Multilayer Structure (mixture) Patents (Class 385/131)
  • Publication number: 20100270481
    Abstract: Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning resonant wavelengths of an optical resonator. Some embodiments of the disclosed subject matter provide systems, devices, and methods for tuning dispersion properties of photonic crystal waveguides. In some embodiments, methods for tuning a resonant wavelength of an optical resonator are provided, the methods including: providing an optical resonator having a surface; determining an initial resonant wavelength emitted by the optical resonator in response to an electromagnetic radiation input; determining a number of layers of dielectric material based on a difference between the initial resonant wavelength and a target resonant wavelength and a predetermined tuning characteristic; and applying the determined number of layers of dielectric material to the surface of the optical resonator to tune the initial resonant wavelength to a tuned resonant wavelength.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 28, 2010
    Applicant: Columbia University
    Inventors: Chee Wei Wong, Xiaodong Yang, Charlton Chen, Chad Husko
  • Patent number: 7817879
    Abstract: An optical waveguide device including a dielectric substrate and a folded waveguide formed on the substrate, including a first waveguide and a second waveguide, one part of the first waveguide being connected to one end of the second waveguide at a first coupling portion, the other end of the second waveguide connected to another part of the first waveguide at a second coupling portion, the first waveguide being straight or curved with a radius of curvature larger than or equal to a first curvature radius, and the second waveguide being straight or curved with a radius of curvature smaller than the first curvature radius. An outer groove is formed on the substrate along an outer peripheral of the folded waveguide, an input-side inner groove is formed on the substrate near a first coupling portion, and an output-side inner groove is formed on the substrate near a second coupling portion.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: October 19, 2010
    Assignee: Fujitsu Limited
    Inventor: Masaki Sugiyama
  • Patent number: 7817886
    Abstract: An optical waveguide for a touch panel which eliminates the need for alignment between the optical waveguide and a lens device, and a touch panel using the same. An end portion of a light-emitting core for emitting light beams and an end portion of a light-receiving core for receiving emitted light beams are formed as first and third lens portions so as to protrude from edge portions of an over cladding layer and to be exposed to outside air. The first and third lens portions have lens surfaces which bulge outwardly. The over cladding layer includes second and fourth lens portions formed as extensions of the over cladding layer and corresponding to the first and third lens portions, with the second and fourth lens portions spaced apart from the lens surfaces of the first and third lens portions. The second and fourth lens portions have lens surfaces which bulge outwardly.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 19, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Noriyuki Juni
  • Patent number: 7817896
    Abstract: Planar waveguides having quantum dots and methods of manufacture of the planar waveguide are described.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 19, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Sabyasachi Sen
  • Publication number: 20100260462
    Abstract: A method for making a waveguide comprises (a) providing a waveguide structure comprising a substrate (22), a lower cladding (20) layer on the substrate, and a core layer (24) comprising silicon nitride, amorphous silicon, or amorphous silicon-germanium alloy on the lower cladding layer; (b) patterning the core layer; and (c) annealing (28) the waveguide structure.
