Including Object Support Or Positioning Patents (Class 378/68)
-
Patent number: 12201852Abstract: A method of controlling a radiotherapy device, a computer readable medium and a radiotherapy device are disclosed. The radiotherapy device includes a radiation source coupled to a rotation means. The method includes applying radiation to a subject using the radiation source and rotating the radiation source around the subject using the rotation means according to a first fixed rotation scheme. The method further includes, during execution of the first fixed rotation scheme, determining that the subject is in a suboptimal position, pausing application of the radiation by the radiation source and logging a first angle of rotation of the radiation source at which application of the radiation is paused.Type: GrantFiled: March 27, 2020Date of Patent: January 21, 2025Assignee: Elekta LimitedInventor: Adrian Smith
-
Patent number: 12048577Abstract: In this X-ray fluoroscopic imaging apparatus, a control unit includes a first determination unit for determining whether or not X-ray imaging has been performed and is configured to perform control to switch to the target position to the next target position when it is determined by a first determination unit that X-ray imaging has been performed.Type: GrantFiled: December 13, 2021Date of Patent: July 30, 2024Assignee: SHIMADZU CORPORATIONInventors: Koki Yoshida, Fumiaki Tanaka
-
Patent number: 12004284Abstract: Various methods and systems are provided for medical imaging systems. In one example, an imaging system comprises: a C-shaped gantry; an x-ray tube coupled to a first end of the C-shaped gantry; an x-ray detector coupled to a second end of the C-shaped gantry, opposite to the x-ray tube; and a controller with computer readable instructions stored on non-transitory memory that when executed, cause the controller to: identify a reference image; determine a target electrical current based on the reference image; determine a corrected electrical current based on the target electrical current; and transition an electrical current provided to the x-ray tube to the target electrical current by commanding the electrical current to the corrected electrical current while maintaining a constant voltage provided to the x-ray tube.Type: GrantFiled: October 21, 2021Date of Patent: June 4, 2024Assignee: GE Precision Healthcare LLCInventors: James Z. Liu, Russell Dibb, Naveen S. Chandra
-
Patent number: 11986328Abstract: Described herein are paddles for breast biopsies. A reverse paddle and a compression paddle may be used in a breast biopsy. Both paddles may each have an aperture. When pressed against the breast, the reverse paddle and the compression paddle may allow the breast to bulge out of the aperture of both paddles during the biopsy. As the breast tissue bulges out of both paddles, the breast tissue to be examined via biopsy may be enlarged, thereby lessening the use of excisional biopsies on subjects with thin breasts.Type: GrantFiled: April 30, 2019Date of Patent: May 21, 2024Assignee: Memorial Sloan Kettering Cancer CenterInventors: Cynthia M. Thornton, Ernesto R. Hermosura
-
Patent number: 11975216Abstract: A radiation treatment head can include: a radiation source and a primary collimator, wherein the radiation source is configured to emit a radioactive beam; wherein the primary collimator is provided with a plurality of primary collimation channel groups; each of the primary collimation channel groups includes at least one primary collimation channel; and the radiation source and the primary collimator are movable relative to each other, so that the beam emitted from the radiation source is permissible to pass through any one of the primary collimation channels; and wherein the beam emitted from the radiation source, after passing through primary collimation channels of different primary collimation channel groups, forms fields with different sizes of areas on a reference plane.Type: GrantFiled: April 26, 2018Date of Patent: May 7, 2024Assignee: Our United CorporationInventors: Hongbin Zhao, Huiliang Wang, Ming Zhong, Haifeng Liu
-
Patent number: 11925511Abstract: Systems and assemblies for use during image-guided medical procedures use surgical support systems with a plurality of elongate legs that have independently adjustable lengths and end portions that adjacently attach to a bracket to provide different lockable orientations accommodating both supine and occipital access for neurological procedures.Type: GrantFiled: January 21, 2021Date of Patent: March 12, 2024Assignee: ClearPoint Neuro, Inc.Inventors: David John Sayler, Peter G. Piferi, Rajesh Pandey, Maxwell Jerad Daly, Kimberly Luu
-
