Optical Fiber Waveguide With Cladding Patents (Class 385/123)
  • Patent number: 10267984
    Abstract: The refractive index of the inner core part 11 in a region in contact with the boundary of the outer core part 12 is higher than the refractive index of the outer core part 12. The refractive index of the outer core part 12 is gradually decreased from the inner circumferential side to the outer circumferential side. The refractive index of the inner cladding part 21 is equal to the refractive index of the outermost circumferential part of the outer core part 12 and not greater than the refractive index of the outer cladding part 22.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 23, 2019
    Assignee: FUJIKURA LTD.
    Inventors: Sho Endo, Takayuki Kitamura
  • Patent number: 10261246
    Abstract: A higher-order mode (HOM) fiber is configured as a polarization-maintaining fiber by including a pair of stress rods at a location within the cladding layer that provides for a sufficient degree of birefringence without unduly comprising the spatial mode profile of the propagating higher-order modes. Long-period gratings are used as mode couplers at the input and output of the PM-HOM fiber, where the gratings are formed by exposing areas of the core region orthogonal to the position of the stress rods. The diameter of the stress rods (D) and displacement of the rods from the center of the core region (R1) are controlled to yield a configuration with an acceptable birefringence and polarization extinction ratio (PER) within the HOM fiber, even in situations where the fiber is bent (a bend radius less than 50 cm).
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Raja A Ahmad, Man F Yan, David J DiGiovanni
  • Patent number: 10254198
    Abstract: Certain aspects of the present disclosure generally relate to an optical reference element having a wavelength spectrum comprising a plurality of wavelength functions having wavelength peaks spaced over a range of wavelengths, wherein adjacent wavelength functions are due to two orthogonal birefringence axes in the optical reference element. Aspects of the present disclosure may eliminate the drift issues associated with residual polarization and polarization dependent loss (PDL) with respect to grating-based sensor and reference element measurements.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: April 9, 2019
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventor: Domino Taverner
  • Patent number: 10251711
    Abstract: Optical probes for port-based corridor surgery are provided, including a device comprising: a surgical tool mounting adaptor configured for mounting to a surgical tool; an optical probe attached to the surgical tool mounting adaptor, the optical probe comprising: an optical interface end; an optical output end, distal the optical interface end, the optical output end comprising illumination optics and collection optics, the illumination optics configured to illuminate tissue proximal the optical output end, the collection optics configured to collect an optical signal from the tissue; one or more illumination optical fibers configured to convey illumination light from the optical interface end to the illumination optics; and, one or more collection optical fibers configured to convey the optical signal collected by the collection optics to the optical interface end.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: April 9, 2019
    Inventors: Michael Frank Gunter Wood, Cameron Anthony Piron
  • Patent number: 10234637
    Abstract: A fiber optic cable and connector assembly is disclosed. In one aspect, the assembly includes a cable optical fiber, an optical fiber stub and a beam expanding fiber segment optically coupled between the cable optical fiber and the optical fiber stub. The optical fiber stub has a constant mode field diameter along its length and has a larger mode field diameter than the cable optical fiber. In another aspect, a fiber optic cable and connector assembly includes a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including an expanded beam fiber segment supported within the ferrule. The expanded beam fiber segment can be constructed such that the expanded beam fiber segment is polished first and then cleaved to an exact pitch length. The expanded beam fiber segment can be fusion spliced to a single mode optical fiber at a splice location behind the ferrule.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 19, 2019
    Assignees: CommScope Technologies LLC, CommScope Asia Holdings B.V.
    Inventors: Yu Lu, Jeroen Antonius Maria Duis, Sander Johannes Floris, Simon Petrus Andreas Bartholomeus Nouws
  • Patent number: 10234617
    Abstract: Discussed is a glass light guide plate that is used in a back light unit of a display device. Some features of the glass light guide plate for the back light unit can be improved by optimizing a relationship between a direction of a bubble inside the glass light guide plate and a light source, the sizes of the bubble and a light guide pattern, and so on, and by optimizing an arrangement density of light guide patterns in each region, a kind of light guide pattern ink (IR-curable ink), a curing condition, a refractive index, and so on to be suitable for the material of the glass light guide plate.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 19, 2019
    Assignee: LG DISPLAY CO., LTD.
