Multilayer Structure (mixture) Patents (Class 385/131)
  • Patent number: 8371735
    Abstract: Provided is a multi-layer light guide apparatus. Various optical paths are formed as a light source emits light into the apparatus. Main structure of the apparatus includes a body and a micro-structured layer. The body has a first layer with first refractive index (n1) and a second layer with second refractive index (n2). The first layer has a first critical angle (?C1). An interface critical angle (?C12) is formed between the associated first layer and second layer. The light then outputs as the light propagates through the layers. The micro-structured layer is formed on a side of the body. It features: n1<n2;0<|?C12??C1|?35°; A third layer with a third index of refraction (n3) is further included. A second interface critical angle (?C23) is formed between the second layer and the third layer. It features: n1<n2<n3;?C23>?C12;0<|?C12??C1|?35°.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: February 12, 2013
    Assignee: Entire Technology Co., Ltd.
    Inventors: Yan Zuo Chen, Chung-Hung Chien, Wen-Feng Cheng, Hao-Xiang Lin
  • Patent number: 8369676
    Abstract: Disclosed herein is a printed circuit board for an optical waveguide, including: a substrate; an insulation layer having a through hole and formed on the substrate; a lower clad layer formed on a bottom of the through hole; core part formed on the lower clad layer; and an upper clad layer formed on the lower clad layer and the core part and thus covering an exposed surface of the core part.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Joon Sung Kim, Han Seo Cho, Jae Hyun Jung, Sang Hoon Kim
  • Patent number: 8369674
    Abstract: An optic device includes a multilayer zone forming a redirection section for redirecting and transmitting photons through total internal reflection, each multilayer zone including a high index material having a first real refractive index n1 and a first absorption coefficient ?1, a low index material having a second real refractive index n2 and a second absorption coefficient ?2, and a grading zone disposed between the high index material and the low index material and including a grading layer having a third real refractive index n3 and a third absorption coefficient ?3, wherein n1>n3>n2.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Peter Michael Edic
  • Patent number: 8369658
    Abstract: A method involving: providing an optical waveguide made of a semiconductor material and having a region that is doped by a deep level impurity which creates deep level states in a bandgap in the semiconductor material, the deep level states characterized by an occupancy; passing an optical signal through the optical waveguide and between the region doped by the deep level impurity; and modulating the occupancy of the deep level states to thereby modulate the optical signal.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 5, 2013
    Inventors: Andrew P. Knights, Gregory L. Wojcik, Andreas Goebel, Dylan F. Logan, Paul E. Jessop
  • Patent number: 8369663
    Abstract: An optical waveguide for a touch panel which eliminates the need for alignment between the optical waveguide and a lens and which achieves the appropriate emission and reception of light beams, to provide a touch panel using the optical waveguide, and to provide a manufacturing method of the optical waveguide for a touch panel. A total distance (L) which is the sum of a distance from the center of curvature of the first lens portion 30 to the light reflecting surface 60 and a distance from the light reflecting surface 60 to the tip of the second lens portion 50, and the radius (R) of curvature of the second lens portion 50 satisfy the following condition (A): (L/3)?0.5<R<(L/3)+0.5??(A) where L in mm, and R in mm.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 5, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Noriyuki Juni, Yusuke Shimizu
  • Patent number: 8369675
    Abstract: An optical waveguide is provided. The optical waveguide includes: a layered structure including: a first cladding layer; a second cladding layer; and a core layer that is sandwiched between the first cladding layer and the second cladding layer, wherein an inclined surface is formed on at least one longitudinal end of the layered structure; and an outer cladding layer that seals at least a portion of the inclined surface corresponding to the core layer, wherein a refractive index of the outer cladding layer is smaller than that of the core layer.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kenji Yanagisawa
  • Patent number: 8369665
    Abstract: A hybrid guided-mode resonance (GMR) grating, an optical filter and a method of optical filtering employ distributed Bragg reflection. The hybrid GMR grating includes a waveguide layer that supports a GMR having a GMR resonant frequency. The hybrid GMR grating further includes a diffraction grating that couples a portion of a signal incident on the hybrid GMR grating into the waveguide layer; and a distributed Bragg reflector (DBR) that reflects another portion of the incident signal. The coupled portion of the incident signal has a frequency corresponding to the GMR resonant frequency. The reflected portion has a frequency away from the GMR resonant frequency. The optical filter includes the hybrid GMR grating and a coupler. The method includes coupling an optical signal into the hybrid GMR grating and further coupling a reflected signal out of the hybrid GMR grating.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 5, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Qianfan Xu, Sagi V. Mathai, Michael R. Tan