    Type: Application
    Filed: November 21, 2008
    Publication date: October 14, 2010
    Inventors: Jun-Ying Zhang, Terry L. Smith, Barry J. Koch, Yasha Yi
  • Publication number: 20100260228
    Abstract: A method of producing a three-dimensional photonic crystal by laminating a layer having a periodic structure, the method including the steps of forming a first structure and a second structure each including the layer having the periodic structure; and bonding a first bonding layer of the first structure and a second bonding layer of the second structure. The first bonding layer is one layer obtained by dividing a layer constituting the three-dimensional photonic crystal at a cross section perpendicular to a lamination direction, and the second bonding layer is the other layer obtained by dividing the layer constituting the three-dimensional photonic crystal at the cross section perpendicular to the lamination direction.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 14, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Aihiko Numata, Hikaru Hoshi, Kenji Tamamori
  • Publication number: 20100255461
    Abstract: The present invention relates to a method for manufacture a body from a thermoplastic plastic with a three-dimensionally structured surface, wherein molding is performed directly from a master made of glass coated with metal oxide, without deposition of further coatings on a surface of the master. The invention also relates to bodies manufactured with this method from a thermoplastic featuring a three-dimensionally structured surface, as well as to planar optical structures likewise manufactured with this method for generating evanescent-field measuring platforms and to a use thereof.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Inventors: Tilo CALLENBACH, Max Gmür, Heinz Lüthi, Martin Andreas Bopp, Michael Pawlak, Markus Ehrat
  • Patent number: 7805826
    Abstract: A method for fabricating a nanometer slot waveguide comprises applying a spacer layer to a first waveguide structure, wherein the first waveguide structure includes a waveguide layer and a substrate layer and the waveguide layer has a refractive index greater than the substrate layer. A second waveguide structure is applied to the spacer layer, wherein the second waveguide structure includes a waveguide layer and a substrate layer, and the waveguide layer has a refractive index greater than the substrate layer. The substrate layer of the second waveguide structure is removed to create an intermediate waveguide structure and portions of the intermediate waveguide structure are removed to create a nanometer slot waveguide structure.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: October 5, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Sean Spillane
  • Patent number: 7805036
    Abstract: An optical waveguide device for a touch panel, including: a body; a plurality of cores formed on a surface of the body; and an over-cladding layer formed on the surface of the body to cover the plurality of cores, in which the over-cladding layer includes an end portion which covers each of the end surfaces of the cores, and the end portion of the over-cladding layer is formed as a lens portion. The lens portion includes a surface formed as an arcuately curved surface in side view which bulges outwardly, in which a distance (L) from the end surface of the cores to the center of curvature of the arcuately curved surface and the radius (R) of curvature of the arcuately curved surface satisfy the following condition (a): (L/2)?0.3<R<(L/2)+0.3??(a) where L in mm, and R in mm.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 28, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Noriyuki Juni
  • Patent number: 7801399
    Abstract: Parallel-aligned core layers are formed by patterning a core sheet laminated on a base plate, and a clad/core bonded body is formed by laminating a cladding sheet. The base plate is peeled from one surface of the clad/core bonded body and a dicing tape is pasted on the other surface of the clad/core bonded body. An inclined surface is formed by bevel-cutting both end portions of the core layers. Clad/core bonded pieces are formed by straight-cutting the cladding sheet between core layers and on an outside of outermost core layers. A mask is disposed on the clad/core bonded pieces, and then a metal film is formed on the inclined surface. The clad/core bonded pieces are separated individually by peeling the pieces from the dicing tape after the mask is removed. The clad/core bonded piece is brought into contact with the liquid adhesive coated on a circuit substrate and aligned thereon. Then, the liquid adhesive is cured.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: September 21, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kazunao Yamamoto
  • Patent number: 7794561
    Abstract: Printed circuit boards that include optical interconnects include a flexible optical waveguide embedded or locally attached to the board having at least one end mechanically decoupled from the board during fabrication that can be fitted with a mechanical connector. Also disclosed are processes for fabricating the circuit board.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Tobias P. Lamprecht, Roger F. Dangel, Folkert Horst
  • Patent number: 7796660
    Abstract: The three-dimensional photonic crystal light emitting device includes a three-dimensional photonic crystal, and a defect forming a resonator in the three-dimensional photonic crystal. In the three-dimensional photonic crystal, an N-cladding layer formed of an N-type semiconductor, an active layer disposed inside the resonator, a P-cladding layer formed of a P-type semiconductor, a tunnel junction layer, and a first N-conductive layer formed of a first N-type conductor are arranged in this order. Electric conductivity of the first N-type conductor is higher than that of the P-type semiconductor. The light emitting device achieves high carrier injection efficiency and a high optical confinement effect.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: September 14, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aihiko Numata, Kazuya Nobayashi