    Inventors: ChangYul Moon, YoungHun Jeong, Kiyong Yang, Sehyun Park
  • Patent number: 10215914
    Abstract: A light-diffusing optical fiber having nanostructured inner and outer core regions is disclosed. The nanostructured inner core region is defined by a first configuration of voids that defines a first amount of light scattering. The outer core region is defined by a second configuration of voids that defines a second amount of light scattering that is different from the first amount of light scattering. A cladding surrounds the nanostructured core. Light scattered out of the inner core region scatters from the outer core region and then out of the cladding as scattered light. Selective bending of the light-diffusing optical fiber is used to define a bending configuration that allows for tailoring the intensity distribution of the scattered light emitted from the fiber as a function of the length of the fiber.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: February 26, 2019
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Pushkar Tandon
  • Patent number: 10197726
    Abstract: A multimode optical fiber includes a core region in having silica and an outer radius, R. A cladding of the fiber surrounds the core region and includes silica. The core region has a refractive index profile with a radially-dependent alpha. The radially-dependent alpha is given by ?(r)=f(r).
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: February 5, 2019
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li
  • Patent number: 10194987
    Abstract: The present invention relates to a laser irradiation apparatus and a laser irradiation method. The laser irradiation apparatus, according to the present invention, comprises: an optical fiber which transmits a laser and has a light emitting surface; a protecting member for covering an end portion of the optical fiber including the light emitting surface; and an indication member which is identified by an X-ray and indicates the position and/or direction of the light emitting surface.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 5, 2019
    Assignee: LUTRONIC CORPORATION
    Inventor: Kwang Chon Ko
  • Patent number: 10180375
    Abstract: Embodiments of the present invention generally relate to the field of fiber optics, and more specifically to apparatuses, methods, and/or systems associated with testing fiber optic transmitters. In an embodiment, the present invention is an apparatus comprising a laser optimized multimode fiber having near minimally compliant effective modal bandwidth, near maximum channel length, and ?-profile that produces an R-MMF DMD slope.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 15, 2019
    Assignee: Panduit Corp.
    Inventors: Jose M. Castro, Richard J. Pimpinella, Bulent Kose, Brett Lane
  • Patent number: 10175420
    Abstract: According to some embodiments an optical fiber comprising: (I) a silica based core having: an inner core region with maximum refractive index delta of the core, ?0 in % measured relative to pure SiO2?0.1%, and an outer core region with a minimum refractive index delta ?1, where ?1<?0; such that the fiber has: (i) an effective area Aeff?=1525 of LP01 mode at a wavelength ?=1525 nm such that 80 ?m2<Aeff?=1525<250 ?m2; and (ii) an effective area Aeff?=1475 of LP01 mode at wavelength ?=1450 nm such that 60 ?m2<Aeff?=1475, wherein Aeff?=1525>Aeff, ?=1475, and (Aeff?=1525?Aeff, ?=1475)/Aeff?=1525?0.07; and (II) an annular cladding surrounding the core, the cladding including: (i) a low index ring surrounding the core and having a minimum refractive index delta ?RMIN, where ?R,MIN??1; and (ii) an outer cladding with a refractive index delta ?Outer-Clad relative to pure silica, such that ?Outer-Clad>?R,MIN.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 8, 2019
    Assignee: Corning Incorporated
    Inventor: William Allen Wood
  • Patent number: 10175436
    Abstract: An optical fiber ribbon includes a plurality of optical fibers and a ribbon matrix having an inner matrix surrounding and encapsulating the optical fibers, wherein the inner matrix is the cured product of an inner matrix composition substantially free of oligomer components, and an outer matrix surrounding the inner matrix, wherein the outer matrix is the cured product of an outer matrix composition substantially free of oligomer components.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: January 8, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Michelle Dawn Fabian, Kevin Robert McCarthy
  • Patent number: 10168557
    Abstract: A two-dimensional photonic crystal formed of a square lattice of dielectric rods immersed in air, in which are inserted, in a controlled manner, defects that originate three waveguides and one resonant cavity. The cavity is formed of a ferrite cylinder with magneto-optical properties, and by two dielectric cylinders located near to the ferrite cylinder. It has the function of transmitting electromagnetic signals in a desired direction (clockwise or counterclockwise), defined by the sign of an external DC magnetic field H0.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: January 1, 2019
    Assignee: UNIVERSIDADE FEDERAL DO PARÁ—UFPA
    Inventors: Victor Dmitriev, Gianni Masaki Tanaka Portela, Leno Rodrigues Martins
  • Patent number: 10156680