Patent number: 11771388Abstract: A system can have an x-ray source that generates a series of individual x-ray pulses for multi-energy imaging. A first x-ray pulse can have a first energy level and a subsequent second x-ray pulse in the series can have a second energy level different from the first energy level. An x-ray imager can receive the x-rays from the x-ray source and can detect the received x-rays for image generation. A generator interface box (GIB) controls the x-ray source to provide the series of individual x-ray pulses and synchronizes detection by the x-ray imager with generation of the individual x-ray pulses. The GIB can control x-ray pulse generation and synchronization to optimize image generation while minimizing unnecessary x-ray irradiation.Type: GrantFiled: February 6, 2023Date of Patent: October 3, 2023Assignee: VARIAN MEDICAL SYSTEMS, INC.Inventors: Arundhuti Ganguly, Gary F. Virshup, Michelle Richmond, Billy Dan Jones
-
Patent number: 11759358Abstract: An ab externo automated laser treatment system for treating an eye in a subject, includes a non-contact laser source configured to generate a laser beam having at least one wavelength to treat the eye by directing the laser beam from a location spaced from the eye, wherein the at least one wavelength is a near-infrared wavelength in the range of about 0.5-2.Type: GrantFiled: November 4, 2019Date of Patent: September 19, 2023Assignee: ALeyeGN Technologies LLCInventors: Giorgio Dorin, John Randall Samples, Michael K. Ballard, Satish Herekar, William Eddington, Perry Binder
-
Patent number: 11707337Abstract: A system and method of maintaining a tool position and orientation for a computer-assisted device include a control unit and an articulated structure coupled to the control unit and including a plurality of joints. The articulated structure is configured to support an instrument. The control unit is configured to determine an error that is introduced to a position of the instrument, an orientation of the instrument, or both the position of the instrument and the orientation of the instrument by movement of a first joint of the plurality of joints; and drive at least a second joint of the plurality of joints to reduce the error.Type: GrantFiled: July 29, 2021Date of Patent: July 25, 2023Assignee: INTUITIVE SURGICAL OPERATIONS, INC.Inventors: Brandon D. Itkowitz, Nitish Swarup, Paul G. Griffiths, Goran Lynch
-
Patent number: 11684804Abstract: A patient supporting device includes: a base; a positioner; a platform having a first end and a second end; and a controller; wherein the positioner is operable by the controller to place the platform at one of a first plurality of possible positions or at one of a second plurality of possible positions, wherein in any of the first plurality of possible positions, the second end of the platform is closer to one of a left side and a right side of a treatment machine; wherein in any of the second plurality of possible positions, the second end of the platform is closer to another one of the left side and the right side; and wherein a size of a first spatial region defined by the first plurality of possible positions is different from a size of a second spatial region defined by the second plurality of possible positions.Type: GrantFiled: April 1, 2020Date of Patent: June 27, 2023Assignee: Siemens Healthineers International AGInventor: Reto W. Filiberti
-
Patent number: 11638840Abstract: Disclosed herein are radiotherapy methods and systems that can display a workflow-oriented graphical user interface(s). In an embodiment, a method comprises presenting, by a server, a graphical user interface for display on a screen positioned on a gantry of a radiotherapy machine, wherein the graphical user interface comprises a page corresponding to a radiotherapy treatment of a patient, wherein the page comprises a first graphical element indicating at least one attribute of alignment data corresponding to the radiotherapy treatment of the patient.Type: GrantFiled: December 30, 2020Date of Patent: May 2, 2023Assignee: VARIAN MEDICAL SYSTEMS, INC.Inventors: Filip Vojan, Brian Spatola
-
Patent number: 11583701Abstract: A neutron capture therapy system includes a neutron beam generating unit, an irradiation room configured to irradiate an irradiated body with a neutron beam, a preparation room configured to implement preparation work required to irradiate the irradiated body with the neutron beam, and an auxiliary positioner disposed in the irradiation room and/or the preparation room. The irradiation room includes a first shielding wall, a collimator is disposed on the first shielding wall for emitting the neutron beam, and the neutron beam is emitted from the collimator and defines a neutron beam axis. The auxiliary positioner includes a laser emitter that emits a laser beam to position the irradiated body, wherein the position of the laser emitter is selectable. Therefore, the irradiated body can be positioned in any case to implement precise irradiation.Type: GrantFiled: May 21, 2020Date of Patent: February 21, 2023Assignee: NEUBORON MEDTECH LTD.Inventor: Yuan-hao Liu
