By Optical Coupling Patents (Class 398/82)
  • Publication number: 20090238570
    Abstract: Systems and methods for encoding information in the topology of superpositions of helical modes of light, and retrieving information from each of the superposed modes individually or in parallel. These methods can be applied to beams of light that already carry information through other channels, such as amplitude modulation or wavelength dispersive multiplexing, enabling such beams to be multiplexed and subsequently demultiplexed. The systems and methods of the present invention increase the number of data channels carried by a factor of the number of superposed helical modes.
    Type: Application
    Filed: June 3, 2009
    Publication date: September 24, 2009
    Inventor: David G. Grier
  • Publication number: 20090226171
    Abstract: A WDM optical transmit-receive device comprises an optical transceiver assembly and an optical receiver assembly. The optical transceiver assembly includes a first optical platform, a first optical filter, a first photodetector and a laser diode, where the first optical platform has a first surface and a first groove recessed from the first surface, the first optical filter is inserted into the first groove, the first photodetector and the laser diode are mounted adjacent to the first optical filter.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Inventors: Wen-Tao Liu, Fang-Zheng Lin
  • Patent number: 7587138
    Abstract: An optical device containing a four-port optical mixer capable of distributing the optical power presented at either or both of two input ports to specified ratios in two output ports.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: September 8, 2009
    Assignee: NeoPhotonics Corporation
    Inventors: Kenneth Mc Greer, Anthony J. Ticknor, Hao Xu
  • Patent number: 7587137
    Abstract: The present invention provides a system and method for multiplexing DWDM channels on top existing CWDM infrastructure. An erbium-doped fiber amplifier amplifies DWDM signals in the DWDM domain to compensate for 10 G optics power budget limitations without blocking the CWDM signals. A passive WDM infrastructure allows the CWDM and DWDM signals to be multiplexed and de-multiplexed on the same fiber and allows seamless integration with existing infrastructure avoiding the need to sacrifice CWDM channels.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: September 8, 2009
    Assignee: Cisco Technology, Inc.
    Inventor: Allessandro Barbieri
  • Patent number: 7579609
    Abstract: A waveguide conduit is constructed and adapted to capture the light emitted by the at least one nano-resonant structure. The nano-resonant structure emits light in response to excitation by a beam of charged particles, The source of charged particles may be an ion gun, a thermionic filament, a tungsten filament, a cathode, a field-emission cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, or an ion-impact ionizer.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: August 25, 2009
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson, Michael E. Maines
  • Patent number: 7577370
    Abstract: An apparatus and method for extracting an optical clock signal are provided. The apparatus includes a first reflection filter selecting and reflecting only a first frequency component in an input optical signal; a first Fabry-Perot laser diode matching the first frequency component reflected by the first reflection filter with a predetermined output mode and outputting the first frequency component in the predetermined output mode; a second Fabry-Perot laser diode selecting a second frequency component in an input optical signal that has not been reflected but has been transmitted by the first reflection filter, matching the second frequency component with a predetermined output mode, and outputting the second frequency component in the predetermined output mode; and a photodetector receiving the first frequency component from the first Fabry-Perot laser diode and the second frequency component from the second Fabry-Perot laser diode and beating them to extract a clock signal.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: August 18, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jaemyoung Lee, Je Soo Ko
  • Patent number: 7574136
    Abstract: A wavelength tunable device for use in a wavelength division multiplexing (WDM) system comprising a display device for displaying at least one operating wavelength of the wavelength tunable device. The display device is electrically coupled to a control unit in the wavelength tunable device so as to display the tuned wavelength in real time. The wavelength tunable device may be, in exemplary embodiments, an optical transponder, wavelength division demultiplexer, or wavelength division multiplexer. In embodiments where the optical equipment has a plurality of tunable ports, the display device is adapted to display the operating wavelength of each tunable port.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 11, 2009
    Assignee: AT&T Intellectual Property II, LP
    Inventor: Guodong Zhang
  • Publication number: 20090196617
    Abstract: A single core bidirectional optical device having a light emitting element that is provided on the terminal of one optical fiber and makes light incident to the optical fiber, and a light receiving element for receiving light of the optical fiber, comprises a wavelength multiplexing/demultiplexing coupler that is provided on an optical axis of light incident to and emitted from the optical fiber and includes therein wavelength separating film for separating the light to light of one side and light of another side for every wavelength; a light emitting element provided on the direction of the light of the one side which is separated by the wavelength multiplexing/demultiplexing coupler; and a light receiving element provided on the direction of the light of the other side which is separated by the wavelength multiplexing/demultiplexing coupler.
    Type: Application
    Filed: December 20, 2008
    Publication date: August 6, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Kentarou Yoshizaki, Takashi Yamane, Masaki Kuribayashi, Akitoshi Mesaki, Tetsuya Yamada, Yoshimitsu Sakai
  • Patent number: 7565079
    Abstract: A system and method are presented for demarcating an optical network. The system comprises an optical monitor that receives a portion of an outbound signal from an optical network and generates a switch control signal based on the intensity of the outbound signal. Generally, the switch control signal is active when the intensity of the outbound signal falls below a threshold value. Alternatively, the system comprises an override switch, and the switch control signal is active when the override signal is activated or the outbound signal falls below a threshold value. An optical switch receives the switch control signal, and selectively isolates the network generating the outbound signal from the rest of the network when the switch control signal is active.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 21, 2009
    Assignee: Westell Technologies, Inc.
    Inventors: Christopher F. Simanonis, Daniel Wynard
  • Patent number: 7561801
    Abstract: A ring connection system and method are providing for distributing signals in an optical-to-electrical interface. The method electrically connects a plurality of nodes in a series-connecting ring, and receives an optical signal at a first node from a service provider. The method converts the optical signal to an electrical signal, and distributes the electrical signal via the ring. At each node, the electrical signal is supplied from a customer interface. Typically, each node has a plurality of customer interfaces. In one aspect, ITU-T G.984.3 Giagbit-capable Passive Optical Network (GPON) optical signals are received converted to a customer interface electrical signal such as an Ethernet connecting transfer mode, or time division multiplexed signal. Electrically connecting the plurality of nodes in the series-connected ring includes: series connecting the nodes in a North ring; and, series connecting the nodes in a South ring, opposite in direction from the North ring.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Micro Circuits Corporation
    Inventors: Glen Miller, Armin Schulz, Timothy P. Walker
  • Patent number: 7556439
    Abstract: The present invention provides a bi-direction optical assembly with two optical transmitting channels by a small-sized package and relatively low cost. In the bi-directional optical assembly, the first transmitting optical subassembly (TOSA) and the receiving optical subassembly (ROSA) are optically coupled with the optical fiber via the inner housing. While the second transmitting optical subassembly is optically coupled with the optical fiber via the outer housing slidable to the inner housing.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: July 7, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hiromi Nakanishi, Masaki Furumai
  • Publication number: 20090169206
    Abstract: The invention relates to a network comprising at least one host device having an interface card connected to a backplane of said host device, wherein said interface card comprises at least one cage, for receiving a pluggable module which performs signal processing of data comprised of at least one WDM channel transported via at least one optical fibre connected to said pluggable module in the optical domain.
    Type: Application
    Filed: December 12, 2008
    Publication date: July 2, 2009
    Applicant: ADVA AG Optical Networking
    Inventor: Lars Friedrich
  • Patent number: 7555220
    Abstract: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through these optical components The E/CDC components may be integrated in a photonic integrated circuit (PIC) chip.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Charles H. Joyner, Frank H. Peters, Fred A. Kish, Jr., Drew D. Perkins
  • Patent number: 7555178
    Abstract: A periodic optical filter for interleaving a plurality of optical signals to provide a multiplexed signal for transmission over an optical fiber is disclosed. The periodic optical filter includes a first optical filter constructed to receive at least two optical signals through an input port to provide at least one filtered optical signal. The periodic optical filter also includes a second optical filter, in communication with the first optical filter, constructed to receive the filtered optical signal from the first optical filter through an intermediate port to provide a multiplexed signal for transmission through an output port. At least one of the optical filters includes an infinite-impulse response filter and at least one of the optical filters includes a finite-impulse response filter. Methods of fabrication and methods of use including the periodic optical filter are disclosed.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventor: Wei Chen
  • Publication number: 20090162061
    Abstract: An optical transmission system for performing frequency synchronization even with a client signal with low frequency accuracy, and for transmitting thereof by accommodating/multiplexing without causing a bit slip. A new overhead is added to the entire client signal, and the signal including the new overhead being stuffed is transmitted in conjunction with a plurality of stuffing bits as an optical signal wherein a data storing bit for a negative stuffing, a stuffing information notification bit, and a stuff bits inserting bit for a positive stuffing in the payload are defined in plurality as stuffing bits for adjusting clock frequencies of the client signal in this new overhead.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 25, 2009
    Inventors: Yoshiaki Kisaka, Shigeki Aisawa, Yutaka Miyamoto, Masahito Tomizawa, Yasuyuki Endoh, Kazuhito Takei
  • Patent number: 7551855
    Abstract: A WDM network (R) comprises an optical fiber (F) connected to a hub (H) via an input of a demultiplexer (DX) having N outputs to communications stations (Si-Sn) able to deliver and/or receive spectral multiplexes of modulated optical signals with different wavelengths, via coupling means (CP, CP?, MXB). The communications stations (Sn?1) are adapted to deliver spectral multiplexes of modulated optical signals from a given one of P disjoint bands of wavelengths. At least one of the coupling means (MXB) is a 2×1 band multiplexer comprising i) an output connected to a downstream portion of the optical fiber (F), ii) a first input connected to one of the stations (then referred to as the “primary” station) and adapted to its band of wavelengths, and iii) a second input connected to an upstream portion of the optical fiber (F) and adapted to channels having wavelengths different from those of the channels passing through the first input.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: June 23, 2009
    Assignee: Alcatel
    Inventors: Thierry Zami, François Dorgeuille
  • Patent number: 7546037
    Abstract: Systems and methods for encoding information in the topology of superpositions of helical modes of light, and retrieving information from each of the superposed modes individually or in parallel. These methods can be applied to beams of light that already carry information through other channels, such as amplitude modulation or wavelength dispersive multiplexing, enabling such beams to be multiplexed and subsequently demultiplexed. The systems and methods of the present invention increase the number of data channels carried by a factor of the number of superposed helical modes.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: June 9, 2009
    Assignee: New York University
    Inventor: David G. Grier
  • Patent number: 7542678
    Abstract: A method and apparatus for providing a supervisory channel in a wavelength division multiplexing (WDM) fiber-optic communication system uses a controlled optical attenuator disposed in an optical path between a demultiplexer (DMUX) and a multiplexer (MUX) of an Optical Add-Drop Multiplexer (OADM.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: June 2, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Lutz Raddatz
  • Patent number: 7539418
    Abstract: A system that facilitates optical multiplexing and demultiplexing. The system includes an optical transmitter which is structured in the following way. A wavelength-splitting mechanism is coupled to the optical transmitter, which separates the wavelengths of light onto an array of input-optical-waveguide busses within the optical transmitter. An array of ring modulators within the optical transmitter is coupled to each optical-waveguide bus, wherein the input-end of a given ring modulator is coupled to a corresponding input-optical-waveguide bus. Output-optical-waveguide busses within the optical transmitter are coupled to the array of ring modulators, wherein the output-end of each ring modulator is coupled to a corresponding output-optical-waveguide bus. When a modulation signal is applied to a given ring modulator within the array of ring modulators, a specific wavelength of light is directed to the corresponding output-optical-waveguide bus.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: May 26, 2009
    Assignee: Sun Microsystems, Inc.
    Inventors: Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 7538935
    Abstract: A technique for generating variable pulse delays uses one or more nonlinear-optical processes such as cross-phase modulation, cross-gain modulation, self-phase modulation, four-wave mixing or parametric mixing, combined with group-velocity dispersion. The delay is controllable by changing the wavelength and/or power of a control laser. The delay is generated by introducing a controllable wavelength shift to a pulse of light, propagating the pulse through a material or an optical component that generates a wavelength dependent time delay, and wavelength shifting again to return the pulse to its original wavelength.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 26, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Alexander Gaeta, Jay E. Sharping, Chris Xu
  • Patent number: 7529441
    Abstract: An optical switch for routing arbitrary wavelengths between optical fibers in optical networks. The optical switch may include a highly wavelength dispersive element together with a spatially dispersive element to separate the wavelengths. Broadband switch inputs and outputs may be provided for adding and dropping arbitrary wavelengths at each node of the network. Fiber demultiplexers and multiplexers may also be used to reduce the impact of mirror array yield on switch functionality.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: May 5, 2009
    Assignee: Calient Networks, Inc.
    Inventors: Roger Jonathan Helkey, Shifu Yuan, Xuezhe Zheng
  • Publication number: 20090097851
    Abstract: An optical interconnect system for communication between computer system components is described. The system includes an optical data communication path and a plurality of optical taps, each optical tap optically coupling a respective computer system component to the optical data communication path. Each optical tap splits power from an optical signal received from the data communication path or from a light source generating a data signal from its associated computer component resulting in another optical signal. Each optical tap splits light in accordance with a respective power ratio relationship between reflectivity and transmissivity. The ratio relationships of the optical taps together provide a predetermined communication reliability metric for signals traversing the optical interconnect system between computer system components.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 16, 2009
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Michael Renne Tan, Terrel Morris, Norman Paul Jouppi, Shih-Yuan Wang
  • Patent number: 7519296
    Abstract: According to the present invention, for example, a WDM light containing 10 Gbit/s signal lights and 40 Gbit/s signal light arranged on wavelength grids at 25 GHz intervals is branched into two by an input side optical coupler to be sent to two routes. In one route side, only the 10 Gbit/s signal lights are demultiplexed by a 10 Gbit/s demultiplexer and a plurality of 1×2 optical switches, while in the other route side, only the 40 Gbit/s signal lights are demultiplexed by a 40 Gbit/s demultiplexer and a plurality of 1×2 optical switches. Further, the respectively demultiplexed signal lights are multiplexed for each modulating rate by a 10 Gbit/s multiplexer and a 40 Gbit/s multiplexer, and thereafter, further multiplexed by an output side optical coupler to become a WDM light. Thus, it becomes possible to arrange signal lights having different modulating rates at arbitrary wavelengths on wavelength grids at predetermined intervals.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: April 14, 2009
    Assignee: Fujitsu Limited
    Inventors: Akira Miura, Hiroki Ooi, Hiroshi Nakamoto
  • Patent number: 7515828
    Abstract: An optical network is disclosed that carries optical traffic in multiplexed wavelengths between a number of nodes. The network includes at least one light-trail associated with one of the wavelengths and established between a convener node and an end node, and including one or more intervening nodes. The network also includes an out-of-band control channel that is associated with a different wavelength than the light-trail. The control channel is used to communicate control messages to establish the light-trail and to allocate use of the light-trail by the convener node and the intervening nodes. Each of the convener node, the one or more intervening nodes, and the end node is operable to receive optical traffic in a number of multiplexed wavelengths from the optical network, drop a first copy of the multiplexed optical traffic from the optical network, and forward a second copy of the multiplexed optical traffic on the optical network.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: April 7, 2009
    Assignee: Fujitsu Limited
    Inventors: Ashwin Anil Gumaste, Paparao Palacharla, Susumu Kinoshita
  • Patent number: 7515833
    Abstract: An all optical network for optical signal traffic has at least a first ring with at least one transmitter and one receiver. The first ring includes a plurality of network nodes. At least a first add/drop broadband coupler is coupled to the first ring. The broadband coupler includes an add port and a drop port to add and drop wavelengths to and or from the first ring, a pass-through direction and an add/drop direction. The first add/drop broadband coupler is configured to minimize a pass-through loss in the first ring and is positioned on the first ring.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: April 7, 2009
    Assignee: OpVista Incorporated
    Inventor: Winston I. Way
  • Publication number: 20090034977
    Abstract: A system for multiplexing a plurality of high speed light emitting diodes (HSLEDs) includes a plurality of HSLEDs. Each of the plurality of HSLEDs emits a wavelength of light at a speed greater than or equal to about 1 Gigabyte per second. A multiplexer receives the wavelengths of light from the plurality of HSLEDs and combines the wavelengths of light for transmission over a channel. A method of multiplexing the plurality of HSLEDs is also disclosed.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Inventors: Michael Renne Ty Tan, Shih-Yuan Wang, Alexandre M. Bratkovski, Marco Fiorentino, Raymond G. Beausoleil
  • Patent number: 7480459
    Abstract: The present invention provides a wavelength division multiplexing transmission system for separating wavelength division multiplexing signals, where signal lights with different bit rates are wavelength division multiplexed, according to the bit rate, and processing the separated signals individually. The wavelength division multiplexed signals, where a low-speed bit rate signal is disposed in an odd channel group and a high-speed bit rate signal is disposed in an even channel group, are demultiplexed into a low-speed signal group and a high-speed signal group by an unequal bandwidth interleaver. The low-speed signal group is processed (e.g. demultiplexing, dispersion compensation) by an optical device appropriate for the low-speed signals, and the high-speed signal group is processed by an optical device appropriate for the high-speed signals.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: January 20, 2009
    Assignee: Fujitsu Limited
    Inventors: Kentaro Nakamura, Hiroki Ooi, George Ishikawa
  • Patent number: 7471902
    Abstract: An object of the invention is to provide a wavelength allocation method of signal light, which is capable of consecutively allocating signal lights efficiently on wavelength grids, while suppressing degradation in transmission characteristic due to the generation of four-wave mixed light in an optical transmission path. To this end, according to the wavelength allocation method of signal light, the consecutive allocation wavelength number of signal lights to be allocated consecutively on the wavelength grids, is set to different values according to wavelength bands, based on wavelength dependence of a generation amount of four-wave mixed light on the optical transmission path, and the signal lights are allocated consecutively on the wavelength grids in accordance with this consecutive allocation wavelength number, but the signal light is not allocated on at bas one wavelength grid adjacent to the wavelength grids on which a group or signal light are allocated consecutively.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: December 30, 2008
    Assignee: Fujitsu Limited
    Inventors: Akira Miura, Takao Naito, Toru Katagiri
  • Publication number: 20080310845
    Abstract: A wavelength division multiplexer and etendue conserved optics are used to combine multiple wavelength LED lights into a combined light. The combined light, with higher intensity and higher power than the light from an individual LED, is used to excite a wavelength conversion material such as phosphors to generate a high brightness and high power light. Light generated by multiple LEDs of the same wavelength may be coupled into a optical fiber bundle before inputting it into the wavelength-division multiplexer, further increasing the brightness and power. The wavelength conversion material may generate light of three different color under excitation by different LED lights, or a white light with higher brightness and higher power. Such a light source can be used in image display devices such as a projector or in illumination systems.
    Type: Application
    Filed: June 13, 2007
    Publication date: December 18, 2008
    Applicant: YLX CORP.
    Inventor: Li Xu
  • Patent number: 7466881
    Abstract: An optical switch includes an optical source; a plurality of tunable optical resonators or tunable waveguides in optical communication with the optical source; and a tuning device configured to selectively route an optical beam from the optical source to at least one optical destination by tuning at least one of the optical resonators or tunable waveguides, in optical communication with at least one optical destination, to a wavelength characteristic of the optical beam.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: December 16, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Jong-Souk Yoo
  • Patent number: 7466921
    Abstract: Disclosed is a drop-and-continue device (84), provided between a signal converter (85) which supplies a signal to an end user and a wavelength-division multiplexing device (83) which comprises an optical demultiplexer (831) for separating an optical signal of a desired wavelength from an optical signal supplied from a head end station (82) and an optical multiplexer (832) for supplying an optical signal to a wavelength-division multiplexing device at a subsequent stage, comprising: an optical receiver (841) which converts the optical signal separated by the optical demultiplexer into an electrical signal; a transmitter (844) which transmits the electrical signal to the end user via the signal converter (85); an optical transmitter (845) which supplies an optical signal to the optical multiplexer (832); and a loopback processor (842) which loops the electrical signal output from the optical receiver back to the optical transmitter, thereby providing a drop-and-continue device that can easily add capabilities b
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: December 16, 2008
    Assignee: Fujitsu Limited
    Inventor: Hatsumi Haishima
  • Patent number: 7457495
    Abstract: A method of filtering optical signals (300) utilizing an optical fiber (100A-100D). The method of filtering optical signals (300) includes the steps (304) selecting an optical fiber (100A-100D) coupled to a source of optical signals, (306) disposing a core (102) in the bore (103) of the optical fiber (100A-100D) formed of a core material (105), (308) selecting a core material (105) to provide a waveguide within the optical fiber (100A-100D), (310) disposing an optical grating (114-1) in a first optical cladding layer (104) disposed about the core (102), (312) propagating an optical signal within the optical fiber (100A-100D) guided substantially within the core (102), (314) modifying a propagation path of selected wavelengths comprising said optical signal with the optical grating (114-1), and (316) determining selected wavelengths for which the propagation path is modified by selectively varying an energetic stimulus to the core (102) thereby tuning the waveguide.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: November 25, 2008
    Assignee: Harris Corporation
    Inventors: Timothy E. Dimmick, Kevin H. Smith, Douglas J. Markos
  • Patent number: 7457544
    Abstract: A group delay compensation equalizer is disclosed that employs a single channel four-port WDM device for compensating the group delay experienced by a plurality of wavelengths transmitted over different paths. The transmission differential between two wavelengths is compensated by transmitting the two wavelengths through two different paths where the fiber length in reflecting the second wavelength is equal to the transmission time difference between the two wavelengths. The single channel four-port group delay equalizer effectively provides a unidirectional signal flow, as compared to the conventional equalizer that transmits optical signals bi-directionally. The present invention reduces the cost of a group delay equalizer by simplifying the use of multiple three-port WDM devices into a single channel four-port WDM device.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 25, 2008
    Assignee: Avanex Corporation
    Inventors: John Feng, Xuehua Wu, Sanjai Parthasarathi, Giovanni Bararossa
  • Patent number: 7454142
    Abstract: A data transmission method and apparatus is disclosed by which bidirectional transmission of a plurality of optical signals obtained by conversion of a plurality of serial digital data can be achieved efficiently using a single common optical signal transmission cable. A plurality of serial data based on digital video signals from a camera section are converted into a plurality of optical signals using a CWDM technique and then multiplexed into a multiplexed optical signal. The multiplexed optical signal is signaled to a signal transmission cable through a bidirectional WDM coupler disposed at a first end of the optical signal transmission cable so as to be transmitted from the first end to a second end of the optical signal transmission cable.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: November 18, 2008
    Assignee: Sony Corporation
    Inventor: Shigeyuki Yamashita
  • Patent number: 7450851
    Abstract: A system and method for modularly scalable architecture for optical networks are provided. In one embodiment, a node for an optical network comprises a plurality of in-line switches connected to an optical ring and operable in a first state to both pass an optical signal received from the optical ring to an associated coupler and pass an optical signal received from the associated coupler to the optical ring. The optical signal carries traffic in a plurality of channels. A drop coupler is coupled to a first in-line switch and is operable to receive an optical signal from the in-line switch where the switch is in the first state, pass a first copy of the optical signal back to the in-line switch for passing to the optical ring, and drop a second copy of the optical signal to a distributing element. The distributing element is operable to receive the second copy and pass traffic in one or more channels of the second copy.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: November 11, 2008
    Assignee: Fujitsu Limited
    Inventors: Ashwin Anil Gumaste, Daniel Bihon
  • Patent number: 7450850
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 11, 2008
    Assignee: AT&T Corp.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7447436
    Abstract: A transmitter subsystem generates an optical signal which contains multiple subbands of information. The subbands have different polarizations. For example, in one approach, two or more optical transmitters generate optical signals which have different polarizations. An optical combiner optically combines the optical signals into a composite optical signal for transmission across an optical fiber. In another aspect, each optical transmitter generates an optical signal containing both a lower optical sideband and an upper optical sideband (i.e., a double sideband optical signal). An optical filter selects the upper optical sideband of one optical signal and the lower optical sideband of another optical signal to produce a composite optical signal.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 4, 2008
    Assignee: Forster Energy LLC
    Inventors: Ting K. Yee, Peter H. Chang, Chin-Sheng Tarng, Gregory M. Cutler, Slava Yazhgur, Ji Li, Laurence J. Newell, James F. Coward, Michael W. Rowan, Norman L. Swenson, Matthew C. Bradshaw
  • Patent number: 7447433
    Abstract: An optical communication device enabling confirmation of frames flowing through a communication line without affecting such line. The optical communication device includes a first conversion unit that converts a first optical signal transmitting a first frame group including a first maintenance frame into a first electrical signal; a frame duplication unit that receives the first electrical signal, generates a second electrical signal that transmits the first frame group, and outputs the first electrical signal; a second conversion unit that converts the first electrical signal output by the frame duplication unit into a second optical signal; and a third conversion unit that converts the second electrical signal generated by the frame duplication unit into a third optical signal.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: November 4, 2008
    Assignee: Allied Telesis Holdings K.K.
    Inventor: Seiho Itano
  • Patent number: 7444055
    Abstract: The invention describes an integrated-photonics arrangement, implementable in a multi-guide vertical integration structure composed from III-V semiconductors and grown in one epitaxial growth run, that allows for vertical and lateral splitting of optical signals co- or bi-directionally propagating in the common passive waveguide into plurality of the vertically integrated passive or active wavelength-designated waveguides, therefore, enabling the wavelength-designated waveguides operating in different wavelengths to be monolithically integrated onto the same substrate and connected to the shared passive waveguide.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 28, 2008
    Assignee: OneChip Photonics Inc.
    Inventors: Valery Tolstikhin, Yury Logvin, Kirill Pimenov
  • Patent number: 7444047
    Abstract: A multiplexing optical system includes collimator lenses, a first condensing lens, a second condensing lens and an optical fiber. The collimator lenses collimate divergent laser beams that have been emitted from semiconductor lasers. The first condensing lens condenses laser beams transmitted through the collimator lenses in only one of a plane including the stripe width direction of the semiconductor lasers and a plane including a direction perpendicular to the stripe width direction. The second condensing lens condenses laser beams transmitted through the first condensing lens. The optical fiber is arranged in such a manner that the condensed laser beams enter the optical fiber. In the multiplexing optical system, an anamorphic lens is used as the second condensing lens, and the anamorphic lens condenses the laser beams in the two planes in cooperation with the first condensing lens.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 28, 2008
    Assignee: FUJIFILM Corporation
    Inventors: Shinichiro Sonoda, Hiromitsu Yamakawa
  • Patent number: 7440701
    Abstract: An optical communication system includes a first wavelength filter, a bidirectional amplifier, and a second wavelength filter. The first wavelength filter can receive a downstream broad-spectrum signal and output a downstream spectrum-sliced signal in response to the downstream broad-spectrum signal. The bidirectional amplifier can amplify the downstream spectrum-sliced signal. The second wavelength filter can receive the amplified downstream spectrum-sliced signal from the bidirectional amplifier and route the amplified downstream spectrum-sliced signal. The second wavelength filter can also output an upstream spectrum-sliced signal in response to an upstream broad-spectrum signal. The bidirectional amplifier can amplify the upstream spectrum-sliced signal to product an amplified upstream spectrum-sliced signal that is subsequently routed by the first wavelength filter.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: October 21, 2008
    Assignee: Broadway Networks, Ltd.
    Inventors: Wen Li, Qing Zhu
  • Patent number: 7440169
    Abstract: A method for amplifying a time-varying optical signal comprising the steps of: generating an auxiliary optical signal the amplitude of which is chosen to be complementary to at least the envelope of the amplitude of the optical signal, superimposing the auxiliary optical signal to the optical signal resulting in a compound signal having an amplitude which is constant at least on average, amplifying the compound signal, and removing the amplified auxiliary optical signal from the amplified compound signal; as well as an optical amplification unit for carrying out the method.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 21, 2008
    Assignee: Alcatel
    Inventors: Thomas Pfeiffer, Peter Vetter, Ingrid Van De Voorde
  • Patent number: 7437074
    Abstract: A WDM transmission system is provided which can multiplex/demultiplex and transmit wavelength division multiplexing signals, where signal lights have a different signal bandwidth, in a status without much deterioration of transmission quality. In the WDM transmission system, an optical receiver includes a demultiplexing unit which demultiplexes the wavelength division multiplexing signals and outputs the demultiplexed signal lights from a plurality of output ports, wherein each output port has transmission characteristics to be set such that the bandwidth of the transmission band where the light transmits and the bandwidth of the non-transmission band where light does not transmit are different, and the transmission band substantially matches with the signal band of the signal lights that are output from the output port out of the received wavelength division multiplexing signals.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: October 14, 2008
    Assignee: Fujitsu Limited
    Inventors: Kentaro Nakamura, Takafumi Terahara
  • Patent number: 7437075
    Abstract: An integrated reconfigurable planar lightwave add-drop (RPLAD) multiplexer for use in a WDM optical communication system is arranged such that each drop port can receive any wavelength channel and each add port can transmit on any wavelength channel. Drop port reconfigurability is achieved by integrating a cross-connect functionality into the RPLAD, illustratively using optical 1×2 switches to perform “space” switching. The switches are controlled from a remotely located node controller. Add port reconfigurability is achieved by having tunable lasers and a wavelength independent optical power combiner, which may be a star coupler that is integrated with the other above-mentioned elements.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: October 14, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Christopher Richard Doerr, David S Levy, Timothy O. Murphy, Alice Elizabeth White
  • Patent number: 7437083
    Abstract: A wavelength converter for binary optical signals includes an interferometer structure (110) for generating an output signal by modulating a received local signal (LS) according to the modulation of a fUrther received first input signal (IS 1). When such interferometer structures (110) are operated in a standard mode it is known in the art to control the power of the input signal such that the extinction ratio of the output signal is kept minimal. The invention also controls the power of the input signals to achieve the minimal extinction ratio when the wavelength converter and in particular the interferometer structure (110) is operated in a differential mode receiving two input signals.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 14, 2008
    Assignee: ALCATEL
    Inventors: Bruno Lavigne, Olivier Leclerc, Jean-Luc Moncelet, Alex Bombrun, Jean-Baptiste Pomet, Fabien Seyfert
  • Patent number: 7426347
    Abstract: An apparatus for shared optical performance monitoring (OPM) is provided. A wavelength sensitive device receives light at an input port and routes it wavelength selectively to a set of output ports. To perform optical performance monitoring on the output ports, a monitoring component of each output signal is extracted, and these monitoring components are then combined. A single OPM function is then performed on the combined signal. However, with knowledge of the wavelengths that were included in each output signal, a virtual OPM function can be realized for each output port. The per port functionality can include total power per port, power per wavelength per port, variable optical attentuation, dynamic gain equalization, the latter two examples requiring feedback.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 16, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Alan Hnatiw, Sheldon Walklin, Thomas Ducellier
  • Patent number: 7421168
    Abstract: A signal channelizer (10) includes an input waveguide (14) carrying an inputted signal (20) having a plurality of wavelengths. The input waveguide (14) has an input port (22) for receiving the inputted signal (20). A plurality of ring resonators (12) for wavelength selection are arranged in parallel and coupled along the input waveguide (14) for receiving the inputted signal (20) from the input waveguide (14). The plurality of ring resonators (12) passes a selected wavelength signal to their respective output end (56). An output waveguide (16) passes a desired signal from one or more ring resonators (12). The output waveguide (16) is tapped with couplers (46) for providing a desired signal to feed the output end (56). A detector (32) associated with the output end (56) of each ring resonators (12) produces the desired RF output signal (34) representative of the desired RF band.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: September 2, 2008
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Anastasios P. Goutzoulis
  • Patent number: 7421203
    Abstract: A method for transmitting a packet in a wireless access network based on a wavelength identification code scheme. The method comprises the steps of connecting n number of RNCs (Radio Network Controllers) to one sub-ring where the “n” is a positive integer, and assigning a unique wavelength to each RNC; identifying a packet to be transmitted between the RNCs located within a same sub-ring using the assigned unique wavelength, and transmitting the packet through an SRC (Sub-Ring Controller); connecting m number of SRCs to one main-ring where the “m” is a positive integer, and assigning a unique wavelength to each SRC; and detaching a wavelength identification code from the packet to be transmitted between the RNCs located within different sub-rings, and transmitting the packet having the encapsulated wavelength identification code through an MRC (Main-Ring Controller).
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 2, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Jea Hoon Yu, Min Ho Kang
  • Patent number: 7412171
    Abstract: An optical ring network architecture including a number (N) of multi-add/drop filters, such as filters formed using symmetrical pairs of frequency routers. Each multi-add/drop filter is coupled to two other multi-add/drop filters using N?2 transmission media, such as optical fibers, to form a ring. The network also includes a number (N) of terminal stations associated with the multi-add/drop filters. A terminal station (p) is coupled with, and receives information from, its associated multi-add/drop filter (p) through a single optical fiber. In addition, the terminal station p is coupled with, and transmits information in a first direction around the ring to, a multi-add/drop filter p+1 through a single optical fiber. Communications from terminal station p to each other terminal station in the first direction are assigned one of N?1 wavelengths such that no two wavelengths on a given optical fiber are associated with communications between terminal stations in the same direction.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: August 12, 2008
    Assignee: AT&T Corp.
    Inventor: Bernard Glance
  • Publication number: 20080187315
    Abstract: The bi-directional optical module, which installs the receiver and the transmitter within one package, is disclosed with an improved optical crosstalk. The optical module provides a lens, a WDM filter and a photodiode (PD) on an axis of the single mode fiber coupled with the module, while, a laser diode (LD) in a position perpendicular to the optical axis. The WDM filter provides a multi-layered optical film on a primary surface and an edge in a side far from the LD and the (PD) makes an obtuse angle to the primary surface so as to prevent light from the LD and reflected at this edge from entering the PD.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 7, 2008
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Hiromi Nakanishi, Toshiaki Kihara