    Abstract: An apparatus for use with a pulsed laser source for forming an optical grating in a target includes an adjustable telescope having an element with a negative optical power, for generation of a diverging optical beam, so that the optical beam has adjustable divergence upon exiting the telescope while focusing of light inside the telescope is avoided. A transmission diffraction grating is disposed in the optical beam exiting the telescope, for forming an optical interference pattern on the target. Optical gratings with different grating periods may be formed by adjusting the divergence of the optical beam exiting the telescope. Lack of tight focal spots inside the telescope enables use of ultrashort pulse duration, high peak intensity laser sources.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: December 18, 2018
    Assignee: National Research Council of Canada
    Inventors: Dan Grobnic, Stephen J. Mihailov, Robert B. Walker, Ping Lu, Huimin Ding, David Coulas
  • Patent number: 10155687
    Abstract: An optical fiber preform of the present embodiment comprises a core portion and a cladding each comprised of silica glass. The core portion has a first dopant region including a central axis of the core portion and a second dopant region away from the central axis. The first dopant region contains a first dopant selected from among Na, K, and their compounds, and a concentration of the first dopant is 10 atomic ppm or more but 2,000 atomic ppm or less. The second dopant region contains a second dopant reducing viscosity of the silica glass. The second dopant has, as a characteristic at a temperature of 2,000° C. to 2,300° C., a diffusion coefficient of 1×10?12 cm2/s or higher but lower than that of the first dopant, and a concentration of the second dopant region is 10 atomic ppm or more.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: December 18, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshiaki Tamura, Tetsuya Haruna, Yuki Kawaguchi
  • Patent number: 10154785
    Abstract: A system and method for fluorescence imaging of tissue in vivo and in situ, e.g., for minimally invasive diagnosis of patients. A fluorescent imaging system is provided that has a dye carrier coupled to the distal end of a probe containing a fiber optics bundle, which allows for the introduction of at least one fluorescent dye therein the dye carrier into a portion of the tissue of interest of a subject or patient when the dye carrier is selectively brought into contact with the portion of the tissue of interest. The resulting fluorescence images permit the acquisition of diagnostic information on the progression of diseases at cellular/tissue level in patients.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 18, 2018
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Frank B. Sachse, Robert Hitchcock, Chao Huang, Aditya K. Kaza
  • Patent number: 10151873
    Abstract: An optical fiber with ultra-low attenuation and bend insensitivity includes a core layer and cladding layers. The cladding layers have an inner cladding layer surrounding the core layer, a trench cladding layer surrounding the inner cladding layer, an auxiliary outer cladding layer surrounding the trench cladding layer, and an outer cladding layer surrounding the auxiliary outer cladding layer. The core layer has a radius of 3.0-3.9 ?m, and a relative refractive index difference of ?0.04% to 0.12%. The inner cladding layer has a radius of 8-14 ?m, and a relative refractive index difference of about ?0.35% to ?0.10%. The trench cladding layer has a radius of about 14-20 ?m, and a relative refractive index difference of about ?0.6% to ?0.2%. The auxiliary outer cladding layer has a radius of about 35-50 ?m, and a relative refractive index difference of about ?0.4% to ?0.15%. The outer cladding layer is a pure silicon-dioxide glass layer.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: December 11, 2018
    Assignee: YANGTZE OPTICAL FIBRE CABLE JOINT STOCK LIMITED COMPANY
    Inventors: Jihong Zhu, Lei Zhang, Shengya Long, Jun Wu, Liang Al, Ruichun Wang
  • Patent number: 10139561
    Abstract: A single-mode fiber with low loss and low bend loss is disclosed. The fiber is single mode and has a central core (10), an inner cladding (20) and an outer cladding (30). The central core (10) has a radius r1 and relative refractive index with a maximum value of ?1max and a core alpha greater than 1 and less than 10, and a Ge02 dopant concentration of greater than 1 wt. % and less than or equal to 5 wt. %. The inner cladding (20) has an outer radius r2>9 micrometers and a relative refractive index ?2 where ?2 is less then ?0.15%. The outer cladding (30) has a refractive index ?3, wherein ?1>?3>?2. The difference ?3??2>0.005%. The inner cladding includes fluorine having a concentration of greater than or equal to 0.5 wt. % and the outer cladding is updoped with respect to inner cladding.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: November 27, 2018
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 10139558
    Abstract: Provided is an optical fiber having W-shaped refractive-index distribution and in which a micro-bend loss in an actual usage waveband is reduced. The optical fiber includes a core, inner cladding that surrounds the core and has a refractive index smaller than a refractive index of the core, and outer cladding that surrounds the inner cladding and has a refractive index smaller than the refractive index of the core and larger than the refractive index of the inner cladding. When a coupling coefficient between a fundamental mode and a cladding mode is denoted by C01-CL, a coupling coefficient between the fundamental mode and a higher-order mode is denoted by C01-11, and a coupling coefficient between the higher-order mode and the cladding mode is denoted by C11-CL, Ctotal defined as Ctotal=C01-CL+C01-11C11-CL has a minimum value at a wavelength ranging between 1520 nm and 1630 nm.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 27, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuki Kawaguchi, Yoshinori Yamamoto, Masaaki Hirano