-
Patent number: 11492895Abstract: Certain methods to determine wellbore relative permeability ratio from wellbore drilling data are described. A section of a wellbore is drilled in a subterranean zone including a subsurface reservoir in which hydrocarbons are entrapped. The hydrocarbons include a multiphase fluid including oil phase and water phase. A relevant suite of logs of rock in the section of the wellbore is determined. Water saturation is determined from the relevant suite of logs. A relative permeability ratio of the rock in the section to a flow of the oil phase and the water phase is determined. Using the relative permeability ratio, a flow rate of the oil phase or a flow rate of the water phase through the rock is determined.Type: GrantFiled: October 23, 2019Date of Patent: November 8, 2022Assignee: Saudi Arabian Oil CompanyInventors: Babatope Kayode, Bander Ghamdi
-
Patent number: 11446088Abstract: The invention provides systems and method for the removal of diseased cells during surgery.Type: GrantFiled: March 28, 2019Date of Patent: September 20, 2022Assignee: Lumicell, Inc.Inventors: W. David Lee, Jorge Ferrer
-
Patent number: 11413013Abstract: An acoustic matching member configured to be disposed between a breast placed on an imaging table and a compression plate disposed opposite to the imaging table is proposed. The acoustic matching member includes a protruding portion that protrudes toward the imaging table and that is provided in an end portion on a deepest side when viewed from a chest wall side of a subject in a case of compressing a breast of the subject in contact with the compression plate.Type: GrantFiled: January 17, 2020Date of Patent: August 16, 2022Assignee: FUJIFILM CORPORATIONInventors: Takahisa Arai, Takeyasu Kobayashi, Takao Kuwabara
-
Patent number: 11234669Abstract: An x-ray imaging device (10) comprising at least two substantially planar panels (20, 21), each panel comprising a plurality of x-ray emitters housed in a vacuum enclosure, wherein the at least two panels each have a central panel axis (28) and are arranged such that their central panel axes are non-parallel to one another, the device further comprising a panel retaining means and arranged such that the panel retaining means retains the at least two panels stationary in relation to an object during x-raying of the object.Type: GrantFiled: November 23, 2018Date of Patent: February 1, 2022Assignee: Adaptix LtdInventors: Wes McKean, Steve Wells, Gil Travish
-
Patent number: 11083426Abstract: A specimen radiography system may include a controller and a cabinet. The cabinet may include an x-ray source, an x-ray detector, and a specimen drawer disposed between the x-ray source and the x-ray detector. The specimen drawer may be automatically positionable along a vertical axis between the x-ray source and the x-ray detector.Type: GrantFiled: November 3, 2017Date of Patent: August 10, 2021Assignee: Hologic, Inc.Inventors: Kenneth Defreitas, Timothy N. Wells, Thomas Deyoung, Henry Landry, Shawn St. Pierre, Shawn Hochstetler, Joseph Vartolone, Neil Roth, Michelle Lustrino
-
Patent number: 10850128Abstract: A device for performing tomosynthesis in real time is described. Multiple imaging sources (such as x-ray sources) may be energized in parallel and collimated towards a field of view. Objects within the field of view cast shadows onto one or more detectors. An imaging system may read the one or more detectors and acquire multiple views corresponding to the multiple imaging sources to produce a reconstructed image of an object of interest. From this reconstructed image, a target of the radiation therapy can be located, and the delivery of the radiation can be adjusted, as needed. The approach provides a real-time tomosynthesis design that can produce enhanced contrast for guidance of, for example, lung tumor treatment. Higher frame rates can be achieved to better compensate for changes in the position of the target during radiation therapy due to, for example, respiratory or cardiac motion.Type: GrantFiled: April 10, 2017Date of Patent: December 1, 2020Assignee: The Regents of the University of CaliforniaInventor: Scott S. Hsieh
-