  • Patent number: 7791033
    Abstract: An imaging system is based on in-line x-ray optics arranged in combination with an X-ray detector to detect radiation from radio-labeled substances within an object to be imaged. This arrangement will provide a nuclear imaging device with potentially orders of magnitude higher resolution and efficiency and it will moreover be relatively easy to align and to produce and assemble in large quantities.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: September 7, 2010
    Inventor: Mats Danielsson
  • Patent number: 7792402
    Abstract: An apparatus comprises an optical waveguide, a grating for coupling light into the waveguide, and an optical element for splitting a light beam into a plurality of beams that strike the grating at different angles of incidence.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: September 7, 2010
    Assignee: Seagate Technology LLC
    Inventor: Chubing Peng
  • Patent number: 7787736
    Abstract: The present invention relates to a semiconductor optoelectronic waveguide having a nin-type hetero structure which is able to stably operate an optical modulator. On the upper and lower surfaces of the core layer determined for the structure so that electro-optical effects are effectively exerted at an operating light wavelength and are provided with intermediate clad layers having a band gap which is greater than that of the core layer 11. Respectively on the upper and the lower surface of the intermediate clad layer are provided the clad layers having the band gap which is greater than those of the intermediate clad layers. On the upper surface of the clad layer are sequentially laminated a p-type layer and an n-type layer. In the applied voltage range used under an operating state, a whole region of the p-type layer and a part or a whole region of the n-type layer are depleted.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: August 31, 2010
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Tadao Ishibashi, Seigo Ando, Ken Tsuzuki
  • Patent number: 7787735
    Abstract: There is disclosed a waveguide structure that propagates surface plasmon waves, comprising: a quantum well structure, disposed on a semiconductor substrate; wherein the quantum well structure has a quantum well layer, in turn having an intersecting region that intersects a hypothetical plane substantially orthogonal to an alignment direction of the quantum well structure with respect to the semiconductor substrate, and a real part of a dielectric constant of the quantum well structure is negative for THz waves of a predetermined wavelength.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 31, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hiroyasu Fujiwara, Masamichi Yamanishi, Akira Higuchi, Kazutoshi Nakajima
  • Patent number: 7787734
    Abstract: A photonic crystal is configured with wavelength converting material to act as a concentrator for electromagnetic energy. The concentrator may also be configured with energy conversion devices to convert the electromagnetic energy into another form of energy.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 31, 2010
    Inventor: Roderick A. Hyde
  • Patent number: 7787718
    Abstract: A suspension board with circuit includes a metal supporting board including a board trench portion, an insulating base layer formed on a surface of the metal supporting board, a conductive pattern formed on a surface of the insulating base layer, and an optical waveguide provided to overlap the board trench portion when projected in a thickness direction of the metal supporting board. At least a part of the optical waveguide is positioned closer to the conductive pattern than to a back surface of the metal supporting board.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 31, 2010
    Assignee: Nitto Denko Corporation
    Inventors: Jun Ishii, Toshiki Naito
  • Patent number: 7783142
    Abstract: Consistent with the present disclosure, a package is provided in which the PLC substrate, for example, is bonded to the underyling carrier though a limited contact area. The rest of the substrate is detached from the carrier so that stresses are applied to a limited portion of the PLC substrate. The PLC itself, however, is provided over that portion of the substrate that is detached from the carrier, and thus experiences reduced stress. Accordingly, high modulus adhesives, as well as solders, may be used to bond the PLC substrate to the carrier, thereby resulting in a more robust mechanical structure.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: August 24, 2010
    Assignee: Infinera Corporation
    Inventor: Joseph Edward Riska
  • Patent number: 7783151
    Abstract: A method for fabricating a distributed Bragg reflector waveguide is disclosed, which includes forming a first distributed Bragg reflector on a substrate; forming a sacrificial pattern on the first distributed Bragg reflector; forming a second distributed Bragg reflector on the sacrificial pattern and the first distributed Bragg reflector; and removing the sacrificial pattern. A distributed Bragg reflector waveguide is also disclosed.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: August 24, 2010
    Assignee: National Central University
    Inventors: Chii-Chang Chen, Hua-Kung Chiu
  • Patent number: 7783150
    Abstract: A method for creating a master and for generating an optical waveguide therefrom. The method includes creating a waveguide master having the geometrical form of at least one optical element formed therein; and generating an embossed optical waveguide from the master, the embossed optical waveguide being a negative of the master, the embossed optical waveguide having an optical element formed therein which corresponds to and is a negative of the geometrical form of the optical element formed in the master, the embossed optical waveguide being formed of a polymer material having a first index of refraction, wherein the optical element is formed in the polymer material and creates a local modification of the refractive index of the polymer material.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: August 24, 2010
    Assignee: Printpack Illinois, Inc.
