Powder Shape Or Size Characteristics Patents (Class 419/23)
  • Patent number: 4923761
    Abstract: The invention is related to a bearing material having multiple layers therein and a method for manufacturing the same. The invention features that a bearing layer consisting mainly of an integrated resin powder is formed on a porous layer covering a back metal, such as a steel plate of like, that the integrated resin powder consists of P T F E resin precipitate and F E P resin precipitate and/or P F A resin precipitate and that each particle of the integrated resin powder is covered with Pb-Sn alloy powders.Accordingly, the integrated resin powder independently provides a predetermined lubricating property. In addition, since these resin precipitates are in unity, it is possible to maintain excellent cavitation resistance property and load resistance property, even under severe boundary conditions.Furthermore, since each of the integrated resin powder is covered with the Pb-Sn alloy powder, an uniform and deep penetration of the alloy powder into pores of the porous layer can be easily obtained.
    Type: Grant
    Filed: September 6, 1989
    Date of Patent: May 8, 1990
    Assignee: NDC Company, Ltd.
    Inventor: Takeshi Shindo
  • Patent number: 4923671
    Abstract: Method of producing powder-metallurgical objects, specifically elongate objects such as rods, sections, tubes or the like, wherein a powder of metal and/or metal alloys of great hardness, particularly tool steel or high-speed steel powder, is charged into a thin-walled capsule, said capsule is then sealed so as to be airtight, is heated, and subjected to isostatic compression to produce a blank which will then undergo hot-working, specifically extrusion, for the production of the finished product. In a first alternative, the airtight and sealed capsule is initially heated to a temperature higher than 1,000.degree. C. Following through-heating of the capsule, the latter is maintained at an elevated temperature for a prolonged period. Then the capsule is slowly cooled and subjected to cold isostatic compression prior to final shaping. In a second alternative, the capsule is sealed so as to be airtight, and then subjected to an initial cold isostatic compression.
    Type: Grant
    Filed: February 6, 1989
    Date of Patent: May 8, 1990
    Inventor: Christer Aslund
  • Patent number: 4921665
    Abstract: The present invention relates to porous powder metal (P/M) parts having improved dynamic properties such as impact and fatigue strength. These properties are achieved by the use of finer metal powders.
    Type: Grant
    Filed: March 11, 1988
    Date of Patent: May 1, 1990
    Assignee: SCM Metal Products, Inc.
    Inventors: Erhard Klar, Mark Svilar, David F. Berry
  • Patent number: 4921551
    Abstract: A method is disclosed of hot working a magnetically soft cast crystalline material containing grains of RE.sub.2 TM.sub.14 B and an RE metal, rich intergranular second phase into anisotropic permanent magnet bodies.
    Type: Grant
    Filed: September 19, 1988
    Date of Patent: May 1, 1990
    Assignee: General Motors Corporation
    Inventors: Peter Vernia, Robert W. Lee
  • Patent number: 4921410
    Abstract: A method of producing a compact of amorphous alloy, comprising the steps of, preparing a billet by filling a container made of a ductile metal with powder of the amorphous alloy, plastically working said billet at a temperature higher than plasticity transition temperature of the amorphous alloy but less than crystallization temperature of said alloy so that both a shear strain of not less than about 0.7 but less than 1.8 and a stress not less than about 90 Kgf/mm.sup.2 and less than 400 Kgf/mm.sup.2 are applied to the amorphous alloy powder filled in the container.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: May 1, 1990
    Assignee: Nippondenso Co., Ltd.
    Inventors: Yoshihito Kawamura, Masashi Akai, Makoto Takagi
  • Patent number: 4921664
    Abstract: Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy, in which alloy powders are first cold-isostatically pressed under a pressure of 1500 to 5000 bar and the extrusion billet (2) produced in this manner is hot-recompacted and extruded to form a bar (7) with rectangular cross-section. Reduction ratio at least 6:1. A prismatic bar section (8) is separated from the bar (7) and is converted without further hot deformation and solely by machining into the final product in a manner such that the mechanical main load directions of the final product position themselves in a plane which is parallel to the plane which is extended through the extrusion direction and the longitudinal axis of the cross-section of the bar (7).
    Type: Grant
    Filed: February 8, 1989
    Date of Patent: May 1, 1990
    Assignee: Asea Brown Boveri Ltd.
    Inventor: Malcolm Couper
  • Patent number: 4919717
    Abstract: Sintered composite material containing 80% to 95% weight of copper, 2% to 15% weight of nickel and 2% to 5% weight of graphite, designed for the manufacture of electrical contact pads for low voltage switchgear devices. The copper powder can be of a spongy form having an average diameter of less than 24 .mu.m, an oxygen content of lower than 2000 ppm and a purity in metallic elements of 99.5%. The graphite powder can be of pellicular form, having particles about 100 .mu.m in length and 20 .mu.m in thickness, and an ash content of less than 0.2 ppm. The nickel powder can be of a spheroid shape having an average diameter of less than 5 .mu.m.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: April 24, 1990
    Assignee: Merlin Gerin
    Inventors: Jean Ambier, Marie-Jo Francillon, Colette Allibert, Catherine Laugee
  • Patent number: 4919719
    Abstract: A high temperature wear resistant sintered alloy suitable for the material of a valve seat in an automotive vehicle engine. The matrix of the sintered alloy consists essentially of carbon ranging from 0.45 to 1.15% by weight, nickel ranging from 5.4 to 27% by weight, molybdenum ranging form 0.4 to 2.7% by weight, cobalt ranging from 4.2 to 7.2% by weight and balance being substantially iron. The matrix is formed of a mixture of at least one of sorbite structure and bainite structure and austenite structure. Furthermore, the matrix includes hard phase dispersed therein and containing at least silicon, molybdenum and cobalt. The sintered alloy of such a structure can exhibit high strength and wear resistance at high temperatures regardless of type of engine and kind of fuel in case of being used as the material of the valve seat, while maintaining production cost thereof lower.
    Type: Grant
    Filed: August 29, 1988
    Date of Patent: April 24, 1990
    Assignees: Nissan Motor Co., Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Makoto Abe, Ichiro Tanimoto, Akira Fujiki, Keitaro Suzuki, Hiroyuki Endo, Yutaka Ikenoue
  • Patent number: 4917722
    Abstract: A method for producing a single crystal of chromium is disclosed, comprising sintering a chromium molding to thereby apply thereto a thermal strain and heat treating the resulting thermally strained chromium molding. The method achieves high efficiency of crystal growth and produces a single-crystal chromium molding of complicated shape.
    Type: Grant
    Filed: May 18, 1989
    Date of Patent: April 17, 1990
    Assignee: Tosoh Corporation
    Inventors: Tsutomu Kuniya, Koichi Hanawa, Tomoyuki Oikawa
  • Patent number: 4915738
    Abstract: An alloy target for making a magneto-optical recording medium by sputtering comprises an alloy containing 10 to 50 atom % of at least one rare earth element selected from among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er, with a balance consisting substantially of at least one transition metal selected from among Co, Fe and Ni. The alloy has a mixed structure composed of at least one phase of an intermetallic compound formed by the rare earth element and the transition metal and a phase of the rare earth element along.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumitomo Metal Mining Company Limited
    Inventors: Toshio Morimoto, Tatsuo Nate
  • Patent number: 4915735
    Abstract: A wear-resistant sintered alloy comprising an Cr-C-Fe base alloy in which 0.5 to 3% by weight of CaF.sub.2 and 5 to 20% by weight of hard particles having particle size of 44 to 150 .mu.m and a mean value of Vickers hardness of 800 to 2000 are dispersed. This wear-resistant sintered alloy is produced by a method comprising the steps of adding 1.2 to 2% by weight of carbon powder, 0.5 to 3% by weight of calcium fluoride powder, and 5 to 20% by weight of hard metal powder having the particle size of 44 to 150 .mu.m and a mean value of Vickers hardness of 800 to 2000, to an Fe-Cr-C base alloy powder containing 10 to 20% by weight of Cr and 0.8 to 1.5% by weight of C, mixing them, molding the resultant mixed powder into a desired shaped, and then sintering the compact in the temperature range of from 1180.degree. to 1260.degree. C. in a non-oxidizing atmosphere. The sintered alloy is useful as a material for parts required to have the heat resistance and wear resistance.
    Type: Grant
    Filed: May 10, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumotomo Electric Industries, Ltd.
    Inventor: Naoki Motooka
  • Patent number: 4915737
    Abstract: An alloy target for making a magneto-optical recording medium by sputtering comprises an alloy containing 10 to 50 atom % of at least one rare earth element selected from among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er, with a balance consisting substantially of at least one transition metal selected from among Co, Fe and Ni. The alloy has a mixed structure composed of at least three phases of intermetallic compounds formed by the rare earth element and the transition metal.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumitomo Metal Mining Company Limited
    Inventors: Toshio Morimoto, Keizo Kazama, Yasuhiro Okajima, Yasuhiro Tsugita, Shinobu Endo
  • Patent number: 4915898
    Abstract: An improved method for the continuous fabrication of metal-hydride, electrochemical, hydrogen storage alloy, negative electrodes for use in rechargeable nickel metal hydride cells. The improved method comprises the steps of reducing the size of a high hardness, metal hydride, hydrogen storage alloy by shattering it along natural fracture line thereof. The process next includes providing measured amounts of powered metal hydride electrochemical hydrogen storage alloy material and disposing said material upon a continuous wire mesh screen substrate. Thereafter, the powdered metal hydride electrochemical hydrogen storage alloy and wire mesh screen are subjected to a compaction process wherein they are rolled and pressed so as to form a single integral electrode web which is subsequently exposed to a high temperature sintering process in a chemically inert environment.
    Type: Grant
    Filed: February 9, 1989
    Date of Patent: April 10, 1990
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Merle Wolff, Mark A. Nuss, Michael A. Fetchenko, Andrea L. Lijoi, Steven P. Sumner, Joseph LaRocca, Thomas Kaatz
  • Patent number: 4915734
    Abstract: The present invention relates to a cemented carbonitride alloy in which the toughness has been improved by the incorporation in the structure of whiskers of nitrides, carbides and/or carbonitrides of titanium, zirconium and/or hafnium.
    Type: Grant
    Filed: April 26, 1988
    Date of Patent: April 10, 1990
    Assignee: Sandvik AB
    Inventors: Nils G. L. Brandt, Zeljka D. Senesan
  • Patent number: 4913737
    Abstract: Metallic sintered parts with hollow structure and high density and toughness can be produced easily be kneading a raw metallic powder with an aqueous solution of an organic binder, extruding the resulting kneaded mixture, removing the organic binder from the extruded product and sintering the binder removed extruded product.
    Type: Grant
    Filed: June 3, 1988
    Date of Patent: April 3, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideki Nakamura, Takayuki Fukaya
  • Patent number: 4911882
    Abstract: The present invention relates to the preparation of permanent magnet materials of the Iron-Boron-Rare Earth type.
    Type: Grant
    Filed: February 8, 1989
    Date of Patent: March 27, 1990
    Assignee: SPS Technologies, Inc.
    Inventor: Frank S. Greenwald
  • Patent number: 4911990
    Abstract: A microstructurally toughened metallic article is disclosed. The article includes discrete metal regions which are enclosed within and separated from each other by a network of metal. The regions are bonded to the network to form stable interfacial boundaries. The article exhibits high impact resistance. The process for making the article is also disclosed. The process includes positioning a plurality of structural elements within a container to define one or more void spaces within the container, introducing a quantity of metallic particles into the void spaces, and then consolidating the container, structural elements, and particles to form the microstructurally toughened article.
    Type: Grant
    Filed: February 5, 1988
    Date of Patent: March 27, 1990
    Assignee: United Technologies Corporation
    Inventors: Karl M. Prewo, Vincent C. Nardone, James R. Strife
  • Patent number: 4911756
    Abstract: A sintered compact is obtained by sintering a mixture containing about 50 to 75 percent by volume of cubic boron nitride and about 25 to 50 percent of a binder under cBN-stable superhigh pressure conditions. The binder contains about 20 to 50 percent by weight of Al and one or more Ti compounds selected from the group consisting of TiN.sub.z, Ti(C,N).sub.z, TiC.sub.2, (Ti,M)C.sub.z, (Ti,M) (C,N).sub.z and (Ti,M)N.sub.z, wherein M indicates a transition metal of the group IVa, Va or VIa of the periodic table excepting Ti, and wherein z is within a range of 0.5.ltoreq.z.ltoreq.0.85. The atomic ratio of the content of Ti to that of the transition metal M in the binder is within the range of about2/1.ltoreq.Ti/M.ltoreq.97/3.The binder further contains tungsten or one or more tungsten compounds, whereby the total tungsten concentration in the binder is about 4 to 40 percent by weight.
    Type: Grant
    Filed: August 9, 1988
    Date of Patent: March 27, 1990
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuo Nakai, Mitsuhiro Goto
  • Patent number: 4909842
    Abstract: Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: March 20, 1990
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Stephen D. Dunmead, Joseph B. Holt, Donald D. Kingman, Zuhair A. Munir
  • Patent number: 4909841
    Abstract: A process of hot pressing of materials to form articles or compacts is characterized by the steps: (A) providing a compactable particulate mixture; (B) uniaxially pressing the particles without heating to provide article or compact (22); (C) placing at least one article or compact (22) in an open pan (31) having an insertable frame (32) with edge surfaces (34) that are not significantly pressure deformable, where the inside side surfaces of the frame are parallel to the central axis B--B of the open pan, and where each article or compact is surrounded by fine particles of a separating material; (D) evacuating air from the container and sealing the articles or compacts inside the container by means of top lid (36); (E) hot pressing the compacts at a pressure from 352.5 kg/cm.sup.2 to 3,172 kg/cm.sup.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: March 20, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Natraj C. Iyer, Alan T. Male, William R. Lovic
  • Patent number: 4906430
    Abstract: A titanium-based metal matrix microcomposite material. About 1% to about 25% by weight TiB.sub.2 is substantially uniformly incorporated in a titanium-based alloy matrix. The microcomposite material is formed by sintering at a temperature selected to preclude diffusion of TiB.sub.2 into the matrix. The microcomposite material may be used in a process for cladding a macrocomposite structure.
    Type: Grant
    Filed: July 29, 1988
    Date of Patent: March 6, 1990
    Assignee: Dynamet Technology Inc.
    Inventors: Stanley Abkowitz, Harold L. Heussi, Harold P. Ludwig, David M. Rowell, Stephen A. Kraus
  • Patent number: 4904445
    Abstract: A tough cermet made from 20-92 weight % of TiC and/or TiCN, 5-50 weight % of WC and 3-30 weight % of an iron-gorup metal. This tough cermet has a three phase grain microstructure and is made is mixing titanium carbonitride powder and up to 70 weight % of the total amount of the tungsten carbide fine powder. The resulting mixture is melted to form a solid solution, pulverized, mixed with the remaining amount of tungsten carbide fine powder, and sintered at temperatures of 1325.degree.-1650.degree. C.
    Type: Grant
    Filed: March 23, 1988
    Date of Patent: February 27, 1990
    Assignees: Hitachi Metals, Ltd., Hitachi Carbide Tools, Inc.
    Inventors: Yusuke Iyori, Hisaaki Ida
  • Patent number: 4894088
    Abstract: A pellet for fabricating a metal matrix composite is made of a mixture of a matrix member of a metal powder and at least one reinforcement selected from whiskers, short fibers and suitable particles, the reinforcement being uniformly distributed in a matrix of the metal powder and said mixture being kept in a shape with a binder, wherein said pellet has a surface layer of dried and rigid portion of said mixture which is rigid enough to keep its shape under an external pressure applied thereto. The pellet is formed from a flat cake of the mixture separated from a slurry consisting of a solution medium and the mixture dispersed therein uniformly. Alternatively, the pellet is formed from the mixture in a dried condition with a granulation binder diluted with a solution medium.
    Type: Grant
    Filed: December 15, 1987
    Date of Patent: January 16, 1990
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yoshihiro Yamaguchi, Hiroyuki Murata, Shunichi Mizukami, Kenichiro Ohuchi, Hiroyuki Morimoto, Jun Hirose
  • Patent number: 4894158
    Abstract: A porous filter element for filtering a liquid, the filter element having a plurality of seamless filter element units that are made of stainless steel or titanium powder wherein ranges of particle diameters, sintering densities, and nominal pore sizes define a final shape which is formed with undulations to provide bed surfaces for an auxiliary filtering agent.
    Type: Grant
    Filed: July 31, 1987
    Date of Patent: January 16, 1990
    Assignee: Kirin Beer Kabushiki Kaisha
    Inventors: Tadashi Morita, Kazuhiro Nomura, Yoshiyuki Matsushima
  • Patent number: 4892703
    Abstract: A surface structure of A1N substrate comprising:an A1N substrate,an intermediate layer disposed on the A1N substrate, anda metallized layer disposed on said intermediate layer, said intermediate layer comprising at least aluminum, nitrogen and oxygen. The metallized layer has a main component of one of Mo-Mn alloy, Mo and W, and has a thickness of 1-20 .mu.m,This surface structure is produced by coating a surface of A1N substrate with metallizing layer components, heat treating the resultant coated substrate at a temperature of 200.degree.-500.degree. C. under an oxidizing atmosphere, and further heating the heat treated coated substrate at a temperature of 1200.degree.-1400.degree. C. under a nonoxidizing atmosphere having a dew point of -35.degree.to 5.degree. C.
    Type: Grant
    Filed: March 24, 1989
    Date of Patent: January 9, 1990
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Satoshi Iio, Akiyasu Okuno
  • Patent number: 4889685
    Abstract: A titanium composite having a coil-shaped skeletal structure on the surface, comprising a titanium or titanium alloy substrate and one or more layers of a coil-shaped skeletal titanium or titanium alloy structure that is firmly attached to the surface of said substrate and a process for producing a titanium composite having a coil-shaped skeletal structure on a surface of a titanium or titanium alloy substrate, which comprises: providing a coating composition which is a mixture of a titanium or titanium alloy powder with a binder; applying said composition in such a manner that titanium or titanium alloy coils which are to form the coil-shaped skeletal structure are firmly attached to both themselves and to the titanium or titanium alloy substrate; the heating the assembly either in vacuo or in an inert atmosphere so that the titanium or titanium alloy powder in the applied coating composition is sintered to have the coil-shaped skeletal titanium or titanium alloy structure attached firmly onto the titanium o
    Type: Grant
    Filed: November 28, 1986
    Date of Patent: December 26, 1989
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Masashi Hosonuma
  • Patent number: 4881986
    Abstract: In a method for producing a rare earth metal-iron-boron (R-Fe-B) anisotropic sintered magnet from R-Fe-B alloy ribbon-like flakes, each flake is formed with a thickness of about 20-500 .mu.m and contains R.sub.2 Fe.sub.14 B crystal grains dispersed in the flake with an average grain size of 10 .mu.m or less. The flakes are ground into a powder having an average particle size less than the thickness value of the flake. The powder is magnetically aligned and compacted into a compact body which is then sintered. Thus, the anisotropic sintered magnet is obtained with a high energy product and a high anti-corrosion property. The ribbon-like flakes are prepared by the continuous splat-quenching method. Alternatively, the flakes can be prepared by spraying the molten R-Fe-B alloy in a form of particles and cooling the particles on a cooling plate into flat small pieces.
    Type: Grant
    Filed: November 25, 1987
    Date of Patent: November 21, 1989
    Assignee: Tokin Corporation
    Inventors: Tadakuni Sato, Yuichi Tachiya
  • Patent number: 4880600
    Abstract: Methods are disclosed of making and of using a high density high strength titanium diboride comprising material. The method of making comprises (a) compacting a mixture of titanium diboride, 5-20% by weight of a metal group binder, and up to 1% oxygen and up to 2% graphite, the mixture having a maximum particle size of 5 microns, and (b) sintering the compact to substantially full density. The TiB.sub.2 may be replaced by up to 10% TiC. The method of use is as a cutting tool at relatively high speeds against aluminum based materials.
    Type: Grant
    Filed: November 20, 1987
    Date of Patent: November 14, 1989
    Assignee: Ford Motor Company
    Inventors: David Moskowitz, Charles W. Phillips
  • Patent number: 4874430
    Abstract: A silver base electrical contact material is described which contains a dispersion of particles consisting of cadmium oxide and nickel. The nickel particles are surrounded by a continuous adherent coating of nickel oxide which eliminates the detrimental reaction which would otherwise occur between nickel and cadmium oxide. The invention contact materials have improved lives and are fabricated by any one of several different powder metallurgy techniques.
    Type: Grant
    Filed: January 23, 1989
    Date of Patent: October 17, 1989
    Assignee: Hamilton Standard Controls, Inc.
    Inventor: Norman S. Bornstein
  • Patent number: 4871621
    Abstract: An improved method for encasing objects in metal is disclosed as are the novel encased objects so prepared. An object is wrapped with a sheet comprising sinterable particulate or powdered metal and an organic binder, and is the fired to volatilize the binder and to sinter the particulate metal into a unitary metal structure. In the preferred embodiment of this invention, the object to be encased is a green sinterable particulate object which undergoes sintering simultaneously with the particulate metal casing during the firing step.
    Type: Grant
    Filed: December 16, 1987
    Date of Patent: October 3, 1989
    Assignee: Corning Incorporated
    Inventors: Rodney D. Bagley, Raja R. Wusirika
  • Patent number: 4867943
    Abstract: A starting material for injection molding of a metal powder including from 38 to 46% by volume of an organic binder and the balance of spherical iron powder with an average particle size from 2 to 6.5 .mu.m and having high density sinterability at low sintering temperature, and a method of producing a sintered parts by conducting injection molding, debinding and sintering using the above-mentioned starting material in a non-oxidizing atmosphere at a temperature lower than the A.sub.3 transformation point.
    Type: Grant
    Filed: December 12, 1988
    Date of Patent: September 19, 1989
    Assignee: Kawasaki Steel Corporation
    Inventor: Yoshisato Kiyota
  • Patent number: 4859412
    Abstract: An economical alloyed powder for dental amalgams exhibiting good working properties is obtained from pressed and sintered molded bodies by mechanical comminution. The formed body is produced by mixing and pressing powders of elemental silver, copper and tin with a subsequent sintering between 150.degree. C. and the solidus temperature of the alloy being formed. The sintering is performed until a homogeneous distribution of the tin has been achieved in the silver and copper particles.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: August 22, 1989
    Inventors: Werner Groll, Doris Hathaway, Gernot Schock
  • Patent number: 4859411
    Abstract: A process for controlling fractionation in selenium alloys comprising providing pellets of an alloy comprising amorphous selenium and an alloying component selected from the group consisting of tellurium, arsenic, and mixtures thereof, the particles having an average particle size between about 300 micrometers and about 3,000 micrometers, exposing the pellets to an ambient temperature of between about 114.degree. C. and about 190.degree. C. until an exotherm occurs in the pellets resulting in substantially complete crystallization between about 104.degree. C. and about 180.degree. C., grinding the pellets into fresh powder having an average particle size of less than about 200 micrometers, and compressing the fresh powder into fresh pellets having an average weight between about 50 mg and about 1000 mg. The resulting fresh pellets may be heated in a vacuum chamber to vacuum deposit the alloy onto a substrate.
    Type: Grant
    Filed: April 8, 1988
    Date of Patent: August 22, 1989
    Assignee: Xerox Corporation
    Inventors: Gerald H. Sweatman, Roy Hodgson, Robert H. Haste
  • Patent number: 4857266
    Abstract: A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
    Type: Grant
    Filed: December 5, 1988
    Date of Patent: August 15, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Haskell Sheinberg, Thomas T. Meek, Rodger D. Blake
  • Patent number: 4855102
    Abstract: A sintering method and fusion welding method of the present invention are characterized in that energy is radiated to the black component of starting materials so as to convert it from the state of an energy absorber to the state of an energy reflector (the state where metallic luster is exhibited). The methods can be utilized effectively for forming the electrode of a sensor or the bump of an electronic component. When applied to the production of the sensor and the electrode, the methods can produce these products by a simple production process and with extremely high producibility.
    Type: Grant
    Filed: March 21, 1988
    Date of Patent: August 8, 1989
    Assignee: Hitachi, Ltd.
    Inventors: Ryoji Okada, Mitsuaki Haneda, Takeshi Araya, Susumu Hioki
  • Patent number: 4855101
    Abstract: Particles are sinter-fused onto the surface of a prosthesis shaft of titanium or titanium alloys. Before sinter-fusing, a coating material which forms below the .alpha.-.beta.-transition temperature a liquid phase with the material of the prosthesis and particles is applied to provide a coating between the shaft and particles.
    Type: Grant
    Filed: July 1, 1988
    Date of Patent: August 8, 1989
    Assignee: Fried. Krupp GmbH
    Inventors: Rudolf Mohs, Gunter Bensmann
  • Patent number: 4853178
    Abstract: A method of consolidating a body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, including the steps: providing a bed of flowable particles within a contained zone, the particulate including flowable and resiliently compressible carbonaceous particles; positioning the body in the bed, to be surrounded by the particles; effecting pressurization of the bed to cause pressure transmission via the particles to said body, thereby to compact the body into desired shape, increasing its density; the particles being heated to elevated temperature prior to compacting of the body into desired shape; and the heating of the particles being effected by passing electric current through same, with heat generated in the particles also to be transferred to the body.The electrically heated mass of particles may be fluidized; the particles may consist of graphite; and the body may consist of metal, ceramic, or synthetic resin.
    Type: Grant
    Filed: November 17, 1988
    Date of Patent: August 1, 1989
    Assignee: Ceracon, Inc.
    Inventor: Brian L. Oslin
  • Patent number: 4851041
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. Th metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt.
    Type: Grant
    Filed: May 22, 1987
    Date of Patent: July 25, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish
  • Patent number: 4844751
    Abstract: A permanent-magnet material of a metal/metal/metalloid system is produced in which at least one starting component of the metals in powder form is mixed together with a component in powder form of elemental boron, or a boron compound or alloy, is optionally compacted, and finally subjected to an annealing treatment for forming the permanent-magnet material. In order that a powder of this material system is produced with an extremely fine microstructure, the powder mixture of the starting components is first subjected to a milling process in the manner of mechanical alloying whereby a mixture powder of the at least one metallic starting component with embedded or adsorbed fine particles of the boron component is formed.
    Type: Grant
    Filed: March 23, 1987
    Date of Patent: July 4, 1989
    Assignee: Siemens Aktiengesellschaft
    Inventor: Ludwig Schultz
  • Patent number: 4838936
    Abstract: Spiral parts, such as orbiting and fixed scroll plates having involute wraps, for use in scroll compressors, the parts having low coefficient of thermal expansion and high tensile strength and Young's modulus, are formed by combining a self-lubricating power into aluminum raw material powder prior to compression and forging. As an alternative to and in conjunction with the foregoing, temperatures during preform heating and in the die for forging are controlled to be in respective ranges of 300.degree. to 500.degree. C. and 150.degree. to 500.degree. C. Aluminum alloy fine powder preferably has a particle diameter no larger than 350 .mu.m. The self-lubricating powder preferably forms 1 to 25% of the mix by volume, and contains at least one member selected from the group consisting of graphite, BN, and MoS.sub.2.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: June 13, 1989
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kiyoaki Akechi
  • Patent number: 4836849
    Abstract: Disclosed is a mixture of about 55% to about 90% by volume powdered niobium alloy and about 10% to about 45% by volume powdered intermetallic compound selected from the group consisting of NbAl.sub.3, NbFe.sub.2, NbCo.sub.2, NbCr.sub.2, and mixtures thereof. The mixture is mechanically alloyed to intermix the intermetallic compound with the particles of the niobium alloy. A shape is made by consolidating the mechanically alloyed powder.
    Type: Grant
    Filed: April 30, 1987
    Date of Patent: June 6, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: Robert C. Svedberg, Robert L. Ammon
  • Patent number: 4836978
    Abstract: A production method of a vacuum circuit breaker electrode comprises the steps of mixing conductive metal powder, and refractory material powder with a higher melting point than said conductive metal powder, compacting the resultant mixture to form a compact, presintering the compact in a atmosphere of high purity hydrogen, sealing a presintered body in a capsule while exhausting, heating and degassing, and subjecting the sealed capsule to hot isostatic pressing treatment. The conductive metal powder is one or both of Cu and Ag. The hot isostatic pressing treatment is effected at a temperature higher than a melting point of the conductive metal so that the presintered body is sintered under liquid phase, and a part of molten conductive metal component is seeped out on a sintered body surface.
    Type: Grant
    Filed: September 2, 1987
    Date of Patent: June 6, 1989
    Assignee: Hitachi, Ltd.
    Inventors: Ryuji Watanabe, Hisashi Andoh, Kiyoji Iwashita, Kinko Shimizu
  • Patent number: 4836979
    Abstract: A method of producing a composite material from a mixture of copper and a low coefficient of thermal expansion nickel-iron alloy (Invar) powder is disclosed wherein advantageously at least part of the copper is deposited on the Invar powder prior to processing. Processing includes cold compacting to a green strip or other configuration, annealing in the temperature range of 550.degree.-750.degree. C. and working the annealed material at a temperature in that range to high density.
    Type: Grant
    Filed: June 14, 1988
    Date of Patent: June 6, 1989
    Assignee: Inco Limited
    Inventors: James A. E. Bell, Thijs Eerkes, Carlos M. Diaz, William L. Mankins
  • Patent number: 4830820
    Abstract: A new material for use in the manufacture of semiconductor devices, a method of manufacturing the new material, and a heat radiator structure for a semiconductor device. The material is an aluminum alloy containing 30-60% by weight of Si and the remaining weight % is Al. The method of manufacture includes solidifying molten material into a powder and forming the powder by hot plastic working. The heat radiator structure includes a substrate of envelope material and an Al-Si alloy layer glued to the substrate through a function layer.
    Type: Grant
    Filed: April 20, 1987
    Date of Patent: May 16, 1989
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiaki Itoh, Yusuke Odani, Kiyoaki Akechi, Nobuhito Kuroishi
  • Patent number: 4830822
    Abstract: A method is disclosed for providing an article having within its integral body a plurality of sections of varying density. The method involves successively loading a die with each of a plurality of powders, each powder having a specific composition and particle size and each powder being loaded in a predetermined amount to result in each section of the final article having a characteristic density, compacting the powders to produce a preformed article, and sintering the preformed article at a sufficient temperature for a sufficient time to produce the final article.A method is disclosed in which the powders are metal.A metal article is disclosed which is produced the above methods, with the preferred metals being tungsten powder and molybdenum powder.
    Type: Grant
    Filed: October 26, 1987
    Date of Patent: May 16, 1989
    Assignee: GTE Products Corporation
    Inventor: Robert L. Ward
  • Patent number: 4828930
    Abstract: A method for making seamless, porous metal articles comprising:(a) rotating a mold containing a stabilized suspension of a metal particulate at a rate and for a time such that the particulate is separated from the suspension and distributed on the interior wall of the mold, thereby forming a structure conforming to the interior wall of the mold, the rate of rotation being sufficiently high that, preferably, at least about 65 Gs up to 100 Gs of centrifugal acceleration is achieved at the interior wall of the structure,(b) drying the formed structure to provide a structure having green or unsintered strength, and(c) sintering the dried structure to remove volatile material and fuse the individual particles of the particulate to each other to form the seamless, porous metal article.Metal articles in accordance with the invention have substantially uniform diameters, thicknesses and pore structurs, have Bubble Point ratios of greater than 1.5 up to 2.5, and find particular use as filters.
    Type: Grant
    Filed: November 2, 1987
    Date of Patent: May 9, 1989
    Assignee: Pall Corporation
    Inventor: Paul C. Koehler
  • Patent number: 4826546
    Abstract: A process for producing permanent magnet materials, which comprises the steps of:forming an alloy powder having a mean particle size of 0.3-80 microns and composed of, in atomic percentage, 8-30% R (provided that R is at least one of rare earth elements including Y), 2-28% B, and the balance being Fe and inevitable impurities,sintering the formed body at a temperature of 900.degree.-1200.degree. C.,subjecting the sintered body to a primary heat treatment at a temperature of 750.degree.-1000.degree. C.,then cooling the resultant body to a temperature of no higher than 680.degree. C. at a cooling rate of 3.degree.-2000.degree. C./min, andfurther subjecting the thus cooled body to a secondary heat treatment at a temperature of 480.degree.-700.degree. C.35 MGOe, 40 MGOe or higher energy product can be obtained with specific compositions.
    Type: Grant
    Filed: August 13, 1987
    Date of Patent: May 2, 1989
    Assignee: Sumitomo Special Metal Co., Ltd.
    Inventors: Hitoshi Yamamoto, Masato Sagawa, Setsuo Fujimura, Yutaka Matsuura
  • Patent number: 4824481
    Abstract: Sputtering targets are made by melting at least one rare earth and at least one transition metal to produce an amorphous alloy melt, forming a powder of the alloy in an oxygen free atmosphere, introducing the powdered alloy into a reducing mold, adding a layer of powdered oxygen-getter on top of the powdered alloy, and hot pressing the alloy.
    Type: Grant
    Filed: January 11, 1988
    Date of Patent: April 25, 1989
    Assignee: Eaastman Kodak Company
    Inventors: Dilip K. Chatterjee, Srinivas T. Rao
  • Patent number: 4820483
    Abstract: The present invention relates to a process for the production of chromium-aluminum balls for adding chromium into molten aluminum baths.In order to obtain balls containing x% of chromium and y% of aluminum, where x and y are gravimetric contents corresponding to the following relationships:70.ltoreq.x.ltoreq.8020.ltoreq.y.ltoreq.30x+y=100an alloy of chromium and aluminum containing gravimetric chromium and aluminum contents approximating to x by an excess and to y by a deficit respectively is prepared by melting and this alloy is then finely ground into a crude powder; the chromium and aluminum contents of the alloy or of the crude powder are determined and, if required, an additional amount of finely divided aluminum is added so as to obtain a powder containing x% of chromium and y% of aluminum, the additional amount of finely divided aluminum corresponding to less than 10% by weight of the crude powder; a compacting is then carried out.
    Type: Grant
    Filed: December 22, 1987
    Date of Patent: April 11, 1989
    Assignee: Delachaux SA
    Inventor: Alain Defrance
  • Patent number: 4820481
    Abstract: An improved method for the continuous fabrication of metal-hydride, electrochemical, hydrogen storage alloy, negative electrodes for use in rechargeable nickel metal hydride cells. The improved method comprises the steps of providing measured amounts of powdered metal hydride electrochemical hydrogen storage alloy material and disposing said material upon a continuous wire mesh screen substrate. Thereafter, the powdered metal hydride electrochemical hydrogen storage alloy and wire mesh screen are subjected to a compaction process wherein they are rolled and pressed so as to form a single integral electrode web which is subsequently exposed to a high temperature sintering process in a chemically inert environment. The sintering process is designed to drive off excess moisture in the material while discouraging oxidation of the electrode web and set the electrode web state of charge.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: April 11, 1989
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Merle Wolff, Mark A. Nuss, Michael A. Fetcenko, Andrea L. Lijoi