Patent number: 10039519Abstract: A method of aligning the radiation beam in a radiotherapy system comprising a source for producing a beam of radiation and an imaging device for imaging from the beam, both mounted to be rotatable about an axis, a fiducial phantom between the source and imaging device, the method comprising: rotating the beam and imaging device in a trajectory about the axis while obtaining images of the fiducial phantom from a plurality of different angles, at least one image including a feature of the imaging apparatus, adjusting the trajectory of the source relative to that feature to position the isocenter substantially in the center of the volume, determining from each image of the fiducial phantom the position of the source at the rotational position the image was obtained, and calculating the center of rotation of the positions of the source to define the isocenter of the system.Type: GrantFiled: October 27, 2014Date of Patent: August 7, 2018Assignee: Elekta AB (publ)Inventors: Kevin John Brown, David Anthony Roberts, Janusz Harasimowicz, Martin Sell, Julian Byrne, Armin Fuerst
-
Patent number: 9060698Abstract: A patient support system includes a patient support having a surface for supporting a patient and a longitudinal axis, and a positioner coupled to the patient support for positioning the patient support, wherein the positioner is configured to move the patient support along a path that has an arc, circular, or zig-zag shape, and wherein the path lies within a plane that forms an angle with the surface of the patient support.Type: GrantFiled: November 15, 2013Date of Patent: June 23, 2015Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS INTERNATIONAL AGInventors: John G. Van Heteren, Janne Nord, Jarkko Peltola
-
Patent number: 8995618Abstract: A portable orthovoltage radiotherapy system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system.Type: GrantFiled: December 17, 2013Date of Patent: March 31, 2015Assignee: Oraya Therapeutics, Inc.Inventor: Michael Gertner
-
Patent number: 8981324Abstract: A patient alignment system for a radiation therapy system. The alignment system includes multiple external measurement devices which obtain position measurements of components of the radiation therapy system which are movable and/or are subject to flex or other positional variations. The alignment system employs the external measurements to provide corrective positioning feedback to more precisely register the patient and align them with a radiation beam. The alignment system can be provided as an integral part of a radiation therapy system or can be added as an upgrade to existing radiation therapy systems.Type: GrantFiled: October 24, 2013Date of Patent: March 17, 2015Assignee: Loma Linda University Medical CenterInventors: Nickolas S. Rigney, Daniel C. Anderson, David A. Lesyna, Daniel W. Miller, Michael F. Moyers, Chieh C. Cheng, Michael A. Baumann
-
Publication number: 20150023472Abstract: An X-ray testing device for generating high-resolution geometric projections of a test object, includes a highly focusing X-ray source having: a rotary anode assembly formed by a rotatably mounted anode plate, an anode plate drive connected to rotate the anode plate and a rotational angle encoder detecting the rotation angle of the anode plate; an electron gun producing a focused electron beam; and an electron beam control unit having an electron beam deflecting unit and a control unit, the electron beam deflecting unit controlling the point of incidence of the electron beam generated by the electron gun on the anode plate. The control unit controlling the electron beam deflecting unit dependent on the detected rotation angle of the anode plate minimizing the positional change of the point of incidence on the anode plate relative to a reference point on a bracket holding the test object located in a fixed position.Type: ApplicationFiled: July 18, 2014Publication date: January 22, 2015Inventors: Andreas Schmitt, Farid John Aslami, Reinhard Friedemann
-
Patent number: 8901519Abstract: The invention concerns a device and a process for adjusting the range of an ion beam, in particular for irradiation in tumor therapy. For this purpose, first the reference position of a target volume to be irradiated is determined. Subsequently, the range of an ion beam is configured such that said beam is adjusted to the reference position of the target volume, in such a manner that the Bragg peak, i.e. the maximal energy loss and thereby the maximal damage occurs in the region of the target volume which is to be destroyed. In the case that it has been determined that the reference position has been altered by a movement of the target volume, the ion beam is then deflected from the beam axis such that the ion beam is directed to various regions of a range modulator, in order that the ion beam experience a correspondingly adjusted energy loss in passing through the range modulator.Type: GrantFiled: July 22, 2008Date of Patent: December 2, 2014Assignee: GSI Helmholtzzentrum für Schwerionenforschung GmbHInventors: Dieter Schardt, Christoph Bert, Nami Saito, Bernhard Franczak, Chaudhri Naved, Pleskac Radek