  • Patent number: 10131565
    Abstract: Preform for an optical waveguide containing a core with a non-circular geometry and at least one cladding layer, in which the dopand concentration of the cladding layer is increased compared to the dopand concentration of a preform with circular core geometry and identical NA. A method for the production of a preform for an optical fiber is provided. An optical waveguide with a nominal dopand concentration of c(eff)×F?c(nom) in at least one cladding layer is also provided.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 20, 2018
    Assignee: j-plasma GmbH
    Inventors: Ralitsa Rosenow, Roland Heinze, Jörg Kötzing, Robert Hanf, Lothar Brehm
  • Patent number: 10126504
    Abstract: A system and method for creating an anti-reflective surface structure on an optical device includes a shim including a textured pattern, wherein the shim is configured to stamp the optical device with the textured pattern, a connector configured to place the optical device in proximity to the shim and apply a force to the optical device against the shim, and a laser source configured to heat the optical device by generating and applying a laser beam to the optical device when the optical device is placed in proximity to the shim.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 13, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10114172
    Abstract: An up-taper is applied by a mode adapter to increase a signal mode area prior to tapering and combining.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 30, 2018
    Assignee: OFS FITEL, LLC
    Inventors: William R Holland, Cassandra Thalman
  • Patent number: 10107983
    Abstract: A traceable cable and method of forming the same. The cable includes at least one data transmission element, a jacket, and a side-emitting optical fiber. The side-emitting optical fiber includes a core having a first index of refraction and a cladding having a second index of refraction that is different than the first index of refraction. The cladding substantially surrounding the core and has an exterior surface with spaced apart scattering sites penetrating the exterior surface. The scattering sites are capable of scattering light so that the scattered light is emitted from the side-emitting optical fiber at discrete locations. The core also includes one or more mode coupling features capable of changing at least some low order mode light in the side-emitting optical fiber to high order mode light, thereby increasing light emitted from the scattering sites.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 23, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Robert Adam Modavis
  • Patent number: 10101160
    Abstract: One embodiment is directed towards a resonator fiber optic gyroscope (RFOG) including a resonator, one or more light sources coupled to the resonator, and resonance tracking electronics coupled to the resonator. The one or more light sources are configured to produce at least two light beams for input into the fiber coil, the at least two light beams including a first light beam at a first frequency and a second light beam at a second frequency, the first and second frequencies locked to nearby resonance modes of the resonator. The resonance tracking electronics are configured to process output light from the resonator and generate a signal therefrom, the signal indicative of a rotation rate of the resonator. The fiber coil has approximately zero total accumulated chromatic dispersion at the first frequency and the second frequency of the first light beam and the second light beam.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: October 16, 2018
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Glen A. Sanders, Lee K. Strandjord
  • Patent number: 10088424
    Abstract: A tapered optical needle includes a tapered light-transmissive needle and a surface plasmon wave transport layer. The tapered light-transmissive needle has a first tip, a bottom, and a curved surface connecting the first tip and the bottom. The surface plasmon wave transport layer is disposed on the curved surface and covers the first tip, wherein the surface plasmon wave transport layer has a curved slit structure. The curved slit structure includes a plurality of curved portions arranged from the first tip to an edge of the bottom and located between the first tip and the edge of the bottom, and extending directions of the curved portions are different to a direction from the first tip to the edge of the bottom.
    Type: Grant
    Filed: December 25, 2016
    Date of Patent: October 2, 2018
    Assignees: Industrial Technology Research Institute, National Tsing Hua University
    Inventors: Ruei-Han Jiang, Jen-You Chu, Ta-Jen Yen
  • Patent number: 10088632
    Abstract: In various embodiments, the beam parameter product and/or numerical aperture of a laser beam is adjusted utilizing a step-clad optical fiber having a central core, a first cladding, an annular core, and a second cladding.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: October 2, 2018
    Assignee: TERADIODE, INC.
