Nitride Containing Patents (Class 419/13)
  • Patent number: 10221698
    Abstract: A blade includes an airfoil section extending between leading and trailing edges, first and second opposed sides each joining the leading and trailing edges, and an inner end and a free tip end. The airfoil section is formed of a metal-based material with a polymeric overcoat on at least one of the leading edge, trailing edge, first side and second side. The airfoil section includes an abrasive tip at the free tip end. The abrasive tip has a composition selected with respect to heat-induced delamination of the polymeric overcoat from frictional heat generated during rubbing of the abrasive tip.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 5, 2019
    Assignee: United Technologies Corporation
    Inventors: Christopher W. Strock, Russell A. Beers
  • Patent number: 10174405
    Abstract: The present invention refers to a brass alloy, wherein Al2O3 is present in the alloy in the form of ceramic nanoparticles. Furthermore the invention refers to a method for production of the brass alloy.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: January 8, 2019
    Assignee: Nordic Brass Gusum AG
    Inventors: Inge Svenningsson, Jan Nilsson
  • Patent number: 9849534
    Abstract: The present invention relates to a blend of at least one boron source and at least one silicon source, wherein the blend comprises boron and silicon in a weight ratio boron to silicon within a range from about 5:100 to about 2:1, wherein silicon and boron are present in the blend in at least 25 wt %, and wherein the at least one boron source and the at least one silicon source are oxygen free except for inevitable amounts of contaminating oxygen, and wherein the blend is a mechanical blend of powders, and wherein particles in the powders have an average particle size less than 250 ?m. The present invention relates further to a composition comprising the blend a substrate applied with the blend, a method for providing a brazed product, and uses.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 26, 2017
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Patent number: 9650701
    Abstract: A cermet and method of forming the cermet, the cermet including a Sialon and an alloy comprising nickel aluminide and boron, wherein the Sialon includes silicon aluminum oxynitride, and wherein at least a portion of the Sialon is bonded with at least a portion of the alloy. In one example, the cermet is about 70 weight percent to about 90 weight percent of the Sialon, and about 10 weight percent to about 30 weight percent of the alloy.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 16, 2017
    Assignee: Cameron International Corporation
    Inventor: Michael E. Parsons
  • Patent number: 9499441
    Abstract: A cutting tool made of cubic boron nitride-based sintered material that exhibits excellent chipping resistance and fracturing resistance in the intermittent cutting work on high hardness steel is provided. In the cutting tool, the average size of the cubic boron nitride particles is 0.5 to 8 ?m. A portion of the cubic boron nitride particles are coated with aluminum oxide films having an average thickness of 10 to 90 nm on surfaces thereof, and a rift is partially formed in the aluminum oxide film. The average rift formation ratio satisfies the formula 0.02?h/H?0.08, wherein h is a breadth of the rift of the aluminum oxide film and H is a girth of the particle of cubic boron nitride.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 22, 2016
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Masahiro Yano, Tadakazu Ohashi, Yosuke Miyashita
  • Patent number: 8999228
    Abstract: Process for manufacturing a reinforced alloy comprising a metallic matrix, dispersed in the volume of which are nanoparticles, at least 80% of which have a mean size from 1 nm to 50 nm, the nanoparticles comprising at least one nitride chosen from the nitrides of at least one metallic element M belonging to the group consisting of Ti, Zr, Hf and Ta. The process comprises the following successive steps: a) plasma nitriding of a base alloy is carried out at a temperature from 200° C. to 700° C. in order to insert interstitial nitrogen therein, the base alloy incorporating 0.1% to 1% by weight of the metallic element M and being chosen from an austenitic, ferritic, ferritic-martensitic or nickel-based alloy; b) the interstitial nitrogen is diffused within the base alloy at a temperature of 350° C. to 650° C.; and c) the nitride is precipitated at a temperature from 600° C. to 900° C. over a duration of 10 minutes to 10 hours, in order to form the nanoparticles dispersed in the reinforced alloy.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 7, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Yann De Carlan, Mathieu Ratti
  • Patent number: 8993132
    Abstract: A cubic boron nitride sintered body tool has, at least at a cutting edge, a cubic boron nitride sintered body composed of a cubic boron nitride particle and a binder phase. The binder phase contains at least Al2O3 and a Zr compound. On any straight line in the sintered body, the mean value of a continuous distance occupied by Al2O3 is 0.1-1.0 ?m, and the standard deviation of the continuous distance occupied by Al2O3 is not more than 0.8. On the straight line, X/Y is 0.1-1 where X represents the number of points of contact between Al2O3 and the Zr compound, and Y represents the sum of the number of points of contact between Al2O3 and cBN and the number of points of contact between Al2O3 and binder phase component(s) other than Al2O3 and the Zr compound.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Machiko Abe, Satoru Kukino
  • Publication number: 20150063930
    Abstract: The present invention relates to a method of making a cemented carbide comprising mixing in a slurry a first powder fraction and a second powder fraction, subjecting the slurry to milling, drying, pressing and sintering. The first powder fraction is made from cemented carbide scrap recycled using the Zn recovery process, comprising the elements W, C, Co, and at least one or more of Ta, Ti, Nb, Cr, Zr, Hf and Mo, and the second powder fraction comprising virgin raw materials of WC and possibly carbides and/or carbonitrides of one or more of Cr, Zr, W, Ta, Ti, Hf and Nb. The first powder fraction is subjected to a pre-milling step, prior to the step of forming the slurry, to obtain an average grain size of between 0.2 to 1.5 ?m.
    Type: Application
    Filed: December 19, 2012
    Publication date: March 5, 2015
    Inventors: Andreas Hedin, Susanne Norgren, Nina Sjodahl, Jose Garcia
  • Patent number: 8961719
    Abstract: A method for making a treated super-hard structure, the method including providing a super-hard structure comprising super-hard material selected from polycrystalline cubic boron nitride (PCBN) material or thermally stable polycrystalline diamond (PCD) material; subjecting the super-hard structure to heat treatment at a treatment temperature of greater than 700 degrees centigrade at a treatment pressure at which the super-hard material is not thermodynamically stable, for a treatment period of at least about 5 minutes to produce the treated super-hard structure.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Element Six Limited
    Inventors: Stig Åke Andersin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Lars-Ivar Nilsson
  • Patent number: 8936751
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: January 20, 2015
    Inventor: Robert G. Lee
  • Publication number: 20150004043
    Abstract: An alloy and method of forming the alloy are provided. The alloy includes a matrix phase, and a population of particulate phases dispersed within the matrix. The matrix includes iron and chromium; and the population includes a first subpopulation of particulate phases and a second subpopulation of particulate phases. The first subpopulation of particulate phases include a complex oxide, having a median size less than about 20 nm, and present in the alloy in a concentration from about 0.1 volume percent to about 5 volume percent. The second subpopulation of particulate phases have a median size in a range from about 30 nm to about 10 microns, and present in the alloy in a concentration from about 1 volume percent to about 15 volume percent.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Richard DiDomizio, Matthew Joseph Alinger, Laura Cerully Dial
  • Publication number: 20150004044
    Abstract: An alloy and method of forming the alloy are provided. The alloy includes a matrix phase, and a multimodally distributed population of particulate phases dispersed within the matrix. The matrix includes iron and chromium, and the population includes a first subpopulation of particulate phases and a second subpopulation of particulate phases. The first subpopulation of particulate phases include a complex oxide, having a median size less than about 15 nm, and present in the alloy in a concentration from about 0.1 volume percent to about 5 volume percent. The second subpopulation of particulate phases have a median size in a range from about 25 nm to about 10 microns, and present in the alloy in a concentration from about 0.1 volume percent to about 15 volume percent. Further embodiments include articles, such as turbomachinery components and fasteners, for example, that include the above alloy, and methods for making the alloy.
    Type: Application
    Filed: November 8, 2013
    Publication date: January 1, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Laura Cerully Dial, Matthew Joseph Alinger, Richard DiDomizio
  • Publication number: 20140356215
    Abstract: Provided is a heat-resistant alloy that satisfies physical properties such as proof stress and hardness adapted to an increase in the melting point of a welding object compared to conventional alloys. A heat-resistant alloy of this invention includes a first phase, as a main component, containing a Mo or W metal phase, a second phase containing a Mo—Si—B-based alloy, and a third phase containing titanium carbonitride, wherein the balance is inevitable compounds and inevitable impurities.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 4, 2014
    Applicant: A.L.M.T.CORP.
    Inventors: Shigekazu Yamazaki, Ayuri Tsuji, Masahiro Kato, Akihiko Ikegaya
  • Publication number: 20140355178
    Abstract: A capacitor anode including a tungsten sintered body having an average pore diameter of 0.3 ?m or less; and a method for producing the anode. The method includes forming tungsten powder into a molded body having a density (Dg) of 8 g/cm3 or more and then sintering the molded body to a density (Ds) of at least 1.15 times the density (Dg) to form a tungsten sintered body having an average pore diameter of 0.3 ?m or less.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 4, 2014
    Applicant: SHOWA DENKO K.K.
    Inventor: Kazumi Naito
  • Patent number: 8889065
    Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: November 18, 2014
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
  • Publication number: 20140271321
    Abstract: The present invention relates to a method of making a cemented carbide or a cermet body comprising the steps of first forming a powder blend comprising powders forming hard constituents and metal binder. The powder blend is then subjected to a mixing operation using a non-contact mixer wherein acoustic waves achieving resonance conditions to form a mixed powder blend and then subjecting said mixed powder blend to a pressing and sintering operation. The method makes it possible to maintain the grain size, the grain size distribution and the morphology of the WC grains.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 18, 2014
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Carl-Johan Maderud, Tommy Flygare, Michael Carpenter, Jane Smith
  • Publication number: 20140233154
    Abstract: A method of manufacturing an anode body of a capacitor. An anode body of a capacitor is obtained by sintering a molded body of tungsten powder, which includes sintering the molded body by exposing the molded body to silicon vapor so that at least a part of the surface of the obtained sintered body is made to be tungsten silicide.
    Type: Application
    Filed: August 29, 2012
    Publication date: August 21, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazumi Naito, Shoji Yabe
  • Patent number: 8795585
    Abstract: There is provided cryogenic milled nanophase copper alloys and methods of making the alloys. The alloys are fine grained having grains in the size range from about 2 to about 100 nanometers, and greater. The nanophase alloys possess desirable physical properties stemming from the fine grain size, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventors: Barun Majumdar, James D. Cotton, Clifford C. Bampton
  • Publication number: 20140212319
    Abstract: A high strength titanium alloy member with superior fatigue resistance, and a production method therefor, are provided. The production method includes preparing a raw material made of titanium alloy, nitriding the raw material to form a nitrogen-containing raw material by generating a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the raw material, mixing the raw material and the nitrogen-containing raw material to yield a nitrogen-containing mixed material, sintering the nitrogen-containing mixed material to obtain a sintered titanium alloy member by bonding the material together and uniformly diffusing nitrogen in solid solution from the nitrogen-containing raw material to the entire interior portion of the sintered titanium alloy member, hot plastic forming and/or heat treating the sintered titanium alloy member to obtain a processed member, and surface treating the processed member to provide compressive residual stress.
    Type: Application
    Filed: April 27, 2012
    Publication date: July 31, 2014
    Applicant: NHK SPRING CO., LTD.
    Inventors: Tohru Shiraishi, Yoshiki Ono, Yuji Araoka
  • Patent number: 8784728
    Abstract: There is provided cryogenic milled copper alloys and methods of making the alloys. The alloys are fine grained and possess desirable physical properties stemming from the fine grain size. Embodiments include desirable physical properties, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Clifford C. Bampton, James D. Cotton, Barun Majumdar
  • Publication number: 20140154126
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 5, 2014
    Inventor: Robert G. Lee
  • Publication number: 20140147221
    Abstract: A target for the deposition of mixed crystal layers with at least two different metals on a substrate by means of arc vapor deposition (arc PVD), wherein the target includes at least two different metals. To produce mixed crystal layers which are as free as possible of macroparticles (droplets) according to the invention at least the metal with the lowest melting point is present in the target in a ceramic compound, namely as a metal oxide, metal carbide, metal nitride, metal carbonitride, metal oxynitride, metal oxycarbide, metal oxycarbonitride, metal boride, metal boronitride, metal borocarbide, metal borocarbonitride, metal borooxynitride, metal borooxocarbide, metal borooxocarbonitride, metal oxoboronitride, metal silicate or mixture thereof, and at least one metal different from the metal with the lowest melting point is present in the target in elemental (metallic) form.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 29, 2014
    Applicant: WALTER AG
    Inventor: Veit Schier
  • Publication number: 20140086782
    Abstract: A method for producing a composite material includes providing a composition comprising at least one hardness carrier and a base binder alloy, and sintering the composition. The base binder alloy comprises from 66 to 93 wt.-% of nickel, from 7 to 34 wt.-% of iron, and from 0 to 9 wt.-% of cobalt, wherein the wt.-% proportions of the base binder alloy add up to 100 wt.-%.
    Type: Application
    Filed: May 24, 2012
    Publication date: March 27, 2014
    Applicant: H.C. STARCK GMBH
    Inventor: Benno Gries
  • Publication number: 20140086783
    Abstract: Process for manufacturing a reinforced alloy comprising a metallic matrix, dispersed in the volume of which are nanoparticles, at least 80% of which have a mean size from 1 nm to 50 nm, the nanoparticles comprising at least one nitride chosen from the nitrides of at least one metallic element M belonging to the group consisting of Ti, Zr, Hf and Ta. The process comprises the following successive steps: a) plasma nitriding of a base alloy is carried out at a temperature from 200° C. to 700° C. in order to insert interstitial nitrogen therein, the base alloy incorporating 0.1% to 1% by weight of the metallic element M and being chosen from an austenitic, ferritic, ferritic-martensitic or nickel-based alloy; b) the interstitial nitrogen is diffused within the base alloy at a temperature of 350° C. to 650° C.; and c) the nitride is precipitated at a temperature from 600° C. to 900° C. over a duration of 10 minutes to 10 hours, in order to form the nanoparticles dispersed in the reinforced alloy.
    Type: Application
    Filed: December 22, 2011
    Publication date: March 27, 2014
    Inventors: Yann De Carlan, Mathieu Ratti
  • Publication number: 20140065003
    Abstract: The following specification describes a process for improving the hardness and other mechanical properties of iron and steel Powder Metallurgy (P/M) parts. The first stage of the novel process consists of heating to and holding at a temperature between 590° C. to 720° C. unalloyed or low alloyed P/M parts in an atmosphere containing a Nitrogen donor such as Ammonia in either batch or continuous furnaces. The concentration of ammonia during the first stage is maintained between 3% to 15%. The second stage of the inventive process is an ‘aging’ process which may be conducted either as an in-line process or as a stand-alone independent process that involves the heating of P/M parts that have fully or partially cooled after the first stage to a temperature between 180° C. and 660° C. in an atmosphere of plain air or Nitrogen.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Inventor: Gopinath Narasimhan
  • Patent number: 8663359
    Abstract: Methods of forming larger sintered compacts of PCD and other sintered ultrahard materials are disclosed. Improved solvent metal compositions and layering of the un-sintered construct allow for sintering of thicker and larger high quality sintered compacts. Jewelry may also be made from sintered ultrahard materials including diamond, carbides, and boron nitrides. Increased biocompatibility is achieved through use of a sintering metal containing tin. Methods of sintering perform shapes are provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 4, 2014
    Assignee: Dimicron, Inc.
    Inventors: David P. Harding, Mark E. Richards, Richard H. Dixon, Victoriano Carvajal, Bao-Khang Ngoc Nguyen, German A. Loesener, A. Ben Curnow, Troy J. Medford, Trenton T. Walker, Jeffery K. Taylor, Bill J. Pope
  • Publication number: 20140056749
    Abstract: A low-chromium hot-work tool steel consisting of (in wt-%): C 0.08-0.40, N 0.015-0.30, C+N 0.30-0.50, Cr 1-4, Mo 1.5-3, V 0.8-1.3, Mn 0.5-2, Si 0.1-0.5, optionally Ni<3, Co?5, B<0.01, Fe balance apart from impurities, and a process for making a low-chromium hot-work tool steel article having increased tempering resistance.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 27, 2014
    Applicant: UDDEHOLMS AB
    Inventors: Jürgen Andersson, Henrik Jesperson, Hans-Olof Andrén, Lars-Erik Svensson
  • Patent number: 8647561
    Abstract: Embodiments of the present invention include methods of producing a composite article. A method comprises introducing a first powdered metal grade from a feed shoe into a first portion of a cavity in a die and a second powdered metal grade from the feed shoe into a second portion of the cavity, wherein the first powder metal grade differs from the second powdered metal grade in chemical composition or particle size. Further methods are also provided. Embodiments of the present invention also comprise composite inserts for material removal operations. The composite inserts may comprise a first region and a second region, wherein the first region comprises a first composite material and the second region comprises a second composite material.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: February 11, 2014
    Assignee: Kennametal Inc.
    Inventors: X. Daniel Fang, David J. Wills, Prakash K. Mirchandani
  • Publication number: 20140010700
    Abstract: A method for producing a high strength aluminum alloy brackets, cases, tubes, ducts, beams, spars and other parts containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. The billet is extruded using an extrusion die shaped to produce the component.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 9, 2014
    Inventor: Awadh B. Pandey
  • Patent number: 8535407
    Abstract: The invention relates to a hard-metal comprising at least 13 volume % of a metal carbide selected from the group consisting of TiC, VC, ZrC, NbC, MoC, HfC, TaCl WC or a combination thereof, a binder phase comprising one or more of iron-group metals or alloy thereof and 0.1 to 10 weight % Si and 0.1 to 10 weight % Cr and having a liquidus temperature at 1280 degrees C. or lower and 3 to 39 volume % of diamond or cBN grains coated with a protective coating or a mixture thereof and a process for making the hard-metal.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 17, 2013
    Assignee: Element Six GmbH
    Inventors: Igor Yuri Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20130149183
    Abstract: A production method for a titanium alloy member includes preparing a titanium alloy material for sintering as a raw material of a sintered body; nitriding the titanium alloy material for sintering, thereby forming a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the titanium alloy material for sintering and yielding a nitrogen-containing titanium alloy material for sintering; mixing the titanium alloy material for sintering and the nitrogen-containing titanium alloy material for sintering, thereby yielding a titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material; sintering the titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material, thereby bonding the material each other and dispersing nitrogen contained in the nitrogen-containing titanium alloy material for sintering in a condition in which nitrogen is uniformly dispersed into an entire inner portion of the sintered body by solid solution.
    Type: Application
    Filed: August 15, 2011
    Publication date: June 13, 2013
    Applicant: NHK SPRING CO., LTD.
    Inventors: Yuji Araoka, Tohru Shiraishi, Yoshiki Ono
  • Patent number: 8460603
    Abstract: An object of the present invention is to provide an electrical discharge surface treatment-purpose electrode that stabilizes properties and a film-forming rate of a coating made by surface treatment that uses the electrode showing a narrow distribution in physical properties such as a composition and resistance. A method of manufacturing an electrical discharge surface treatment-purpose electrode according to the present invention is identified as a method of manufacturing an electrical discharge surface treatment-purpose electrode formed of a green compact made of a metal powder subjected to compression molding, characterized in that the method includes the step of forming a nitride coating by nitriding a surface of the metal powder, and the step of forming a green compact by subjecting the metal powder having its surface nitrided to compression molding.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Shigyo, Yoshikazu Nakano
  • Publication number: 20130125475
    Abstract: The present invention relates to tungsten rhenium compounds and composites and to methods of forming the same. Tungsten and rhenium powders are mixed together and sintered at high temperature and high pressure to form a unique compound. An ultra hard material may also be added. The tungsten, rhenium, and ultra hard material are mixed together and then sintered at high temperature and high pressure.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: Smith International, Inc.
  • Publication number: 20130071627
    Abstract: A process is provided for producing a component. The process comprising the steps of: producing a former corresponding to the internal dimensions of the component to be formed; providing a layer of a second material on at least one surface of the former; locating the former in a containment and filling the containment with a first material; subjecting the containment to hot isostatic pressing such that the second material diffuses into the first material.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 21, 2013
    Inventor: Geoffrey Frederick Archer
  • Publication number: 20130052075
    Abstract: A wear pad of a band saw guide exposed to wear from a moving band saw blade is produced in a powder metallurgical manner from a steel material having the following composition, in percent by weight: 0.01-2 C, 0.01-3.0 Si, 0.01-10.0 Mn, 16-33 Cr, max. 5 Ni, 0.01-5.0 (W+Mo/2), max. 9 Co, max. 0.5 S, 1.6-9.8 N, 7.5 to 14 of (V+Nb/2), wherein the contents of N and of (V+Nb/2) are balanced in relation to each other so that the contents of the elements are within a range I?, F?, G, H, I? in a coordinate system, where the content of N is the abscissa and the content of (V+Nb/2) is the ordinate, and where the coordinates for the points (in the format [x: (N, (V+Nb/2)]) are [I?: (1.6, 7.5)], [F?: (5.8, 7.5)], [G: (9.8, 14.0)], and [H: (2.6, 14.0)], max 7 of any of Ti, Zr, and Al; and a balance essentially only iron and unavoidable impurities.
    Type: Application
    Filed: March 9, 2011
    Publication date: February 28, 2013
    Inventor: Jan Boström
  • Publication number: 20130015939
    Abstract: The present invention provides a powder magnetic core which has a low iron loss and an excellent constancy of magnetic permeability and is suitably used as a core for a reactor mounted on a vehicle. The powder magnetic core is a compact of a mixed powder containing an iron-based soft magnetic powder having an electrical insulating coating formed on its surface and a powder of a low magnetic permeability material having a heat-resistant temperature of 700° C. or higher than 700° C. and a relative magnetic permeability of not more than 1.0000004. The density of the compact is 6.7 Mg/m3 or more, and the low magnetic permeability material exists in the gap among the soft magnetic powder particles in the green compact.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 17, 2013
    Applicant: HITACHI POWDERED METALS CO. LTD.
    Inventors: Takashi Inagaki, Chio Ishihara
  • Patent number: 8355815
    Abstract: Methods include one or more of robotically positioning a cutting element on an earth-boring tool, using a power-driven device to move a cutting element on an earth-boring tool, and robotically applying a bonding material for attaching a cutting element to an earth-boring tool. Robotic systems are used to robotically position a cutting element on an earth-boring tool. Systems for orienting a cutting element relative to a tool body include a power-driven device for moving a cutting element on or adjacent the tool body. Systems for positioning and orienting a cutting element on an earth-boring tool include such a power-driven device and a robot for carrying a cutting element. Systems for attaching a cutting element to an earth-boring tool include a robot carrying a torch for heating at least one of a cutting element, a tool body, and a bonding material.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: January 15, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: David Keith Luce, Sean W. Wirth, Alan J. Massey, Crystal A. Parrott
  • Patent number: 8318082
    Abstract: A composition containing: about 45 to about 75 volume % of cubic boron nitride (CBN), where the CBN has finer and coarser particles having two different average particle sizes, the range of the average particle size of the finer particles being about 0.1 to about 2 ?m, the range of the average particle size of the coarser particles being about 0.3 to about 5 ?m, the ratio of the content of the coarser CBN particles to the finer CBN particles being 50:50 to 90:10; a secondary hard phase containing a nitride or carbonitride of a Group 4, 5 or 6 transition metal or a mixture or solid solution thereof, and a binder phase.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: November 27, 2012
    Assignee: Element Six Abrasives S.A.
    Inventors: Nedret Can, Stig Ake Andersin
  • Patent number: 8309018
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Publication number: 20120276393
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventor: Robert G. LEE
  • Patent number: 8298479
    Abstract: A process for forming a remateable machined titanium powder base alloy connecting rod using a titanium alloy powder having an average particle size of about 1-20 microns, a mean aspect ratio of about 5 to 300, and a specific surface area of at least about 25 m2/g.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 30, 2012
    Inventor: Gerald Martino
  • Publication number: 20120251375
    Abstract: A method of producing a Pb-free copper-alloy sliding material containing 1.0 to 15.0% of Sn, 0.5 to 15.0% of Bi and 0.05 to 5.0% of Ag, and Ag and Bi from an Ag—Bi eutectic. If necessary, at least one of 0.1 to 5.0% of Ni, 0.02 to 0.2% P, 0.5 to 30.0% of Zn, and 1.0 to 10.0 mass % of at least one of a group consisting of Fe3P, Fe2P, FeB, NiB and AlN may be added.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Inventors: Hiromi YOKOTA, Ryo Mukai, Shinichi Kato, Nahomi Hamaguchi
  • Publication number: 20120241670
    Abstract: The present invention provides a preparation method of a metal matrix composite. The method comprises the following steps of: 1) pulverizing a solid carbon material to a micrometer size; 2) plastic deforming a metal matrix powder and dispersing the pulverized nanometer-sized carbon material into the metal matrix powder during the plastic deformation; 3) integrating the metal/carbon nano-material composite powder obtained in step 2) by using a hot forming process; and 4) heat treating the integrated bulk material at a predetermined temperature to form a composite having a metal-carbon nanophase, a metal-carbon nanoband formed by growth of the metal-carbon nanophase, or a metal-carbon nano-network structure formed by self-coupling of the metal-carbon nanoband.
    Type: Application
    Filed: October 22, 2010
    Publication date: September 27, 2012
    Applicant: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Dong Hyun Bae, Hyun Joo Choi
  • Patent number: 8273291
    Abstract: A controlled combustion synthesis apparatus comprises an ignition system, a pressure sensor for detecting internal pressure, a nitrogen supply, a gas pressure control valve for feeding nitrogen and exhausting reaction gas, means for detecting the internal temperature of the reaction container, a water cooled jacket, and a cooling plate. A temperature control system controls the temperature of the reaction container by controlling the flow of cooling water supplied to the jacket and the cooling plate in response to the detected temperature. By combustion synthesizing, while controlling the internal pressure and temperature, the apparatus can synthesize a silicon alloy including 30-70 wt. % silicon, 10-45 wt. % nitrogen, 1-40 wt. % aluminum, and 1-40 wt % oxygen.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 25, 2012
    Assignee: Sumikin Bussan Corporation
    Inventors: Toshiyuki Watanabe, Masafumi Matsushita, Toshitaka Sakurai, Kazuya Sato, Yoko Matsushita
  • Patent number: 8252225
    Abstract: A multi-layer precursor material for use in forming hardfacing on a tool including hard particles, metal particles and a polymer. Methods of forming a multi-layer precursor film. Methods of using a precursor material to form hardfacing on a tool, including brazing a precursor material onto a surface of the tool. Intermediate structures for use in forming earth-boring tools including a precursor material covering an internal surface of a body of the tools. Methods of forming earth-boring tools include forming a body having a fluid passageway extending therethrough and covering a surface of the body with a hardfacing material. The surface of the body may be located in a region susceptible to erosion when fluid is caused to flow through the fluid passageway.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 28, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, Travis E. Puzz
  • Publication number: 20120207640
    Abstract: High strength aluminum alloys and methods for producing them. The alloys consist essentially of about 9.0 to 10.3 wt. % zinc, about 2.5 to 3.5 wt. % magnesium, about 1.5 to 3.0 wt. % copper and less than about 0.05 wt. % of any other alloying constituent. The balance consists of aluminum. These alloys are compatible with ceramic reinforcements used in metal matrix composites.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: Gamma Technology, LLC
    Inventor: William C. Harrigan, JR.
  • Patent number: 8241708
    Abstract: Metal and/or silicon oxides are produced by hydrolysis of alkoxide precursors in the presence of either an acid catalyst or a base catalyst in a supercritical fluid solution. The solubility of the acid catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis base that is soluble in the supercritical fluid. The solubility of the base catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis acid that is soluble in the supercritical fluid. The solubility of water in the solution is increased by the interaction with the acid or base catalyst.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: August 14, 2012
    Assignees: Micron Technology, Inc., Idaho Research Foundation
    Inventors: Chien M. Wai, Hiroyuki Ohde, Stephen J. Kramer
  • Publication number: 20120082586
    Abstract: The present invention comprises the nitridization of stainless steel with a gaseous nitrogen compound such as nitrogen gas (N2), or ammonia (NH3) at high temperature wherein the reaction pressure is lowered. A base powder with properties similar to those of a martensitic stainless steel is prepared from a molten metal with the subsequent incorporation of selective additives such as cobalt, chromium, boron, copper, vanadium, niobium and mixtures thereof to improve high temperature resistance to scuffing and adhesive wear. The molten mixture is then atomized by water- or air-atomization to yield a base powder which is mixed with nitrogen or ammonia gas at various pressures in a static or fluidized bed to provide a nitrogen alloyed particulate, i.e., a nitrided particulate alloy. The powder is heated in a hot isostatic press under vacuum with argon gas at reduced pressure and later cooled to ambient (room) temperature.
    Type: Application
    Filed: November 22, 2010
    Publication date: April 5, 2012
    Applicant: Magna Tech P/M Labs
    Inventor: Kenneth H. Moyer
  • Publication number: 20120063943
    Abstract: Provided are a composite powder of a metal and carbide (carbonitride) for a structural material, a sintered body, and methods of preparing the composite powder and sintered body. The composite powder for a structural member has a composition of M1-x % M2C, M1-x % (M2,M1)C, M1-x % M2(CN), or M1-x % (M2,M1)(CN). A matrix-phase metal M1 is one selected from tungsten (W) and molybdenum (Mo) of the periodic table of the elements, an accessory-phase metal M2 is one selected from the group consisting of Group-IV to Group-VI metals of the periodic table of the elements and forms a carbide or carbonitride having an average particle size of about 1 ?m or less, and the matrix-phase metal M1 and the accessory-phase metal M2 coexist due to a reaction.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 15, 2012
    Applicant: SNU R&DB FOUNDATION
    Inventor: Shinhoo Kang
  • Patent number: 8083831
    Abstract: The present invention relates to a lightweight, anti-scratch and fracture resistant material for use in manufacture of jewelry prepared by sintering a powered mixture consisting essentially of 20% by weight of titanium carbide, 25% by weight of tungsten carbide, 35% by weight of titanium nitride, and balance being a binder consisting essentially of nickel, molybdenum and cobalt.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 27, 2011
    Assignee: BTR Limited
    Inventor: Zhijian Xia