-
Patent number: 8867705Abstract: A method for indicating a position of a radiation energy sensor element in a radiographic imaging system, the method executed at least in part by a computer, identifies the position of the radiation energy sensor element relative to a subject to be imaged and displays the identified position relative to the subject.Type: GrantFiled: April 11, 2011Date of Patent: October 21, 2014Assignee: Carestream Health, Inc.Inventors: Michael C. Lalena, Xiaohui Wang, David H. Foos
-
Publication number: 20140294155Abstract: A radiography device and a radiography method are specifically adapted for examinations in the field of pediatric radiology. The radiography device examines a diagnosis-relevant region of a patient. The device has a radiation source, which emits radiological rays in an irradiation direction. An irradiation surface is selectable in dependence of a specified examination region of the patient. The radiography device also has a measurement field. The size of the measurement field is changeable such that the size of the measurement field and the size of the irradiation surface correlate.Type: ApplicationFiled: March 27, 2014Publication date: October 2, 2014Applicant: SIEMENS AKTIENGESELLSCHAFTInventors: JESSICA AMBERG, HAYO KNOOP, GUDRUN ROTH-GANTER
-
Publication number: 20140283385Abstract: Provided is an x-ray device capable of suppressing reduction in detection precision. The X-ray device irradiates x-rays on an object and detects X-rays that pass through the object. The X-ray device comprises: an X-ray source that emits X-rays; a stage that holds the object; a detection device that detects at least some of the x-rays that have been emitted from the X-ray source and have passed through the object; a chamber member that forms an internal space wherein the X-ray source, the stage, and the detection device are arranged; and a partitioning section that separates the internal space into a first space wherein the X-ray source is arranged and a second space wherein the detection device is arranged.Type: ApplicationFiled: March 21, 2014Publication date: September 25, 2014Applicant: NIKON CORPORATIONInventor: Takashi WATANABE
-
Patent number: 8835878Abstract: A method of delivering radiation in a session includes delivering radiation towards a patient using a radiation system, wherein the radiation is delivered based at least in part on a physiological phase or a position of the patient, after the radiation is delivered, changing a configuration of the radiation system, wherein the act of changing the configuration is performed independent of at least one motion of the patient, and delivering additional radiation towards the patient after the configuration of the radiation system is changed, wherein the acts of delivering radiation and the act of changing the configuration are performed in response to a processor executing a treatment plan that prescribes a plurality of packages and a transition, the transition prescribing the act of changing the configuration of the radiation system when no radiation is being delivered by the radiation system.Type: GrantFiled: September 27, 2012Date of Patent: September 16, 2014Assignee: Varian Medical Systems International AGInventors: Janne Nord, Jarkko Peltola
-
Patent number: 8824630Abstract: A computing system determines a full motion range of a target, wherein the full motion range of the target defines an internal target volume (ITV). The computing system identifies a partial motion range of the target, wherein the partial motion range is a subset of the full motion range of the target. The computing system generates a partial-ITV based on the identified partial motion range, wherein the partial-ITV is a volume swept by the target as the target moves through the partial motion range, the partial-ITV being smaller than the ITV. The computing system generates a treatment plan to deliver treatment to the partial-ITV.Type: GrantFiled: October 25, 2011Date of Patent: September 2, 2014Assignee: Accuray IncorporatedInventors: Calvin R. Maurer, Jr., Jay B. West
-