    Inventors: Wang-Long Zhou, Francisco Villarreal-Saucedo, Parviz Tayebati, Bien Chann
  • Patent number: 10090958
    Abstract: A system is provided for high speed optical fiber data transmission by generating artificial wavefronts along multiple paths exhibiting spatial mutual orthogonality. Multiple independent signal streams are “structured” over a group of different propagation paths that are coherently organized by wavefront multiplexing and dc-multiplexing techniques. Therefore, signal streams with enhanced throughput and reliability may be fully recovered at destinations via embedded diagnostic signals and optimization loops. Multiple optical channels are matched with multiple orthogonal wavefronts created by a signal pre-processor. A receiving end signal post-processor dynamically aligns propagation paths via diagnostic signals and orthogonality of the propagation wavefronts electronically. The multiple optical channels are coherently bonded into a single virtual channel, thereby increasing data bandwidth while reducing interference and unwanted multi-path effects.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: October 2, 2018
    Assignee: SPATIAL DIGITAL SYSTEMS, INC.
    Inventor: Donald C. D. Chang
  • Patent number: 10054736
    Abstract: An optical fiber comprises a glass fiber and a coating resin layer covering the glass fiber, the coating resin layer having a primary resin layer and a secondary resin layer, the primary resin layer comprising a cured resin composition obtained by curing a resin composition comprising an oligomer, a monomer, and a photopolymerization initiator, wherein the oligomer is a reaction product of a polyol compound, an isocyanate compound, and a hydroxyl group-containing (meth)acrylate compound; a proportion of a primary hydroxyl group of hydroxyl groups included in the polyol compound is 3.5% or less; and a Young's modulus of the secondary resin layer at ?40° C. is 1780 MPa or more.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: August 21, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Noriaki Iwaguchi, Masuo Iida, Kentaro Okamoto, Takashi Fujii
  • Patent number: 10048437
    Abstract: A low attenuation optical fiber having a core doped with Ge is offered. The optical fiber consists of a glass part and a covering part formed around the glass part. The glass part is made of silica glass and includes: a Ge-doped center core region; an optical cladding layer formed around the center core region; and an optical cladding layer formed around the cladding layer. The relationship of ?1>?3??2 holds, where ?1, ?2, and ?3 are the relative refractive index differences of the center core region, the cladding layer, and the cladding layer 30, respectively with respect to pure silica glass. The average outer diameter of the glass part is in the range of 125±0.5 ?m in the longitudinal direction, and 3? is in the range of 0.1 ?m to 0.5 ?m, where ? is the standard deviation of the outer diameter in the longitudinal direction.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 14, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keisei Morita, Yoshinori Yamamoto
  • Patent number: 10045821
    Abstract: This invention relates to an advance in the delivery of laser beams to internal surgical sites using optical fibers with a novel distal tip design made using a fusion assembly procedure suitable for directing laser beams out of the side of an optical fiber. This side-fire fiber delivery tip assembly is fabricated by fusing a transparent tube onto the distal ends of a laser beam delivery fiber and an associated coaxial stub fiber that have beveled and parallel end faces that meet inside of the transparent tube. The result is a rugged fiber delivery tip assembly that is almost entirely solid, except for a very narrow gap between the beveled end surfaces of the two fibers. A loose fitting transparent capsule may be placed over this fiber tip to contain a refractive index matching fluid that may also serve as a cooling agent for the fiber tip assembly.
    Type: Grant
    Filed: October 30, 2016
    Date of Patent: August 14, 2018
    Inventor: Douglas Arthur Pinnow
  • Patent number: 10044504
    Abstract: Multiple bit values can be encoded on a single photon in a quantum key distribution (QKD) system using a plurality of sidebands of an optical carrier frequency. Computational and conjugate bases can be defined, and photons decoded based on a selected state from either basis. If n sidebands are available, as many as log2n bits can be encoded on a single photon. Errors in detected bit values due to selection of an incorrect basis state or other errors can be at least partially corrected by bit distillation to identity bit strings for which a transmitter and a receiver record the same values, without insecure transmission of these values.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 7, 2018
    Assignee: Los Alamos National Security, LLC
    Inventors: Jane E. Nordholt, Richard J. Hughes, Raymond T. Newell, Charles G. Peterson, Rolando D. Somma
  • Patent number: 10036905
