an output signal based on an input reference signal. The phase-locked loop further comprises a first charge pump communicatively coupled to a control input of the VCO and configured to generate, for a duration of time following occurrence of an event, a first control signal. The first control signal is independent of the output signal and is for causing the output signal to have a first frequency based on a second frequency of the input reference signal. The phase-locked loop further comprises a second charge pump communicatively coupled to the control input of the VCO. The second charge pump is configured to generate, after the duration of time, a second control signal.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Inventor: Rizwan Ahmed