  • Patent number: 8363995
    Abstract: A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: January 29, 2013
    Inventors: Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski
  • Patent number: 8364001
    Abstract: A polymer optical waveguide includes: at least one core through which light propagates; a cladding which surrounds the core and has a refractive index less than that of the core; at least one conductive wire being provided on at least one side of the cladding, the polymer optical waveguide having a sheet shape, the conductive wire including a conductive layer which is provided on the at least one side of the cladding and being partitioned by a first groove, and the core being formed between second grooves each of which is formed in at least a part of the first groove.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: January 29, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Toshihiko Suzuki, Masahiro Igusa
  • Patent number: 8358897
    Abstract: Embodiments of the invention are hybrid photonic devices including a first semiconductor slab (i.e. region) comprising a silicon material and a second semiconductor slab, comprising a III-V material, above and partially overlapping the first semiconductor slab to create a lateral overlap region. A bonding layer may be formed on the second semiconductor slab to enable the bonding of the first and second semiconductor slabs at the lateral overlap region. An optical waveguide is formed to be included in the lateral overlap region and comprising the silicon semiconductor material, the III-V semiconductor material and the bonding layer. Thus, in embodiments of the invention the bonding layer comprises a material with a refractive index of at least 2.0 so as to not affect the optical mode shape or propagation loss of the hybrid electro-optical device.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 22, 2013
    Assignee: Aurrion, LLC
    Inventors: Gregory Alan Fish, Matthew Jacob-Mitos
  • Patent number: 8350995
    Abstract: A production method of an optical film, including: a stretching step of stretching a film, wherein the film has a longitudinal direction, a width direction and a thickness direction, wherein the stretching is in either of the longitudinal direction or the width direction of the film; and a shrinking step of shrinking the film in either of the longitudinal direction or the width direction of the film, that is not the direction in which the film is stretched, wherein the film thickness in the thickness direction is increased as compared with the film thickness before at least one of the stretching step and the shrinking step.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: January 8, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Hajime Nakayama, Yoji Ito
  • Patent number: 8349222
    Abstract: Unconventional twisted ?-electron system electro-optic (EO) chromophores/compounds, compositions and related device structures. Crystallographic analysis of several non-limiting chromophores reveals, for instance, large ring-ring dihedral twist angles and a highly charge-separated zwitterionic structure in the ground state, in both solution phase and solid-state.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: January 8, 2013
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Hu Kang
  • Patent number: 8346039
    Abstract: A nanofocusing system includes a dielectric waveguide having two opposing ends; and a metal-dielectric-metal layered waveguide having two opposing ends optically aligned at one end with one end of the dielectric waveguide, wherein the metal-dielectric-metal waveguide tapers in at least one dimension from the aligned end of the metal-dielectric-metal waveguide towards the opposing end, wherein light travelling through the dielectric waveguide is funneled into the dielectric layer of the metal-dielectric-metal waveguide, squeezed by the metal-dielectric-metal waveguide taper, and exits the metal-dielectric-metal waveguide as nanofocused light.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 1, 2013
    Assignee: Rochester Institute of Technology
    Inventors: Zhaolin Lu, Ruoxi Yang
  • Patent number: 8346025
    Abstract: An apparatus 100 that comprises a planar electro-optic modulator 110 being located on a substrate 105 and including a waveguide 115 and electrical contacts 120. The waveguide that includes first and second substantially straight segments 122, and a curved segment 126 that serially end-connects the first and second substantially straight segments such that light 130 travels in a substantially anti-parallel manner in the first and second substantially straight segments. The electrical contacts being located adjacent the first and second substantially straight segments and being connected to produce constructively adding phase modulations on an optical carrier passing through the segments.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Alcatel Lucent
    Inventor: Douglas M. Gill
  • Publication number: 20120319005
    Abstract: A device and associated methods for using surface electromagnetic waves (SEWs) generated at the surface of photonic band gap multilayers (PBGMs) in place of surface plasmons (SPs) in metal films. One device is a photonic circuit comprising a multilayer apparatus to generate surface electromagnetic waves, wherein the surface electromagnetic waves comprise the signal medium within the circuit. The multilayer apparatus comprises a prism with a dielectric multilayer deposited on one side.
    Type: Application
    Filed: March 20, 2012
    Publication date: December 20, 2012
    Inventor: William M. Robertson
  • Publication number: 20120321244
    Abstract: The optical semiconductor device includes a spot-size converter formed on a semiconductor substrate. The spot-size converter has a multilayer structure including a light transition region. The multilayer structure includes a lower core layer, and an upper core layer having a refractive index higher than that of the lower core layer. The width of the upper core layer is gradually decreased and the width of the lower core layer is gradually increased in the light transition region. Both sides and an upper side of the multilayer structure are buried by a semi-insulating semiconductor layer in the light transition region. Light incident from one end section of the spot-size converter is propagated to the upper core layer. The light transits from the upper core layer to the lower core layer in the light transition region, is propagated to the lower core layer, and exits from the other end section thereof.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 20, 2012
    Applicant: OPNEXT JAPAN, INC
    Inventors: Takanori SUZUKI, Takafumi TANIGUCHI
  • Patent number: 8331743
    Abstract: The present invention describes a microresonator that can be used as a 1:f variable coupler in a unit cell. It is described how a cascade of unit cells can be used to form a tunable, higher-order RF-filter with reconfigurable passbands. The disclosed filter structure can be utilized for the narrowband channelization of RF signals that have been modulated onto optical carriers. It is also disclosed how to utilize add/drop capabilities of the contemplated microdisks to confer connectivity and cascading in two dimensions. The present invention can conveniently provide a wavelength division multiplexing router, where an array of unit cells as provided herein can form a programmable optical switching matrix, through electronic programming of filter parameters.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: December 11, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Willie W. Ng, Brian N. Limketkai, Robert R. Hayes, Daniel Yap, Peter Petre
  • Patent number: 8331741
    Abstract: An acoustic sensor includes at least one photonic crystal structure and an optical fiber in optical communication with the at least one photonic crystal structure. The at least one photonic crystal structure has at least one optical resonance with a resonance frequency and a resonance lineshape, wherein at least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the acoustic sensor. The acoustic sensor further includes an optical fiber in optical communication with the at least one photonic crystal structure. The optical fiber is configured to transmit light which impinges the at least one photonic crystal structure and to receive at least a portion of the light which impinges the at least one photonic crystal structure.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: December 11, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8326110
    Abstract: Disclosed, among other features, is a flexible optical waveguide, having one resin film for forming a core layer and two resin films for forming a cladding layer. At least one of the resin films for forming the cladding layer is composed of a resin for forming a cladding layer and a base material film, and the base material film is arranged on an outer side of the cladding layer with respect to the core layer.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Tomoaki Shibata, Tatsuya Makino, Masami Ochiai, Atsushi Takahashi, Toshihiko Takasaki
  • Patent number: 8326100
    Abstract: An apparatus that comprises an optical-mode-converter. The optical-mode-converter includes a optical waveguide including a segment directly located on a substrate and a cantilevered segment located over said substrate and separated from said substrate by a cavity, and, said cantilevered segment includes a core surrounded by a cladding. The optical-mode-converter also includes a dielectric material filling said cavity and contacting said cantilevered segment over said cavity, wherein said dielectric material has a refractive index that is less than a refractive index of said cladding and that is no more than about 20 percent less than said refractive index of said cladding.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 4, 2012
    Assignee: Alcatel Lucent
    Inventors: Long Chen, Christopher R. Doerr, Young Kai Chen
  • Patent number: 8325158
    Abstract: A method of manufacturing an optical waveguide includes forming a core layer on a first clad layer, forming a second clad layer on the core layer, forming a first groove including at least one inclined surface in the second clad layer and the core layer to be in substantially parallel to and near one end of the second clad layer and one end of the core layer, the at least one inclined surface of the first groove having such an angle that the core layer is exposed when viewed above the second clad layer, forming a second groove including at least one inclined surface in the second clad layer on a inner side of the first groove, forming a separation groove in the clad layers and the core layer in a direction intersecting the first groove, and forming a plurality of cores intersecting the first groove.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 4, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Kazutoshi Yatsuda, Masahiro Igusa, Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Shigemi Ohtsu
  • Patent number: 8320721
    Abstract: An optical mode transformer comprises a first waveguide including a first core, a first cladding and an end facet configured to be coupled to an optical fiber. The transformer further includes a second waveguide comprising a second core, a second cladding and an end directly coupled to an end of the first waveguide. A third waveguide comprises a third core and a third cladding, and is arranged with respect to the second waveguide so as to realize an evanescent optical coupling with the second waveguide. The third core includes a tapered region wherein evanescent coupling takes place, and wherein a refractive index contrast of the first waveguide is less than a refractive index contrast of the second waveguide, the refractive index contrast of the second waveguide is less than a refractive index contrast of the third waveguide, and the refractive index contrast of the third waveguide is not less than 18%.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Google Inc.
    Inventors: Gaia Cevini, Paola Galli, Stefano Lorenzotti, Marco Piazza, Marco Romagnoli, Luciano Socci, Lorenzo Bolla, Silvia Ghidini
  • Patent number: 8320728
    Abstract: Briefly described, embodiments of this disclosure, among others, include solid state, thin film waveguides, detection systems including waveguides, and methods of detecting target compounds.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: November 27, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Boris Mizaikoff, Christy Charlton, Jerome Faist, Marcella Giovannini
  • Patent number: 8315487
    Abstract: An optical sensor module is provided which reduces variations in optical coupling loss between a core in an optical waveguide unit and an optical element in a substrate unit and which reduces the optical coupling loss. The optical waveguide unit including vertical groove portions for fitting engagement with the substrate unit and the substrate unit including fitting plate portions for fitting engagement with the vertical groove portions are produced individually. The fitting plate portions in the substrate unit are brought into fitting engagement with the vertical groove portions in the optical waveguide unit, so that the substrate unit and the optical waveguide unit are integrated together. The vertical groove portions in the optical waveguide unit are in an appropriate position relative to a light-transmissive surface of the core. The fitting plate portions in the substrate unit are in an appropriate position relative to the optical element.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: November 20, 2012
    Assignee: Nitto Denko Corporation
    Inventor: Masayuki Hodono
  • Patent number: 8309925
    Abstract: A method comprising polarizing and coupling an electromagnetic beam to a first-order transverse electric (TE1) mode with respect to a parallel plate waveguide (PPWG) integrated resonator comprising two plates and a cavity, sending the electromagnetic beam into the PPWG integrated resonator to excite the cavity by the TE1 mode and cause a resonance response, and obtaining wave amplitude data that comprises a resonant frequency, and obtaining the refractive index of fluids filling the cavity via the shift in resonant frequency.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: November 13, 2012
    Assignee: William Marsh Rice University
    Inventors: Rajind Mendis, Daniel M. Mittleman
  • Patent number: 8311375
    Abstract: An optoelectronic wiring board includes a flex-rigid substrate and an optical communication unit. The flex-rigid substrate includes a flexible substrate provided with an electric wiring, and a pair of rigid sections provided on both sides of the flexible substrate. The pair of rigid sections each include a lamination formed of a conductive circuit and an insulating layer. The optical communication unit is made of a flexible material and has both end faces substantially perpendicular to its optical path of transmitting light. Both end portions of the optical communication unit are disposed and fixed on the rigid sections so that both end faces of the optical communication unit face an optical element mounting region provided on the rigid sections of the flex-rigid substrate.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: November 13, 2012
    Assignee: Ibiden Co., Ltd.
    Inventors: Hiroaki Kodama, Liyi Chen, Kensaku Nakashima
  • Publication number: 20120281957
    Abstract: Devices for producing localized surface plasmon resonances are described having a plasmonic resonator and a photonic structure electromagnetically coupled to the plasmonic resonator. The device can include a hybrid photonic plasmonic resonator that contains plasmonic and photonic resonators, and are optionally coupled to a photonic waveguide, or a plasmonic resonator coupled directly to a photonic waveguide. The plasmonic resonator can be one or more nanoparticles. The devices can produce substantial increases in coupling efficiencies and sensitivity for use in several applications, including SERS and refractive index sensing.
    Type: Application
    Filed: October 12, 2011
    Publication date: November 8, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: Maysamreza Chamanzar, Ali Asghar Eftekhar, Ali Adibi
  • Patent number: 8305168
    Abstract: A forced return solenoid that includes an electrical winding configured to create an electromagnetic field when electrical current flows through the winding, an electrical terminal configured to be connected to a source of electrical energy, and a moveable contact plate configured to be moved into contact with the electrical terminal. Embodiment of the forced return solenoid include a plunger configured to move axially in response to the electromagnetic field generated by the electrical winding. Movement of the plunger in one direction causes the moveable contact plate to connect with the electrical terminal. Movement of the plunger in the opposite direction causes an impact intended to break the connection between the moveable contact plate and the electrical terminal. Embodiments of the forced return solenoid further include a return spring configured to move the plunger in the second direction, wherein the impact means comprises a removable snap ring affixed to the plunger.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 6, 2012
    Assignee: Iskra Avtoelektrika d.d.
    Inventors: Ivan Coti{hacek over (c)}, Toma{hacek over (z)} Bratu{hacek over (s)}, Sebastjan Kobal
  • Patent number: 8304796
    Abstract: Provided is a light-emitting apparatus in which light extraction efficiency of a light-emitting device is improved and viewing angle dependency of an emission color is reduced. The light-emitting apparatus includes a cavity structure and a periodic structure. When guided-wave light is diffracted by the periodic structure in a direction that forms an angle which is larger than 90° and smaller than 180° relative to a guided-wave direction of an optical waveguide in the cavity structure, a wavelength of the diffracted light becomes longer as the diffraction angle increases.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 6, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Koichi Fukuda
  • Patent number: 8306372
    Abstract: The waveguide-type polarizer includes: a Z-cut lithium niobate substrate; an optical waveguide having a ridge structure and formed on the substrate; a low refractive index film formed with a thickness satisfying 0?n·t/??0.3742 (where n is a refractive index, t (?m) is the thickness of the film, and ? (?m) is the wavelength of a light wave) on the side of the ridge structure; and a high refractive index film formed with a thickness satisfying 0.089?n·/? on the low refractive index film. The width of the ridge structure is a ridge width where the distribution of ordinary light of the light waves propagated through the optical waveguide changes and the distribution of extraordinary light of the light waves does not change, the angle of the ridge structure is less than 90°, and the waveguide-type polarizer has a function of transmitting extraordinary light.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 6, 2012
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katsutoshi Kondou, Masanao Kurihara, Toru Sugamata
  • Patent number: 8300990
    Abstract: An optical waveguide is described. This optical waveguide may be defined in a semiconductor layer, and may include a vertical slot that includes an electro-optic material having an electric-field-dependent index of refraction, and the electro-optic material may be other than a semiconductor in the semiconductor layer. Alternatively, the optical waveguide may include a vertical stack with two semiconductor layers that surround and partially overlap an intermediate layer, which includes the electro-optic material.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Oracle America, Inc.
    Inventors: Guoliang Li, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 8301002
    Abstract: In various embodiments, an illumination structure includes a discrete light source disposed proximate a bottom surface of a waveguide. A top mirror may be disposed above the discrete light source to convert modes of light emitted from the discrete light source into trapped modes, thereby increasing the coupling efficiency of the illumination structure.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: October 30, 2012
    Assignee: Oree, Inc.
    Inventor: Yosi Shani
  • Patent number: 8300991
    Abstract: Provided is a traveling-wave type semiconductor optical phase modulator capable of high speed and low voltage operation by improving an n-SI-i-n-type layered structure. A first exemplary aspect of the present invention is a waveguide-type semiconductor optical modulator including: a semiconductor substrate (101); a first n-type cladding layer (103) and a second n-type cladding layer (108) formed on the semiconductor substrate (101); an undoped optical waveguide core layer (104) and an electron trapping layer (107) formed between the first n-type cladding layer (103) and the second n-type cladding layer (108); and a hole supplying layer (106) formed between the undoped optical waveguide core layer (104) and the electron trapping layer (107).
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: October 30, 2012
    Assignee: NEC Corporation
    Inventor: Tomoaki Kato
  • Patent number: 8285102
    Abstract: A waveguide structure includes a supporting substrate and a waveguide having at least one guide layer with a refractive index n1. This layer comprises a zone of birefringence B which comprises voids provided in the thickness of the guide layer filled with a fluid or material having a refractive index n2. These are organized in at least two parallel rows, each row being in a plane perpendicular to the surface of the guide layer and parallel to the direction of propagation of the optical wave in the guide layer; each row extending over a distance equal to or greater than the wavelength of the optical wave; the width of the voids being ? 1/10th of the wavelength of the optical wave; each void within one row being at a distance from an adjacent void of ? 1/10th of the wavelength of the optical wave.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 9, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Badhise Ben Bakir, Alexei Tchelnokov
  • Patent number: 8280201
    Abstract: A Mach-Zehnder modulator has an optical splitting element splitting an input optical signal into two optical signals that are conveyed by two optical waveguide arms, and an optical combining element combining the two optical signals into an output optical signal. Two traveling wave electrodes (TWEs) carry an electrical modulation signal to induce a change in phase of these two optical signals, and include a number of pairs of modulation electrodes positioned adjacent to the waveguide arms. At least some of the electrodes in one waveguide arm have a different shape (e.g., length or width) than the electrodes in the other waveguide arm to alter the effectiveness of the electrodes in inducing a phase change in the two optical signals.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 2, 2012
    Assignee: COGO Oprtonics, Inc.
    Inventor: Kelvin Prosyk
  • Publication number: 20120224820
    Abstract: A spot-size converter includes a cladding layer having a principal surface; a first core layer disposed on the principal surface and having a light input/output portion and a first transition portion having a width W1, the light input/output portion being coupled to the first transition portion and having a width that monotonously decreases in a first direction from the light input/output portion toward the first transition portion; and a second core layer disposed on the principal surface, the second core layer having a second transition portion and a propagation portion coupled to the second transition portion, the second transition portion having a width W2. The first core layer has a refractive index between refractive indices of the second core layer and the cladding layer. The first transition portion and the second transition portion are disposed with a gap therebetween and optically coupled to each other. A ratio (W1/W2) of the width W1 to the width W2 monotonously decreases in the first direction.
    Type: Application
    Filed: February 24, 2012
    Publication date: September 6, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yutaka ONISHI
  • Patent number: 8260104
    Abstract: A multiple-core optical waveguide comprises: a substrate; lower and upper waveguide core layers; a waveguide core between the upper and lower waveguide core layers; upper and lower cladding; and middle cladding between the upper and lower waveguide core layers substantially surrounding the waveguide core. Each of the lower, middle, and upper claddings has a refractive index less than refractive indices of the lower waveguide core layer, the upper waveguide core layer, and the waveguide core. Along at least a given portion of the optical waveguide, the upper and lower waveguide core layers extend bilaterally substantially beyond the lateral extent of a propagating optical mode supported by the optical waveguide, the lateral extent of the supported optical mode being determined at least in part by the width of the waveguide core along the given portion of the optical waveguide.
    Type: Grant
    Filed: December 19, 2009
    Date of Patent: September 4, 2012
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, David W. Vernooy
  • Patent number: 8260100
    Abstract: A light guiding layer comprises an optical incoupling structure (3) on which light from a light source (7) is incident, said optical incoupling structure (3) having a slanted surface (15) configured to give the light a first directional distribution by reflecting the light in a first general direction, by total internal reflection within the layer, towards a reflecting structure (5). The reflecting structure (5) is configured to give the light a second directional distribution by reflecting the light in a second general direction towards the optical incoupling structure (3), and at least a part of the light reflected in the second general direction is transmitted through the slanted surface (15) of the optical incoupling structure (3). A display unit, a segmented backlight, a luminaire, and a method is also disclosed.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 4, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Fetze Pijlman, Michel Cornelis Josephus Marie Vissenberg, Giovanni Cennini
  • Patent number: 8249402
    Abstract: A multilayer printed circuit board according to the present invention is a multilayer printed circuit board where a plurality of insulating layers, a conductor circuit and an optical circuit are formed and layered and an optical element is mounted, wherein the above described optical circuit is formed between the above described insulating layers.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 21, 2012
    Assignee: Ibiden Co., Ltd.
    Inventors: Motoo Asai, Hiroaki Kodama, Kazuhito Yamada
  • Patent number: 8249409
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jun-Ying Zhang, Jimmie R. Baran, Jr., Terry L. Smith, William J. Schultz, William Blake Kolb, Cheryl A. Patnaude, Sergey A. Lamansky, Brian K. Nelson, Naiyong Jing, Brant U. Kolb
  • Patent number: 8249408
    Abstract: Embodiments of this invention include composite articles having specific optical properties. In one embodiment of this invention, a composite comprises high and low refractive index light transmitting material and surface relief features. In further embodiments, the composite comprises volumetric dispersed phase domains that may be asymmetric in shape. In one embodiment of this invention, the composite is an optical film providing light collimating features along two orthogonal planes perpendicular to the surface of the film. In another embodiment, the composite has improved optical, thermal, mechanical, or environmental properties. In further embodiments of this invention, the composite is manufactured by optically coupling or extruding two or more light transmitting materials, and forming inverted light collimating surface relief features or light collimating surface relief features.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 21, 2012
    Assignee: Fusion Optix, Inc.
    Inventor: Zane Coleman
  • Patent number: 8238700
    Abstract: A multilayer printed circuit board including insulating layers, conductor circuits formed between the insulating layers, and optical circuits formed between the insulating layers and including a first optical circuit. The first optical circuit is positioned on a first outermost insulating layer of the insulating layers, and the insulating layers, conductor circuits and optical circuits are layered to form a multilayer structure having a first surface and a second surface on an opposite side of the first surface such that the multilayer structure is structured to mount optical elements on the first surface and second surface of the multilayer structure, respectively.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 7, 2012
    Assignee: Ibiden Co., Ltd.
    Inventors: Motoo Asai, Hiroaki Kodama, Kazuhito Yamada
  • Patent number: 8233758
    Abstract: An optical fuse or energy-switching-off device includes an optical waveguide having an input section and an output section, the two sections forming a pair of opposed surfaces extending transversely through the axes of the waveguide sections. A substantially transparent material is disposed between the opposed surfaces and comprises an electrically conductive nanotube web immersed in dielectric material, where the nanotubes are not in electrical contact with each other. The substantially transparent material forms a plasma when exposed to optical signals propagating within the optical waveguide with an optical power level above a predetermined threshold, and the plasma damages the opposed surfaces sufficiently to render the surfaces substantially opaque to light propagating within the input section of the optical waveguide so as to prevent the transmission of such light.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 31, 2012
    Assignee: KiloLambda Technologies Ltd.
    Inventors: Ariela Donval, Doron Nevo, Moshe Oron, Tali Fisher Masliah
  • Patent number: 8224143
    Abstract: Provided is a substrate structure and a manufacturing method thereof, the substrate structure including a base substrate of single crystal; and a rhombohedral ferroelectric thin film exhibiting a spontaneous ferroelectric polarization and of a perovskite structure, the ferroelectric thin film being formed on a surface of the base substrate. The substrate structure may further include an optical waveguide formed on the ferroelectric thin film; and an electric field applying section that applies, to the optical waveguide, an electric field parallel to a surface of the base substrate. The electric field applying section generates the electric field so that the electric field direction of the electric field applied to the optical waveguide is parallel to a direction of the spontaneous ferroelectric polarization of the ferroelectric thin film.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 17, 2012
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota, Atsushi Seki
  • Patent number: 8218932
    Abstract: An optical device includes a core sandwiched between two clads. The core includes a planar waveguide layer with ridges protruding into one of the clads, forming a ridge waveguide structure that guides the propagation of light in the core. The core dimensions satisfy the following conditions: the ridge width is less than the total core height; the ridge height is less than the ridge width; the thickness of the planar waveguide layer is equal to or less than one-fourth of the total core height. Dimensions satisfying these conditions can be selected to provide polarization independent operation. The ridges may be arranged to define a pair of optical waveguides forming a Mach-Zehnder interferometer, an optical wavelength filter, or various other optical devices.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 10, 2012
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Patent number: 8213751
    Abstract: An electronic-integration compatible photonic integrated circuit (EIC-PIC) for achieving high-performance computing and signal processing is provided. The electronic-integration compatible photonic integrated circuit comprises a plurality of electronic circuit structures and a plurality of photonic circuit structures. The electronic and photonic circuit structures are integrated by a process referred to as monolithic integration. An electronic circuit structure includes one or more electronic devices and a photonic circuit structure includes one or more photonic devices. The integration steps of electronic and photonic devices are further inserted into standard CMOS process. The photonic circuit structures and the electronic circuit structures are integrated to form the electronic-integration compatible photonic integrated circuit device.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 3, 2012
    Assignee: Optonet Inc.
    Inventors: Seng-Tiong Ho, Yingyan Huang
  • Patent number: 8213754
    Abstract: An optical splitter, a combiner and a device. The optical splitter comprises a first longitudinal waveguide for receiving an incoming light wave; at least first and second pairs of output waveguides, the output waveguides of each pair being disposed on opposite sides of the first waveguide; wherein each of the output waveguides of each pair comprises a longitudinal portion disposed parallel to the first waveguide and such that optical power is coupled from the first waveguide into the respective longitudinal portions and the longitudinal portions of output waveguides of the first and second pairs are displaced along a length of the first waveguide; wherein each of the output waveguides of each pair further comprises a substantially S-shaped portion continuing from the respective longitudinal portions and such that optical power coupling between the respective S-shaped portions of output waveguides of the first and second pairs is substantially inhibited.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 3, 2012
    Assignee: Agency for Science Technology and Research
    Inventors: Jason Png, Soon Thor Lim
  • Patent number: 8208777
    Abstract: A cable includes at least one plastic impregnated fiber layer and at least one conductor in contact with the at least one fiber layer. In some examples, the fiber may be glass fiber, aramid fiber or carbon fiber. In some examples, the plastic may be thermoset plastic, thermoplastic or chemically set resin. In some examples, the conductor may be an electrical conductor or an optical fiber.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: June 26, 2012
    Assignee: Intelliserv, LLC
    Inventors: Jason Braden, Brian Clark, Dean Homan
  • Patent number: 8208769
    Abstract: A substrate on which an optical element is mounted is provided, including: an optical element; an optical circuit substrate which is formed by an optical waveguide layer having a core portion and cladding portions; and an electrical circuit substrate on which is provided a mounting portion that is used for mounting the optical element, wherein the optical element is mounted on the electrical circuit substrate via the optical circuit substrate and wherein the optical circuit substrate has an optical element mounted thereon and is provided with a receptor structure having a conductive portion that conducts electricity between an electrode of the optical element and an electrode of the electrical circuit substrate.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: June 26, 2012
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Koji Choki, Mutsuhiro Matsuyama, Kenji Miyao, Keizo Takahama, Tetsuya Mori, Kei Watanabe, Hiroshi Owari, Yoji Shirato
  • Publication number: 20120155824
    Abstract: An electro-optical element includes a core layer made of an electro-optical material, a clad structure disposed on each of opposite sides of the core layer and configured to form an optical waveguide together with the core layer, and a pair of electrode layers, one of which being disposed on one side of the clad structure and another being disposed on another side of the clad structure. The clad structure includes a first clad layer and a second layer. The second clad layer has a dielectric permittivity larger than that of the first clad layer, and the second clad layer has a thickness thicker than that of the first clad layer.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 21, 2012
    Inventors: Shuichi Suzuki, Atsushi Sakai, Koichiro Nakamura, Jun Nakagawa