Patent number: 8804911Abstract: Isotope identification imaging of nuclear fuel material or explosives concealed in a drum or container in which nuclear reactor fuel or radioactive waste are sealed is realized while ensuring high precision, high reliability, and safety. A sample 31 is irradiated with laser Compton photon beams 21 and 22 generated by a collision between an electron beam 12 and polarized laser light 16 and 20. An isotope in the sample is identified using nuclear resonance fluorescence, and the spatial distribution thereof is imaged. In so doing, a nuclear level of an isotope whose emission direction of nuclear resonance fluorescence is dependent on the planes of polarization of the incident LCS photon beams is used.Type: GrantFiled: March 4, 2010Date of Patent: August 12, 2014Assignees: National Institute of Advanced Industrial Science and Technology, Japan Atomic Energy Agency, Kyoto UniversityInventors: Hiroyuki Toyokawa, Ryoichi Hajima, Takehito Hayakawa, Toshiyuki Shizuma, Nobuhiro Kikuzawa, Hideaki Ohgaki
-
Patent number: 8798234Abstract: We provide a radiotherapy apparatus including a source of therapeutic radiation, a source of imaging radiation having an energy level less than that of the therapeutic radiation, a detector for radiation lying within the field of both the therapeutic radiation and the imaging radiation and able to image both, a first imaging circuit supplied with the output of the detector, a second imaging circuit also supplied with the output of the detector, a first pulse trigger circuit adapted to trigger the source of therapeutic radiation to produce a pulse of therapeutic radiation and to trigger the first imaging circuit to capture an output of the detector; and a second pulse trigger circuit adapted to trigger the source of imaging radiation to produce a pulse of imaging radiation and to trigger the second imaging circuit to capture an output of the detector.Type: GrantFiled: March 30, 2012Date of Patent: August 5, 2014Assignee: Elekta AB (Publ)Inventor: â„«ke Claesson
-
Patent number: 8787524Abstract: Radiosurgery systems are described that are configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, and in some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a fiducial marker is used to identify the location of the target tissues.Type: GrantFiled: November 6, 2012Date of Patent: July 22, 2014Assignee: Oraya Therapeutics, Inc.Inventors: Michael Gertner, Steven D. Hansen
-
Path planning and collision avoidance for movement of instruments in a radiation therapy environment
Patent number: 8750453Abstract: Apparatus and methods for therapy delivery are disclosed. In one embodiment, a therapy delivery system includes a plurality of movable components including a radiation therapy nozzle and a patient pod for holding a patient, a patient registration module for determining a desired position of at least one of the plurality of movable components, and a motion control module for coordinating the movement of the least one of the plurality of movable components from a current position to the desired position. The motion control module includes a path planning module for simulating at least one projected trajectory of movement of the least one of the plurality of moveable components from the current position to the desired position.Type: GrantFiled: April 13, 2012Date of Patent: June 10, 2014Assignee: Loma Linda University Medical CenterInventors: Chieh C. Cheng, David A. Lesyna, Michael F. Moyers -
Patent number: 8718231Abstract: The invention comprises an X-ray tomography method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. In various embodiments, 3-D images are generated from a series of 2-D X-rays images; the X-ray source and detector are stationary while the patient rotates; the 2-D X-ray images are generated using an X-ray source proximate a charged particle beam in a charged particle cancer therapy system; and the X-ray tomography system uses an electron source having a geometry that enhances an electron source lifetime, where the electron source is used in generation of X-rays. The X-ray tomography system is optionally used in conjunction with systems used to both move and constrain movement of the patient, such as semi-vertical, sitting, or laying positioning systems. The X-ray images are optionally used in control of a charged particle cancer therapy system.Type: GrantFiled: February 16, 2012Date of Patent: May 6, 2014Inventor: Vladimir Balakin
-
Patent number: 8712012Abstract: One or more techniques and/or systems described herein provide for examining an object (e.g., a tumor in a patient) and subsequently treating the object. The examination and treatment generally occur very close to one another in time, with the patient remaining on a support article (e.g., on a bed or in a chair) during both the examination and the treatment. In this way, a position of the tumor and/or orientation of the tumor relative to the patient is substantially fixed during both the examination and the treatment. In one embodiment, a support article is configured to rotate during the examination and/or treatment. In this way, the object can be examined (e.g., and volumetric data related to the object can be acquired) and/or treated without moving portions of the imaging and/or treatment apparatus, for example.Type: GrantFiled: June 28, 2011Date of Patent: April 29, 2014Assignee: Analogic CorporationInventor: John P. O'Connor