    Abstract: A compact six-port Photonic Crystal (PhC) circulator includes a hexagonal PhC branch waveguide and six waveguide ports, wherein six PhC branch waveguides respectively correspond to the six waveguide ports, and the six waveguide ports respectively are symmetrically distributed at the periphery of PhCs. One second dielectric material column is arranged at the center of the hexagonal PhC waveguide. Six identical magneto-optical material columns respectively are arranged at first adjacent positions of the second dielectric material column. Six identical third dielectric material columns respectively are arranged at second adjacent positions of the second dielectric material column. An electromagnetic signal is inputted from any one of the waveguide ports and is outputted from the next waveguide port adjacent thereto, while the remaining waveguide ports are in a signal isolated state, thus forming unidirectional circular transmission.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 31, 2018
    Assignee: Shenzhen University
    Inventors: Zhengbiao Ouyang, Qiong Wang
  • Patent number: 10025032
    Abstract: An optical fiber alignment device includes an image-capturing device capturing images of end surfaces of two optical fibers; an image-analyzing device obtaining position coordinates of two or more cores in the end surfaces from the image captured by the image-capturing device for each of the two optical fibers; a calculation device substituting the position coordinates of the cores obtained for each of the optical fibers in a theoretical equation that represents a total sum of axial deviation losses at the time of splicing the cores to each other, the calculation device obtaining a positional relationship between the end surfaces of the optical fibers from the theoretical equation such that the total sum of the axial deviation losses becomes a minimum; and a driving device arranging the optical fibers such that the end surfaces of the optical fibers satisfy the positional relationship obtained by the calculation device.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: July 17, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Hiroki Hamaguchi, Nobuo Kuwaki
  • Patent number: 9989701
    Abstract: Methods of depositing materials to provide for efficient coupling of light from a first device to a second device are disclosed. In general, these methods include mounting one or more wafers on a rotating table that is continuously rotated under one or more source targets. A process gas can be provided and one or more of the source targets powered while the wafers are biased to deposit optical dielectric films on the one or more wafers. In some embodiments, a shadow mask can be laterally translated across the one or more wafers during deposition. In some embodiments, deposited films can have lateral and/or horizontal variation in index of refraction and/or lateral variation in thickness.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: June 5, 2018
    Assignee: DEMARAY, LLC
    Inventor: R. Ernest Demaray
  • Patent number: 9988295
    Abstract: Aspects of the embodiments are directed to systems and methods for forming an optical fiber in a low gravity environment, and an optical fiber formed in a low gravity environment. The system can include a preform holder configured to secure a preform; a heating element secured to a heating element stage and residing adjacent the preform holder; a heating element stage motor configured to move the heating element stage; a tension sensor; a spool; a spool tension motor coupled to the spool and configured to rotate the spool; and a control system communicably coupled to the heating element stage motor and the spool tension motor and configured to control the movement of the heating element stage based on a rotational speed of the spool. The optical fiber can include a fluoride composition, such ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN), and can be characterized by an insertion loss in a range from 13 dB/1000 km to 120 dB/1000 km.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: June 5, 2018
    Assignee: FOMS Inc.
    Inventors: Leo Volfson, Dmitry Starodubov
  • Patent number: 9985725
    Abstract: Embodiments herein relate to a method in a network unit for monitoring a fiber line between a radio base station and a radio head in a Fiber to the Radio Head communications network. The Fiber to the Radio Head communications network comprises a ring architecture or a tree architecture of fiber, with Subcarrier Multiplexing, SCM, downstream transmissions and Wavelength Division Multiplexing, WDM, upstream transmissions. The monitoring comprises that the network unit detects an indication of a fault along the fiber line based on monitoring power. The network unit initiates, in response to detect the indication, an Optical×Domain Reflectometry, O×DR, measurement over the fiber line. Additionally, the network unit analyses a trace from the O×DR measurement for localizing the fault or for deciding that the indicated fault is not a fault along the fiber line.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 29, 2018
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Gemma Vall-Llosera, Boris Dortschy, Patryk Urban
  • Patent number: 9977182
    Abstract: The present invention generally relates to the field of fiber optics, and more specifically to optical fibers, methods of manufacturing optical fibers, and methods of classifying optical fibers. In an embodiment, the present invention is a multimode optical fiber which comprises a core and clad material system where the refractive indices of the core and cladding are selected to minimize chromatic dispersion in the 850 nm wavelength window and the refractive index profile is optimized for minimum modal-chromatic dispersion in channels utilizing VCSEL transceivers. Multimode optical fibers according to this embodiment may have increased channel bandwidth.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: May 22, 2018
    Assignee: Panduit Corp.