    Inventors: Richard A. Steenblik, Mark J. Hurt
  • Patent number: 7776235
    Abstract: The preparation of robust, thin film materials with large second-order optical nonlinearities through the covalent self-assembly of chromophoric compositions and innovative use of silyl chemistry.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: August 17, 2010
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Milko E. van der Boom
  • Patent number: 7777873
    Abstract: An exemplary refractive-index sensor includes a photonic crystal microcavity structure, a light source, and a detector. The photonic crystal microcavity structure includes a photonic crystal layer having first holes and a second hole. The first holes are arranged in a pattern of staggered parallel rows. The second hole is located at an approximate center point of the middle row of the pattern rather than a first hole. A diameter of the second hole is less than that of each of the first holes. Some of the first holes disposed at each of opposite ends of a diagonal row having the second hole are omitted to define an input waveguide and an output waveguide. The light source is adjacent to the input waveguide. The detector is adjacent to the output waveguide.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: August 17, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Ling Wang, Guo-Fan Jin, Jun Zhu
  • Publication number: 20100202157
    Abstract: A backlight unit includes a light source for emitting light; and a light guide film for directing light emitted from the light source toward a liquid crystal display panel. In the backlight unit, the light guide film includes a polycarbonate (PC) film comprising a plasticizer; and at least one of a reflective layer or an optical layer on at least one surface of the PC film.
    Type: Application
    Filed: January 26, 2010
    Publication date: August 12, 2010
    Inventors: Da-Eun Jang, Won-Ki Cho, Dong-Hwan Lee, Chan-Iek Choi
  • Patent number: 7773834
    Abstract: A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber, and may include layers are selected as quarter-wavelength thickness for light having a wavelength of more than 700 nm.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 10, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Gregory L. Bluem, Robert L. Brott, Patrick R. Fleming, Joan M. Frankel, Shandon D. Hart, William J. Kopecky, Huiwen Tai, Margaret M. Vogel-Martin, Daniel J. Zillig
  • Patent number: 7773849
    Abstract: A backlight assembly for feeding illuminating light to a passive display panel is disclosed. The backlight assembly comprises a plurality of waveguides being formed and/or embedded in at least one substrate and arranged to feed illuminating light to each sub-pixel position of the passive display panel in a manner such that each pixel region is illuminated by at least two waveguides, wherein each waveguide of the at least two waveguides is disposed to illuminate one sub-pixel position of the pixel region by a respective color channel.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: August 10, 2010
    Assignee: OMS Displays Ltd.
    Inventor: Yosi Shani
  • Patent number: 7773841
    Abstract: Fiber optic sensors commonly require a 180 degree turnaround to form a continuous optical circuit. Methods and apparatus for providing 180 degree turnarounds in a fiber optic system that include a shorter radius turnaround then provided by micro-bending the optic fiber are desired. An embodiment of a turnaround apparatus includes a first optic fiber pigtail, a second optic fiber pigtail, and an optical waveguide forming a U-shaped path having an input end optically connected to a first end of the first pigtail and an output end optically connected to a first end of the second pigtail.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Harini Varadarajan, Ramaswamy Meyyappan
  • Patent number: 7773293
    Abstract: The present invention relates generally to wavelength conversion devices and laser projection systems incorporating the same. According to one embodiment of the present invention, wavelength conversion devices are provided without limitation of their field of use to laser projection systems. For example, the wavelength conversion device may comprise an axial waveguide portion and a pair of lateral planar waveguide portions confined between a pair of relatively low index cladding layers. The effective index of refraction in the axial waveguide portion of the waveguide region and the effective index of refraction in the lateral planar waveguide portions of the waveguide region are established such that the relatively low intensity laterally distributed parasitic light is characterized by a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light propagating in the axial waveguide portion.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 10, 2010
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, James Andrew West
  • Patent number: 7769264
    Abstract: An optical waveguide includes: a core portion through which light propagates; a cladding portion enclosing the core portion along a direction of light propagation, and a colored resin for position recognition marking, the optical waveguide having substantially planar outer surfaces including principal surfaces thereof, and the colored resin being embedded in the optical waveguide at a position that does not substantially overlap the core portion when viewed from a direction perpendicular to a principal surface of the optical waveguide and does not substantially contact the core portion.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 3, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Toshihiko Suzuki, Keishi Shimizu, Akira Fujii, Kazutoshi Yatsuda, Masahiro Igusa, Shigemi Ohtsu
  • Patent number: 7764850
    Abstract: An optical modulator and related methods are described. In accordance with one embodiment, the optical modulator comprises a waveguide for guiding an optical signal, and further comprises a ring resonator disposed in evanescent communication with the waveguide for at least one predetermined wavelength of the optical signal. The optical modulator further comprises a semiconductor pnpn junction structure that is at least partially coextensive with at least a portion of a resonant light path of the ring resonator. The optical modulator is configured such that the semiconductor pnpn junction structure receives an electrical control signal thereacross. The electrical control signal controls a free carrier population in the resonant light path where coextensive with the pnpn junction structure. A resonance condition of the ring resonator at the predetermined wavelength is thereby controlled by the electrical control signal, and the optical signal is thereby modulated according to the electrical control signal.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: July 27, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre Bratkovski, Theodore I. Kamins
  • Patent number: 7764861
    Abstract: A photonic crystal device according to the present invention includes: a first dielectric substrate 104 having a first lattice structure, of which the dielectric constant changes periodically within a first plane; a second dielectric substrate 105 having a second lattice structure, of which the dielectric constant changes periodically within a second plane; and an adjustment device (pivot 303) for changing a photonic band structure, defined by the first and second lattice structures, by varying relative arrangement of the first and second lattice structures. The first and second dielectric substrates 104 and 105 are stacked one upon the other.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: July 27, 2010
    Assignee: Panasonic Corporation
    Inventors: Ushio Sangawa, Tomoyasu Fujishima, Hiroshi Kanno, Kazuyuki Sakiyama
  • Patent number: 7760973
    Abstract: In a light emitting device, efficiency and stability are improved. A light emitting device 10 includes a three-dimensional photonic crystal 20. The three-dimensional photonic crystal includes a first defect part 70 forming a resonator including an active medium, a second defect part 80 forming a waveguide for taking out light generated by the resonator, a P clad part 40 formed of a P-type semiconductor, and a N clad part 50 formed of a first N-type semiconductor. The second defect part is provided only in the N clad part among the P clad part and the N clad part. At least a part of the second defect part is formed of a second N-type semiconductor and constitutes a heat radiation unit which radiates a heat to the outside.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: July 20, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Aihiko Numata
  • Publication number: 20100178019
    Abstract: Disclosed are an optical display device producing uniform light distribution and a method of fabricating such devices. The optical display device has waveguides arranged in vertical and horizontal directions. The waveguide has a conical shape whose cross-section decreases towards the light-projection side thereof. At least one of the size, height, spacing, and refraction index of the waveguide is designed to be different for each section, depending on an incident angle and/or intensity of light inputted from a light source. Therefore, the intensity of projected light can be made uniform over all sections of the optical device.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 15, 2010
    Applicant: SEKONIX CO. LTD.
    Inventors: Gyuhwan HWANG, Youngbin YU, Hyunsoo LEE
  • Publication number: 20100178018
    Abstract: Photonic passive structure to couple and guide light between photonic active devices (101), such as photo-diodes, light emitting devices and light-valves, which may be arranged into 2D arrays, and the top of the metallization layer stack (110,111,112) interconnecting said devices, with said photonic passive structure comprising a hole (116) between the near surface of said photonic active Ndevices and the top of said metallization stack, said hole being filled with a dielectric (113) having embedded metal films (117) and in which the embedded metal thin films are connected to a planar perforated metal film (123,124) formed on top of the metallization stack.
    Type: Application
    Filed: September 6, 2007
    Publication date: July 15, 2010
    Inventor: Carlos J.R.P. Augusto
  • Patent number: 7756376
    Abstract: An optical functional waveguide having a small size, used with stored energy, controlling the phase of light at high speed, and adjusting the optical path length. The optical functional waveguide includes a substrate (11), a quartz waveguide clad (12), a quartz waveguide core (13), groove structures (14), a filling material (15), and heater electrode (16). The filling material (15) placed in the groove structures (14) is, e.g., a resin transparent to the wavelength region of the guided light, and the refractive index temperature coefficient is about 10 to 100 times that of quartz. The heater electrode (16) is interposed between the groove structures (14) provided along the optical path. Therefore, the temperature of the filling material (15) can be varied sharply and quickly with little energy expended.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: July 13, 2010
    Assignee: Keio University
    Inventor: Hiroyuki Tsuda
  • Publication number: 20100172615
    Abstract: The invention relates to a coupling device comprising a support substrate; a first layer arranged on the support substrate and comprising first patterns produced within the thickness of said first layer, said first patterns being arranged in parallel and periodic rows; a second layer arranged on the first layer and comprising second patterns passing through the thickness of said second layer, said second patterns being arranged in parallel and periodic rows. The direction of periodicity of the rows of the first patterns is perpendicular to the direction of periodicity of the rows of the second patterns. The rows of the first patterns extend over a distance greater than or equal to the wavelength in the void of the optical wave intended to be coupled. The first patterns have a width less than or equal to a tenth of the wavelength of the optical wave intended to be coupled, and the period of these patterns is between 50 nm and 1 ?m. The second patterns are arranged so as to form a periodic diffraction grating.
    Type: Application
    Filed: June 25, 2009
    Publication date: July 8, 2010
    Inventors: Badhise BEN BAKIR, Alexei Tchelnokov
  • Patent number: 7751669
    Abstract: At least one exemplary embodiment is directed to a waveguide, which includes a three-dimensional photonic crystal including a first linear defect and a second linear defect. The first linear defect is disposed at part of columnar structures and is formed of a medium different from the columnar structures. The second linear defect is disposed at part of columnar structures extending in the longitudinal direction of the first linear defect and is formed of a medium having a refractive index different from that of the medium used for the columnar structures. The second linear defect is separated from the first linear defect by a distance of at least 0.5 times the out-of-plane lattice period of the three-dimensional photonic crystal in a direction in which layers including the columnar structures are stacked.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: July 6, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kiyokatsu Ikemoto, Akinari Takagi, Hikaru Hoshi, Kazuya Nobayashi, Aihiko Numata
  • Publication number: 20100166361
    Abstract: A buried dual taper waveguide has a flat surface after taper processing thus facilitating further processing with more complex photonic integrated circuits. This allows for light coupling between a large core size fiber and a small waveguide photonic integrated circuit. The taper structure disclosed enables monolithic integration of silicon photonic components and passive alignment for low-cost packaging.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventor: ANSHENG LIU
  • Patent number: 7747121
    Abstract: A bending waveguide is provided including a core having an input end and an output end, wherein the output end has a near field enhanced aperture structure, and a metal cladding enclosing the core. The core is bent in a curve and a radius of curvature of the curve is a resonance radius at which an intensity of transmitted light with respect to a wavelength of incident light is a maximum. Thus, the direction of the incident light can be changed by a predetermined angle while maintaining the field enhancement characteristic of the conventional near field enhanced aperture without an additional optical element.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: June 29, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-hyoung Cho, Sung-dong Suh, Jin-seung Sohn
  • Patent number: 7742222
    Abstract: The present invention relates generally to multi-faceted wavelength conversion devices and laser projection systems incorporating the same.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 22, 2010
    Assignee: Corning Incorporated
    Inventor: Jacques Gollier
  • Patent number: 7742666
    Abstract: An optical beam splitter includes an input waveguide, two or more branching arms, two or more fan-out arms, and two or more output waveguides. The input waveguide receives an input light beam. The two or more branching arms are coupled to the input waveguide at a separation point and split the input light beam at the separation point into two or more light beams. Each fan-out arm is coupled to one of the branching arms and fans-out one of the two or more light beams to a predetermined output pitch. Each output waveguide is coupled to one of the fan-out arms and transmits one of the two or more light beams out of the optical beam splitter.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: June 22, 2010
    Assignee: Fujitsu Limited
    Inventors: Michael G. Lee, Alexei L. Glebov, Dashun S. Zhou
  • Patent number: 7740387
    Abstract: A backlight may include a light guide and a light input. The light guide may have a light reflection surface and a light emission surface. The light input may include a diverging wedge having a narrow end and opposing side surfaces extending to the narrow end. A light source may be disposed adjacent to one of the opposing side surfaces and may emit light into the light input portion. A multilayer polymeric mirror film may be disposed adjacent to the opposing side surfaces but not in intimate contact therewith and may reflect more than 95% of visible light incident on the multilayer polymeric mirror film.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: June 22, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: John C. Schultz, Jacob Moskovich, William J. Bryan, Michael A. Meis
  • Patent number: 7742662
    Abstract: Photonic crystal (PC) sensors, and sensor arrays and sensing systems incorporating PC sensors are described which have integrated fluid containment and/or fluid handling structures. Sensors and sensing systems of the present disclosure are capable of high throughput sensing of analytes in fluid samples, bulk refractive index detection, and label-free detection of a range of molecules, including biomolecules and therapeutic candidates. The present disclosure also provides a commercially attractive fabrication platform for making photonic crystal sensors and systems wherein an integrated fluid containment structure and a photonic crystal structure are fabricated in a single molding or imprinting processing step amendable to high throughput processing.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: June 22, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Brian T. Cunningham
  • Publication number: 20100150513
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, JR., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Patent number: 7738755
    Abstract: An optical waveguide film and an electrical and optical hybrid circuit film having a high durability for folding while keeping the core size of the optical waveguide at a desired level are provided. The optical waveguide film is flexible, having a core made of a resin that composes an optical waveguide, a clad made of a resin, and a hollow groove extending in the same direction in which the core extends wherein at least at a portion of the optical waveguide film is folded so that the folding axis intersects with the core-extending direction at the portion. The films can contribute to the miniaturization of electronic devices.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 15, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Tsuyoshi Shioda
  • Patent number: 7738753
    Abstract: An optoelectronic circuit fabrication method and integrated circuit apparatus fabricated therewith. Integrated circuits are fabricated with an integral optical coupling transition to efficiently couple optical energy from an optical fiber to an integrated optical waveguide on the integrated circuit. Layers of specific materials are deposited onto a semiconductor circuit to support etching of a trench to receive an optical coupler that performs proper impedance matching between an optical fiber and an on-circuit optical waveguide that extends part way into the transition channel. A silicon based dielectric that includes at least a portion with a refractive index substantially equal to a section of the optical fiber is deposited into the etched trench to create the optical coupler. Silicon based dielectrics with graded indices are also able to be used. Chemical mechanical polishing is used finalize preparation of the optical transition and integrated circuit.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Christopher Jahnes, Yurii Vlasov
  • Patent number: 7738752
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamagiwa, Kenji Todori, Reiko Yoshimura, Miho Maruyama, Kou Yamada, Yasuyuki Hotta, Tsukasa Tada
  • Patent number: 7738756
    Abstract: A waveguide structure includes a SOI substrate. A core structure is formed on the SOI substrate comprising a plurality of multilayers having alternating or aperiodically distributed thin layers of either Si-rich oxide (SRO), Si-rich nitride (SRN) or Si-rich oxynitride (SRON). The multilayers are doped with a rare earth material so as to extend the emission range of the waveguide structure to the near infrared region. A low index cladding includes conductive oxides to act as electrodes.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Luca Dal Negro, Jae Hyung Yi, Lionel C. Kimerling
  • Publication number: 20100142904
    Abstract: An optical waveguide is provided. The optical waveguide includes: a layered structure including: a first cladding layer; a second cladding layer; and a core layer that is sandwiched between the first cladding layer and the second cladding layer, wherein an inclined surface is formed on at least one longitudinal end of the layered structure; and an outer cladding layer that seals at least a portion of the inclined surface corresponding to the core layer, wherein a refractive index of the outer cladding layer is smaller than that of the core layer.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 10, 2010
    Applicant: Shinko Electric Industries Co., Ltd.
    Inventor: Kenji YANAGISAWA
  • Patent number: 7734123
    Abstract: Briefly, in accordance with one or more embodiments, a hybrid photonics device comprises a silicon portion having one or more features formed therein, a non-silicon portion comprising one or more photonics devices proximate to the one or more features of the silicon portion, and a bonding layer coupling the silicon portion with the non-silicon portion, the non-silicon portion being bonded to the silicon portion via the bonding layer prior to patterning of the one or more photonics devices.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: June 8, 2010
    Assignee: Intel Corporation
    Inventors: Hanan Bar, Richard Jones