-
Patent number: 8705689Abstract: According to the present invention, improved methods and apparatus are provided for providing cushioning and other ergonomic surfaces on devices requiring the patient or tissue to be compressed, such as radiography machines, fluoroscopy units, mammography units and the like. In particular a radiolucent pad element is provided for releasable attachment to at least one surface of a compression device to be used under x-ray, for example, during mammography. The pad element of the present invention can be disposable or constructed to be reusable and in some cases may be applied directly to the patient's breast. Furthermore, a cushioned paddle is provided wherein the compression paddle and the cushion can be separately or integrally formed.Type: GrantFiled: January 16, 2012Date of Patent: April 22, 2014Assignee: BioLucent, LLCInventors: Gail Lebovic, George D. Hermann, David Willis, Thomas A. Howell
-
Patent number: 8627822Abstract: The invention comprises a semi-vertical patient positioning, alignment, and/or control method and apparatus used in conjunction with charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.Type: GrantFiled: June 28, 2009Date of Patent: January 14, 2014Inventor: Vladimir Balakin
-
Patent number: 8611497Abstract: A portable orthovoltage radiotherapy system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system.Type: GrantFiled: November 14, 2011Date of Patent: December 17, 2013Assignee: Oraya Therapeutics, Inc.Inventor: Michael Gertner
-
Patent number: 8588369Abstract: A patient support system includes a patient support having a surface for supporting a patient and a longitudinal axis, and a positioner coupled to the patient support for positioning the patient support, wherein the positioner is configured to move the patient support along a path that has an arc, circular, or zig-zag shape, and wherein the path lies within a plane that forms an angle with the surface of the patient support.Type: GrantFiled: July 3, 2010Date of Patent: November 19, 2013Assignee: Varian Medical Systems, Inc.Inventors: John G. Van Heteren, Janne Nord, Jarkko Peltola
-
Patent number: 8569720Abstract: A patient alignment system for a radiation therapy system. The alignment system includes multiple external measurement devices which obtain position measurements of components of the radiation therapy system which are movable and/or are subject to flex or other positional variations. The alignment system employs the external measurements to provide corrective positioning feedback to more precisely register the patient and align them with a radiation beam. The alignment system can be provided as an integral part of a radiation therapy system or can be added as an upgrade to existing radiation therapy systems.Type: GrantFiled: August 24, 2012Date of Patent: October 29, 2013Assignee: Loma Linda University Medical CenterInventors: Nickolas S. Rigney, Daniel C. Anderson, David A. Lesyna, Daniel W. Miller, Michael F. Moyers, Chieh C. Cheng, Michael A. Baumann
-
Patent number: 8571289Abstract: A 2D mammogram image is synthesized from at least one of tomosynthesis projection images and/or the tomosynthesis reconstructed image data. In a simplest form, the mammogram may be synthesized by selecting one of the tomosynthesis projection images for display as a synthesized mammogram. Other methods of synthesizing a mammogram include re-projecting and filtering projection data and/or reconstructed data. The synthesized mammogram is advantageously displayed together with at least a portion of the reconstructed data to aid in review of the reconstructed data. The present invention thus provides a familiar image which may be used to facilitate review of a tomosynthesis data set.Type: GrantFiled: May 26, 2009Date of Patent: October 29, 2013Assignee: Hologic, Inc.Inventors: Chris Ruth, Andrew Smith, Jay Stein
-
Patent number: 8550711Abstract: Lesion positioner systems and, which perform positioning of a lesion A by moving a top board for allowing a subject to be placed thereon, set an isocenter of a diagnostic 3D imaging unit as a virtual isocenter at the time when a treatment table is in a 3D imaging diagnosis position, and positions the lesion A to the virtual isocenter, based on a three-dimensional diagnostic image in consideration of particle beam therapy. A treatment table moving mechanism moves the treatment table to the treatment position relative to the particle beam therapy system while maintaining states of the top board and the lesion positioner systems and at the time of positioning, thereby positioning the lesion A to the isocenter of the particle beam therapy system.Type: GrantFiled: June 18, 2008Date of Patent: October 8, 2013Assignee: Mitsubishi Electric CorporationInventors: Hironori Maeda, Hiroshi Otani