    Inventors: Richard J. Pimpinella, Jose M. Castro, Brett Lane, Bulent Kose
  • Patent number: 9977183
    Abstract: The present embodiment relates to an optical fiber having a W-type refractive index d profile or a trench-type refractive index profile and having reduced microbending loss in a wavelength band to be actually used. The optical fiber includes a center core, an inner cladding surrounding the center core, and an outer cladding surrounding the inner cladding. The inner cladding has a refractive index lower than a refractive index of at least the center core and the outer cladding has a refractive index lower than the refractive index of the center core and higher than the refractive index of the inner cladding. Wavelength dependency of microbending loss has a local maximal value and a shortest wavelength ?th where the microbending loss becomes 10% of the local maximal value is longer than 1560 nm.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: May 22, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuki Kawaguchi, Yoshinori Yamamoto, Masaaki Hirano
  • Patent number: 9971087
    Abstract: A hollow core fiber has a cladding comprising a matrix of cells, wherein each cell comprises a hole and a wall surrounding the hole. The fiber further has a hollow core region comprising a core gap in the matrix of cells, wherein the core gap spans a plurality of cells and has a boundary defined by the interface of the core gap. The matrix of cells comprises a plurality of lattice cells, and a plurality of defect cells characterised by at least one difference in at least one property from that of the lattice cells. The cells at the core region boundary include lattice cells and defect cells that are arranged in a pattern so as to produce birefringence in a light propagating through the hollow core fiber. Further described is a technique for making the fiber.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: May 15, 2018
    Assignee: OFS FITEL, LLC
    Inventors: David J Digiovanni, John M Fini, Robert S Windeler
  • Patent number: 9964701
    Abstract: A method of making a multi-mode optical fiber that includes: depositing a porous germania-doped silica soot to form a germania-doped porous soot preform; depositing a porous silica layer over the porous soot preform; doping the porous soot preform and the porous silica layer with a fluorine dopant to form a co-doped soot preform having a core region and a fluorine-doped trench region; consolidating the co-doped soot preform to form a sintered glass, co-doped core preform having a refractive index alpha profile between 1.9 and 2.2 measured at 850 nm; depositing a cladding comprising silica over the sintered glass, co-doped preform to form a multi-mode optical fiber preform; drawing the optical fiber preform into a multi-mode optical fiber.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 8, 2018
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 9956642
    Abstract: A novel copper and steel composite pipe, a manufacturing method, application and a welded structure body is described herein. The novel copper and steel composite pipe includes a copper pipe and a steel pipe. The steel pipe includes a first end, a second end and a middle part. The copper pipe includes a first end and a second end. The length of the copper pipe is less than that of the steel pipe. The copper pipe and the steel pipe are sleeved. The distance from an end surface of the first end of the copper pipe to an end surface of the first end of the steel pipe is less than 10 mm. The second end of the copper pipe is positioned at the middle part of the steel pipe, and the copper pipe and the steel pipe are welded and connected in a way of melting base materials.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: May 1, 2018
    Assignee: Zhuji Sibeida Machinery Co., Ltd.
    Inventor: Yongbo Shi
  • Patent number: 9941656
    Abstract: A double-clad (DC) polarization-maintaining (PM) optical fiber comprises a core, an inner cladding, an outer cladding, and stress rods. The core has a core refractive index (ncore). The inner cladding is located radially exterior to the core and has an inner cladding refractive index (n1), which is less than ncore. The stress rods are located in the inner cladding, and each stress rod has a stress rod refractive index (n2), which is substantially matched to n1. The outer cladding is located radially exterior to the inner cladding. The outer cladding has an outer cladding refractive index (nout), which is less than n1.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: April 10, 2018
    Assignee: OFS FITEL, LLC
    Inventor: David J DiGiovanni
  • Patent number: 9904822
    Abstract: A non-contact card reader is provided, including: an antenna module, a spacer, multiple light pipes, and a panel housing. The antenna module includes a first board, a second board, an antenna, and multiple light-emitting components. The second board includes a surrounding area in which the antenna is disposed and a central area that is located at a center of the surrounding area and in which the multiple light-emitting components are disposed. The spacer is combined with the multiple light pipes and disposed between the first board and the second board. A single type of antenna module may be installed in the vertical housing, the horizontal housing, or the square housing of the panel housing in a fixed direction, thereby improving applicability of the antenna module.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 27, 2018
    Assignee: UNIFORM INDUSTRIAL CORP.
    Inventors: Yu-Tsung Chen, Chun-Yin Wu
  • Patent number: 9904013
    Abstract: A light guide for industrial, medical, or cosmetic applications is provided, having an outer circumferential surface and at least one end face made of glass, with an optical element made of at least one transparent plastic directly molded to the end face of glass by molding or reactive injection molding, so that the electromagnetic radiation guided in the light guide when in its operational state is directed through the end face of glass into the transparent plastic of the optical element and exits therefrom.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 27, 2018
    Assignee: Schott AG
    Inventors: Bernd Schultheis, Thomas Weingärtner, Holger Werner
  • Patent number: 9885830
    Abstract: A semiconductor waveguide optical device and a method of manufacturing of a semiconductor optical device are disclosed. The semiconductor waveguide optical device may include a gradient index waveguide for mode conversion and/or vertical translation of optical modes of step-index waveguides, which may be disposed on or over a same substrate as the gradient index waveguide. The gradient index waveguide may be epitaxially grown.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: February 6, 2018
    Assignee: Lumentum Operations LLC
    Inventors: John M. Heaton, Oleg Bouevitch
  • Patent number: 9874687
    Abstract: A single-mode fiber with an ultra-low attenuation and a large effective area includes a core layer having a radius of 4.8 to 6.5 and a relative refractive index difference ?n1 of ?0.06% to 0.10%, and cladding layers. The cladding layers includes an inner cladding layer surrounding the core layer, a trench cladding layer surrounding the inner cladding layer, an auxiliary outer cladding layer surrounding the trench cladding layer, and an outer cladding layer surrounding the auxiliary cladding layer. The inner cladding layer has a radius of 9 to 15 ?m and a relative refractive index difference of ?0.40% to ?0.15%. The trench cladding layer has a radius of 12 to 17 ?m and a relative refractive index difference of ?0.8% to ?0.3%. The auxiliary outer cladding layer has a radius of 37 to 50 ?m and a relative refractive index difference of ?0.6% to ?0.25%. The outer cladding layer is a pure-silicon-dioxide glass layer.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: January 23, 2018
    Assignee: YANGTZE OPTICAL FIBRE AND CABLE JOINT STOCK LIMITED COMPANY
    Inventors: Shengya Long, Lei Zhang, Jihong Zhu, Jun Wu, Ruichun Wang
  • Patent number: 9874317
    Abstract: An SSL lighting device (1) comprising a housing (2), which has a reflective inner surface (3), and an elongated light guide (6) which includes a wavelength converting material (10) for converting light in a first wavelength range to light in a second wavelength range. The elongated light guide (6) comprises two ends (7a, 7b), a portion for receiving light (18) and a portion for emitting light (19). The portion for receiving light (18) is arranged inside the housing (2) and the portion for emitting light (19) is arranged outside the housing (2) and at least one of the two ends (7a, 7b) forms the portion (19) for emitting light. The SSL lighting device (1) also comprises a plurality of SSL light sources (4) arranged inside the housing (2) at a distance from the elongated light guide (6).
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: January 23, 2018
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Durandus Kornelius Dijken, Rifat Ata Mustafa Hikmet, Leendert Van Der Tempel, Ties Van Bommel
  • Patent number: 9871338
    Abstract: Disclosed herein is a fiber pump combiner, comprising, a multi-clad fiber comprising an outer cladding layer and an inner cladding layer, a plurality of tapered trenches formed in the inner cladding layer and a plurality of pump fibers, wherein the plurality of pump fibers are tapered and fused into corresponding ones of the plurality of tapered trenches.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: January 16, 2018
    Assignee: nLIGHT, Inc.
    Inventor: Raymond Kirk Price
  • Patent number: 9829647
    Abstract: A fiber optic cable and connector assembly is disclosed. In one aspect, the assembly includes a cable optical fiber, an optical fiber stub and a beam expanding fiber segment optically coupled between the cable optical fiber and the optical fiber stub. The optical fiber stub has a constant mode field diameter along its length and has a larger mode field diameter than the cable optical fiber. In another aspect, a fiber optic cable and connector assembly includes a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including an expanded beam fiber segment supported within the ferrule. The expanded beam fiber segment can be constructed such that the expanded beam fiber segment is polished first and then cleaved to an exact pitch length. The expanded beam fiber segment can be fusion spliced to a single mode optical fiber at a splice location behind the ferrule.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 28, 2017
    Assignees: CommScope Technologies LLC, CommScope Asia Holdings B.V.
    Inventors: Yu Lu, Jeroen Antonius Maria Duis, Sander Johannes Floris, Simon Petrus Andreas Bartholomeus Nouws
  • Patent number: 9817183
    Abstract: No core is disposed at the lattice point of a triangular lattice of a first layer LY1. First cores 11a and 11b of the core elements 10a and 10b are disposed at the lattice points of a second layer LY2. A first core 11c of the core element 10c and the second core 21 are alternately disposed at the lattice points of a third layer LY3. In a fourth layer LY4, no core is disposed at six lattice points, and the first cores 11a and 11b of the core elements 10a and 10b are disposed at the other lattice points. The second cores 21 are adjacent to the lattice points of the fourth layer LY4, at which no core is disposed. The effective refractive indexes of the core elements adjacent to each other are different from each other.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 14, 2017
    Assignees: FUJIKURA LTD., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Yoshimichi Amma, Katsuhiro Takenaga, Yusuke Sasaki, Kunimasa Saitoh