-
Patent number: 8462912Abstract: An operation room may comprise both an object scanning apparatus for examining an object using x-ray radiation and an irradiation component for treating an object using particle radiation. A support article upon which the object may reside during (both) the examination and treatment may be configured to rotate about an axis substantially perpendicular to a plane through which x-ray radiation travels, may be configured to tilt with respect to the axis, and/or may be configured to yaw with respect to the axis. In this way, the relative orientation of the support article and the object remain substantially constant during the examination and treatment to facilitate treating a desired area of the object.Type: GrantFiled: August 31, 2009Date of Patent: June 11, 2013Assignee: Analogic CorporationInventors: John P. O'Connor, Charles Shaughnessy
-
Patent number: 8457279Abstract: A patient positioning assembly is described. The patient positioning assembly including a plate member rotatably mounted on a base member, and an arm extending between a first end and a second end, wherein the first end is rotatably attached to the plate member. The patient positioning assembly further including a support device rotatably attached to the second end of the arm to support a patient thereon, with the support device is configured to move the patient in at least five degrees of freedom.Type: GrantFiled: June 3, 2010Date of Patent: June 4, 2013Assignee: Accuray IncorporatedInventors: Michael Saracen, James Wang, Euan Thomson, Eric Earnst, Chris Raanes, Mohan Bodduluri
-
Patent number: 8421041Abstract: The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.Type: GrantFiled: April 26, 2012Date of Patent: April 16, 2013Inventor: Vladimir Balakin
-
Patent number: 8389965Abstract: For quarantine treatment of a farming and forestry product for pest control, a method and a device may irradiate logs as a phytosanitary treatment with electron beams. The method may include: spreading the logs; aligning the spread logs to be flush at one end; conveying the spread and flush logs laterally; conveying the logs longitudinally through an irradiation field formed by accelerators to provide treatment of irradiation with the electron beams; throwing the irradiated logs out; and laterally conveying the logs away. The device may include a conveying device for conveying the logs, a shielding structure surrounding the conveying device, and accelerators provided in the conveying path of the conveying device. Two or more accelerators may be provided in centrosymmetry about the conveying path.Type: GrantFiled: April 11, 2008Date of Patent: March 5, 2013Assignees: Tsinghua University, Nuctech Company LimitedInventors: Kejun Kang, Haifeng Hu, Chuanxiang Tang, Yuanjing Li, Qitian Miao, Huayi Zhang, Junli Li, Zhiqiang Chen, Ming Hu, Ming Huang, Yaohong Liu, Wanlong Wu, Hui Zhang, Shenjin Ming
-
Patent number: 8368038Abstract: The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.Type: GrantFiled: September 1, 2009Date of Patent: February 5, 2013Inventor: Vladimir Balakin
-
Patent number: 8351573Abstract: A device is provided for positioning a target volume, such as a phantom or a patient, in a radiation therapy apparatus. The apparatus directs a radiation beam towards the target. The apparatus can include a target support whereon the target is immobilized, a two dimensional radiation detector fixed with fixations means in a known geometric relationship to the target support, the radiation detector being capable of detecting the position of intersection of the radiation beam with the detector, and correcting means for correcting the relative position of the beam and the target support, based on the detected intersection position.Type: GrantFiled: December 6, 2010Date of Patent: January 8, 2013Assignee: Ion Beam Applications S.A.Inventors: Yves Jongen, Rudi Labarbe
-
Patent number: 8345821Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.Type: GrantFiled: October 8, 2010Date of Patent: January 1, 2013Assignee: CyberHeart, Inc.Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
-
Patent number: 8340742Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.Type: GrantFiled: July 25, 2005Date of Patent: December 25, 2012Assignee: Varian Medical Systems, Inc.Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy