Powder Shape Or Size Characteristics Patents (Class 419/23)
  • Patent number: 5124119
    Abstract: A beryllium metal matrix phase includes up to 70% by volume of beryllium oxide single crystals dispersed therein. The composites are useful for electronics applications because of their light weight, high strength and effective thermal properties.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: June 23, 1992
    Assignee: Brush Wellman Inc.
    Inventor: Fritz C. Grensing
  • Patent number: 5112388
    Abstract: There are described metallic powders comprising agglomerated nanocrystals of an electroactive alloy. The main component of the alloy can be of nickel, cobalt, iron or mixtures thereof while the alloying element is one or more transition metals such as Mo, W, V. Preferably the nanocrystals will be made of an alloy of nickel and molybdenum. An electrode which is used by compacting the powders is also disclosed. Also disclosed, is a process for producing the metallic powders by providing particles of nickel, cobalt and iron with particles of at least one transition metal, (Mo, W, V) and subjecting the particles to high energy mechanical alloying such as ball milling under conditions and for a sufficient period of time to produce a nanocrystalline alloy. Electrodes produced from these powders have an electrocatalytic activity for the hydrogen evolution which is comparable or higher than the electrodes which are presently used in the electrochemical industry.
    Type: Grant
    Filed: August 22, 1989
    Date of Patent: May 12, 1992
    Assignee: Hydro-Quebec
    Inventors: Robert Schulz, Jean-Yves Huot, Michel Trudeau
  • Patent number: 5106825
    Abstract: A method of fabricating a rugged, flexible, superconducting wire comprising: mixing a superconducting material, such as YBa.sub.2 Cu.sub.3 O.sub.x, with a metallic powder to form a metal/superconductor mixture; and loading a metal shell or tube with the metal/superconductor mixture to form a superconducting wire. The superconducting wire may also be cold drawn and annealed to form a very dense wire. The metallic powder is either copper, copper alloy, aluminum or other face centered cubic element. Additionally, a superconducting wire may be formed by encapsulating a superconducting filament within a metal shell.
    Type: Grant
    Filed: July 31, 1987
    Date of Patent: April 21, 1992
    Assignee: Olin Corporation
    Inventors: Frank N. Mandigo, Joseph Winter, Bruce M. Guenin, George J. Muench
  • Patent number: 5106576
    Abstract: A wear-resistant compound roll having a shell portion produced by sintering a uniform mixture of alloy powder consisting essentially, by weight, of 1.2-3.5% of C, 2% or less of Si, 2% or less of Mn. 10% or less of Cr, 3-35%, as W+2Mo, of one or two of W and Mo, 1-12% of V, and balance Fe and inevitable impurities, and 1-15%, based on the weight of said alloy powder, of VC powder dispersed therein. This compound roll is produced by (a) uniformly mixing the alloy powder with the VC powder; (b) charging the resulting mixed powder into a metal capsule disposed around a roll core; and (c) after evacuation and sealing, subjecting said mixing powder to a HIP treatment.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: April 21, 1992
    Assignee: Hitachi Metals, Ltd.
    Inventors: Akira Noda, Kenji Maruta
  • Patent number: 5102452
    Abstract: The invention relates to a method for the treatment and production of material, particularly for the treatment and production of free flowing, finely divided metal powder or metal matrix composite powder. The material is composed of tungsten carbide and at least two components, nickel and cobalt. According to the method of the invention the composite powder is first mixed with the organic binder in order to form powder agglomerate, which powder agglomerate is further subjected to sintering treatment in order to remove the binder and to improve the mechanical strength of the composite powder. Further the composite powder is subjected to classification and the classified composite powder is thermally treated at a high temperature in an at least one-step thermal treatment in order to melt the composite powder at least partially, and in order to mix the various components to each other.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: April 7, 1992
    Assignee: Outokumpu Oy
    Inventors: Pekka A. Taskinen, Markku J. Kaskiala, Seppo T. Kemppinen, Jaana L. Niemela, Heikki J. Volotinen
  • Patent number: 5100869
    Abstract: A metal oxide-type superconductive material is produced by a process which comprises a first step of subjecting a powder raw material containing given proportions of metal elements to be contained in said metal oxide-type superconductive material, to mechanical grinding and alloying simultaneously to obtain an alloy powder and a second step of heat-treating the alloy powder in an oxygen-containing gas atmosphere to obtain a metal oxide.The superconductive material obtained has a high density, a low porosity, a high strength and a high critical current density.
    Type: Grant
    Filed: March 10, 1989
    Date of Patent: March 31, 1992
    Assignees: Tsuyoshi Masumoto, Hoya Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kunio Matsuzaki, Keiji Moroishi
  • Patent number: 5098648
    Abstract: Disclosed herein is an economical process for the production of a sintered Fe-Co type, Fe-Co-V type or Fe-Co-Cr type magnetic material, which comprises preparing an alloy powder of at least Fe and Co metals of a like powder, kneading it with an organic binder, conducting injection molding and debinding, and then conducting a two-stage sintering treatment consisting of low-temperature sintering and high-temperature sintering. Magnetic materials having a specific composition of the Fe-Co, Fe-Co-V or Fe-Co-Cr type and excellent magnetic properties and a low core loss value are also disclosed.
    Type: Grant
    Filed: June 13, 1991
    Date of Patent: March 24, 1992
    Assignee: Kawasaki Steel Corportion
    Inventors: Yoshisato Kiyota, Osamu Furukimi
  • Patent number: 5098870
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies and to the novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies having controlled porosity and graded properties and comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide. The method comprises, in one embodiment, reacting a powdered parent metal, in molten form, with a bed or mass comprising a boron carbide material and, optionally, one or more inert fillers, to form the body. In another embodiment, both of a powdered parent metal and a body or pool of molten parent metal are induced to react with a bed or mass comprising a boron carbide material and, optionally, one or more inert fillers. in addition, combustible additives (e.g., gelatin, corn starch, wax, etc.) can be mixed with the bed or mass comprising a boron carbide material to aid in the porisity producing process.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: March 24, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, William B. Johnson
  • Patent number: 5098650
    Abstract: A method for producing titamium alloy articles having a desired microstructure which comprises the steps of:(a) providing a prealloyed gamma titanium aluminide alloy powder;(b) filling a suitable die or mold with the powder;(c) consolidating the powder in the filled mold at a pressure of 30 Ksi or greater and at a temperature of about 70 to 95 percent of the alpha-2+gamma eutectoid temperature of the alloy, in degrees C.
    Type: Grant
    Filed: August 16, 1991
    Date of Patent: March 24, 1992
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, Karen R. Teal
  • Patent number: 5091022
    Abstract: There is disclosed a method for manufacturing intricate shaped magnetic parts having excellent soft magnetic characteristics which includes forming powders of Fe and P having particle sizes less than 45 .mu.m; mixing 0.1 to 1.0% by weight P powder with Fe powder; adding a binder; injection-molding the mixture at 1200 kg/cm.sup.2 ; removing the binder by heating; sintering the binder free part at 1200.degree.-1400.degree. C. for 30-180 min; and cooling the sintered part at a rate of less than 50.degree. C./min.
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: February 25, 1992
    Assignee: Sumitomo Metal Mining Company, Limited
    Inventors: Masakazu Achikita, Akihito Ohtsuka
  • Patent number: 5089354
    Abstract: A copper alloy composite material which comprises a copper alloy matrix and at least one additive selected from solid materials having self-lubricity and wear-resistant materials and uniformly dispersed in the alloy matrix is described. The composite material has improved wear resistance and anti-seizing properties.
    Type: Grant
    Filed: December 11, 1990
    Date of Patent: February 18, 1992
    Assignee: Chuetsu Metal Works, Co., Ltd.
    Inventors: Kunio Nakashima, Ryouichi Ishigane, Takayuki Tanaka, Ken-ichi Ichida
  • Patent number: 5087413
    Abstract: Vias each having no pore are formed in a multilayer ceramic substrate by filling through holes of green sheets with conducting material obtained by: kneading mixed powder particles, the powder particles produced by adding copper oxide powder particles in the amount of 50% (in weight) or less to copper powder particles, with a solution including methyl ethyl ketone and 0.5% (in weight) of isosulfonyltridecylbenzene titanate; drying and cracking the kneaded mixed powder particles, producing cracked mixed powder particles; classifying the cracked mixed powder particles with a 100 mesh filter, producing classified mixed powder particles; spheroidizing the classified mixed powder particles with a collision method performed in gases flowing at high speed; and firing the green sheets at a temperature of about 800.degree. C.
    Type: Grant
    Filed: January 9, 1991
    Date of Patent: February 11, 1992
    Assignee: Fujitsu Limited
    Inventor: Kenichiro Abe
  • Patent number: 5080714
    Abstract: A compound for producing sintered parts in an injection molding process and the molding process used to form the parts. The compound contains materials that allow the parts to be formed at lower temperatures and higher production rates when compared to more conventional processes.
    Type: Grant
    Filed: July 18, 1990
    Date of Patent: January 14, 1992
    Inventors: Masakazu Achikita, Akihito Ohtsuka
  • Patent number: 5078806
    Abstract: A complex part composed of rapidly solidified magnesium base metal alloy is produced by superplastic forming at a temperature ranging from 160.degree. C. to 275.degree. C. and at a rate ranging from 0.00021 m/sec to 0.00001 mm/sec, to improve the formability thereof and allow forming to be conducted at lower temperature. The rapidly solidified magnesium based alloy has a composition consisting essentially of the formula Mg.sub.bal Al.sub.a Zn.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium and yttrium, "a" ranges from 0 to about 15 atom percent, "b" ranges from 0 to about 4 atom percent and "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. Such an alloy contains fine grain size and finely dispersed magnesium-, aluminum- rare earth intermetallic phases.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: January 7, 1992
    Assignee: Allied-Signal, Inc.
    Inventors: Santosh K. Das, Chin-Fong Chang, Derek Raybould
  • Patent number: 5076979
    Abstract: A process for the production of a varistor material having a nonlinear index (.alpha.) of at least 20, which comprises adding a manganese compound to zinc oxide; heating the obtained mixture in the form of a powder in the atomosphere at 1050.degree. to 1150.degree. C.; grinding the material to give a particle size of 150 mesh or below; molding the powder into a desired shape; and sintering the same at 1200.degree. to 1350.degree. C.; is disclosed.
    Type: Grant
    Filed: June 14, 1989
    Date of Patent: December 31, 1991
    Assignee: Somar Corporation
    Inventors: Hideo Ochi, Akihide Igari, Zenbee Nakagawa
  • Patent number: 5071474
    Abstract: A magnesium base metal component is forged from a billet by subjecting the billet to a forging process using multiple steps in a closed-die or an open-die forging and a forging temperature ranging from 200.degree. C. to 300.degree. C. The billet is compacted from a rapidly solidified magnesium based alloy defined by the formula Mg.sub.bal Al.sub.a Zn.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, "a" ranges from about 0 to 15 atom percent, "b" ranges from about 0 to 4 atom percent, "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. The alloy has a uniform microstructure comprised of a fine grain size ranging from 0.2-1.0 .mu.m together with precipitates of magnesium and aluminum containing intermetallic phases of a size less than 0.1 .mu.m.
    Type: Grant
    Filed: June 15, 1990
    Date of Patent: December 10, 1991
    Assignee: Allied-Signal Inc.
    Inventors: Derek Raybould, Chin-Fong Chang, Santosh K. Das
  • Patent number: 5071618
    Abstract: A method of manufacturing dispersion-strengthened material wherein a first material having a metal matrix M and at least one metal X capable of reacting with boron is supplied in a molten state to a mixing region at a first velocity. A second material having a metal matrix M and boron is supplied to the mixing region at a second velocity. The materials impinge on one another to produce a reaction between the metal X and the boron to form a boride in the metal matrix M. The mixture is solidified and pulverized to a powder which is then cleaned and consolidated.
    Type: Grant
    Filed: September 20, 1990
    Date of Patent: December 10, 1991
    Assignee: Sutek Corporation
    Inventors: Luis E. Sanchez-Caldera, Arthur K. Lee, Nam P. Suh, Jung-Hoon Chun
  • Patent number: 5071473
    Abstract: A tungsten carbide powder and cemented tungsten carbide article made from the powder are disclosed. The powder has a particle size of greater than 20 micrometers in diameter and no particles less than one-half the average particle size or greater than two and one-half times the average particle size.
    Type: Grant
    Filed: April 16, 1990
    Date of Patent: December 10, 1991
    Assignee: GTE Products Corporation
    Inventors: David A. Reeder, Carlos Lopez, Jack L. Burwick
  • Patent number: 5070591
    Abstract: Metal and ceramic particles of various morphologies are clad with a coating from the transition metal group consisting of silver, gold, copper, nickel, iron, cobalt, aluminum etc., or combinations thereof, to provide improved coated particles for microelectronics or metal matrix composites or other uses. Refractory metal precursor core particles, such as tungsten, molybdenum, niobium and zirconium, as examples, are provided from a composite of tungsten and copper, for example, made by pressurizing and infiltrating or liquid phase sintering of molten copper into a porous tungsten skeleton. Precursor chip particles derived from a tungsten impregnated billet are used as starter particles which may be further enhanced by cogrinding in an attritor ball mill with smaller copper particles to thereby produce an enhanced copper clad-coating of tungsten particles with predetermined percent by weight of copper and tungsten content.
    Type: Grant
    Filed: January 22, 1990
    Date of Patent: December 10, 1991
    Inventors: Nathaniel R. Quick, James C. Kenney
  • Patent number: 5069868
    Abstract: Thermoelectric elements with excellent thermoelectric characteristics such as Seebeck coefficient thermoelectromotive force and thermal conductivity can be produced by molding a powder of metal or metal alloy as the raw material and then sintering; by using as such raw material, ultra fine powders containing Fe and Si as main components and having a mean particle diameter of 50 to 5,000.ANG..
    Type: Grant
    Filed: November 29, 1990
    Date of Patent: December 3, 1991
    Assignee: Idemitsu Petrolchemical Co., Ltd.
    Inventors: Takeo Tokiai, Takashi Uesugi
  • Patent number: 5069867
    Abstract: To permit an economical manufacture of high-strength sintered members for use in valve timing mechanisms of internal combustion engine by powder metallurgy with liquid-phase sintering, an iron-base powder mixture is provided, which contains 13 to 18% by weight chromium or 3 to 6% by weight molybdenum as a carbide-forming alloying element in the iron alloy powder and also contains 1.5 to 2.6% carbon and 0.4 to 1.0% by weight phosphorus. A corresponding molten iron alloy is atomized into an entraining gas or water jet and is subsequently mixed with the remaining components of the powder.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: December 3, 1991
    Assignee: Miba Sintermetall Aktiengesellschaft
    Inventor: Osman Z. Zengin
  • Patent number: 5067979
    Abstract: A process is provided for the production of a sintered body. The process includes the following consecutive steps: i) mixing and kneading one or more metal powders and/or one or more alloy powder with a binder into a compound, said metal and alloy powders having an average particle size not greater than 30 .mu.m, ii) injection-molding the compound into a green body; iii) debinding the green body to form a debound body; and iv) subjecting the debound body to a first-stage sintering at 1,050.degree.-1,250.degree. C. in a reduced-pressure atmosphere and then to second-stage sintering at a temperature in a range of 1,100.degree.-400.degree. C. which is higher than that of the first-stage sintering. This process can provide sintered Ti bodies and sintered magnetic bodies of the Fe-Si type, which have a density ratio of at least 95%.
    Type: Grant
    Filed: July 6, 1990
    Date of Patent: November 26, 1991
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshisato Kiyota, Junichi Ohta, Hiroshi Ohtsubo, Shigeaki Takajo
  • Patent number: 5063021
    Abstract: A method is disclosed for preparing an intimate mixture of powders of nickel-boron-silicon alloy and molybdenum metal powder suitable for thermal spray coatings which comprises milling a starting mixture of the alloy and molybdenum powder to produce a milled mixture wherein the average particle size is less than about 10 micrometers in diameter, forming an aqueous slurry of the resulting milled mixture and a binder which can be an ammoniacal molybdate compound or polyvinyl alcohol, and agglomerating the milled mixture and binder. The intimate mixture and binder are preferably sintered in a reducing atmosphere at a temperature of about 800.degree. C. to about 950.degree. C. for a sufficient time to form a sintered partially alloyed mixture wherein the bulk density is greater than about 1.2 g/cc.
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: November 5, 1991
    Assignee: GTE Products Corporation
    Inventors: Vidhu Anand, Sanjay Sampath, Clarke D. Davis, David L. Houck
  • Patent number: 5061661
    Abstract: A method is disclosed for producing tungsten carbide and a cemented tungsten carbide article therefrom which consists essentially of forming a uniform mixture of tungsten metal powder and carbon wherein the tungsten metal powder has an aveage particle size of from about 1 to about 4 micrometers in diameter, wherein the surface area of the carbon is no greater than about 12 m.sup.2 /g, and wherein the amount of the carbon is sufficient to react with essentially all of the tungsten to produce tungsten carbide in the subsequent heating step, heating the mixture in a non-oxidizing atmosphere at a temperature of at least about 1200.degree. C. for a sufficient time to produce tungsten carbide wherein the amount of free carbon is less than about 0.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: October 29, 1991
    Assignee: GTE Products Corporation
    Inventors: David R. Moyle, Geoffrey L. Harris, Robert F. Northrop
  • Patent number: 5061439
    Abstract: The invention relates to a method for the manufacture of dimensionally precise pieces which are at least in part made of a sintered material. The material comprises a mixture of at least three pulverous constituents, of which the first is mainly of a metal of the iron group and coarse by its particle size, the second constituent contains copper and/or phosphorus, and the third constituent contains mainly copper. For the material, a powder mixture is made which contains the largest amount of the third constituent and substantially less of both the first and the second constituents. The powder mixture is fed into a cavity preferably a mold-cavity and is sintered without compression of the powder mixture, without pressure, in this cavity and at a temperature which is above the melting point of the said second constituent.
    Type: Grant
    Filed: November 29, 1990
    Date of Patent: October 29, 1991
    Assignee: Aktiebolaget Electrolux
    Inventors: Olli J. Nyrhila, Seppo O. Syrjala
  • Patent number: 5059387
    Abstract: Shaped parts are formed from a powder having the desired chemistry of the finished part by mixing the powder with a thermosetting condensation resin that acts as a binder. The resin may be partially catalyzed, or additives or surfactants added to improve rheology, mixing properties, or processing time. Upon heating, the inherently low viscosity mixture will solidify without pressure being applied to it. A rigid form is produced which is capable of being ejected from a mold. Pre-sintered shapes or parts are made by injection molding, by using semi-permanent tooling, or by prototyping. Binder removal is accomplished by thermal means and without a separate debinding step, despite the known heat resistance of thermosetting resins. Removal is due to the film forming characteristic of the binder leaving open the part's pores, by providing oxidizing conditions within the part's pores as the part is heated, and by insuring that the evolving resin vapor diffuses through the pores by heating the part in a vacuum.
    Type: Grant
    Filed: June 2, 1989
    Date of Patent: October 22, 1991
    Assignee: Megamet Industries
    Inventor: Gregory M. Brasel
  • Patent number: 5055128
    Abstract: Disclosed herein is an economical process for the production of a sintered Fe-Co type, Fe-Co-V type or Fe-Co-Cr type magnetic material, which comprises preparing an alloy powder of at least Fe and Co metals or a like powder, kneading it with an organic binder, conducting injection molding and debinding, and then conducting a two-stage sintering treatment consisting of low-temperature sintering and high-temperature sintering. Magnetic materials having a specific composition of the Fe-Co, Fe-Co-V or Fe-Co-Cr type and excellent magnetic properties and a low core loss value are also disclosed.
    Type: Grant
    Filed: January 24, 1990
    Date of Patent: October 8, 1991
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshisato Kiyota, Osamu Furukimi
  • Patent number: 5049184
    Abstract: In a process for making a low thermal expansion, high thermal conductivity member or article suitable for bonding to a support member at a predetermined bonding temperature and for facilitating heat transfer therefrom, and in the member made thereby, first and second metal powders are combined in volumetric proportions to provide an approximation to desired thermal expansion and thermal conductivity characteristics. The powder mixture is then consolidated in a controlled manner to provide a shaped member having a thermal expansion characteristic curve that essentially matches that of the support member from about 30.degree. C. up to the bonding temperature. Consolidation of the metal powder mixture is controlled by selecting a density for the consolidated powder that results in the close expansion match over the temperature range and then consolidating the metal powder mixture to that density.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: September 17, 1991
    Assignee: Carpenter Technology Corporation
    Inventors: Leslie L. Harner, Gregory J. Del Corso
  • Patent number: 5049183
    Abstract: A method of manufacturing a sintered machine part, by which the machine part can be manufactured to be sufficiently strong, wear and abrasion resistive, and durable against the fatigue caused by recursive impacts, without the heat treatments. In the method, a machine part composed of 0.1 to 0.8% of carbon by weight, 2 to 6% of nickel by weight, 0.6 to 1.6% of molybdenum by weight, 1 to 3% of copper by weight and balance iron is manufactured by mixing partially diffused alloy powder composed of 2 to 6% of nickel by weight, 0.4 to 0.6% of molybdenum by weight, 1 to 3% of copper by weight and balance iron with graphite powder amounting to 0.1 to 0.8% by weight and molybdenum simple powder having 2 to 7 .mu.m mean particle size amounting to 0.2 to 1% by weight, and then by compacting the mixed powder and sintering the compact.
    Type: Grant
    Filed: September 28, 1990
    Date of Patent: September 17, 1991
    Assignees: Hitachi Powdered Metals Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tsutomu Saka, Akira Fujiwara, Tadayuki Tsutsui, Osamu Murai, Kei Ishii
  • Patent number: 5045972
    Abstract: A thermally conductive diamond metal composite consisting essentially of 5 to 80 volume percent diamond particles having a particle size ranging from about 1 to 50 .mu.m and a metal matrix comprising a thermally conductive metal. Preferably, a fine metal powder having particle size below 53 microns is utilized as the source for the metal matrix.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: September 3, 1991
    Assignee: The Standard Oil Company
    Inventors: Edward C. Supan, Joseph F. Dolowy, Jr., Bradley A. Webb
  • Patent number: 5045276
    Abstract: An injection molded powder metallurgy product of highly satisfactory quality is obtained by a method which comprises injection molding mixture obtained by kneading a metal powder with a binder, depriving the molded mass of the binder while keeping the molded mass at least in contact with ceramic powder, projecting beads on the molded mass free from the binder, and thereafter sintering the molded mass studded with the beads.
    Type: Grant
    Filed: October 11, 1990
    Date of Patent: September 3, 1991
    Assignee: Sumitomo Metal Mining Company Limited
    Inventor: Yoshio Kijima
  • Patent number: 5043025
    Abstract: A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.
    Type: Grant
    Filed: June 12, 1990
    Date of Patent: August 27, 1991
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: John D. Verhoeven, William A. Spitzig, Edwin D. Gibson, Iver E. Anderson
  • Patent number: 5034282
    Abstract: Process for the powder-metallurgical production of work pieces, particularly tools, containing high-melting point carbides and/or carbonitrides homogeneously distributed in a matrix, in which an amount of elements of the IVa and Va groups, or secondary groups, of the periodic table is adjusted to at least 3 weight percent of the alloy, a low carbon and/or nitrogen concentration is established, and primary precipitates are prevented; and a desired carbon and/or nitrogen content is created by atomization of the melt into powder vaporizing medium.
    Type: Grant
    Filed: March 5, 1990
    Date of Patent: July 23, 1991
    Assignee: Boehler Gesellschaft m.b.H.
    Inventors: Bruno Hribernik, Gerhard Hackl
  • Patent number: 5033939
    Abstract: Shaped parts are formed from a powder having the desired chemistry of the finished part by mixing the powder with a thermosetting condensation resin that acts as a binder. The resin may be partially catalyzed, or additives or surfactants added to improve rheology, mixing properties, or processing time. Upon heating, the inherently low viscosity mixture will solidify without pressure being applied to it. A rigid form is produced which is capable of being ejected from a mold. Pre-sintered shapes or parts are made by injection molding, by using semi-permanent tooling, or by prototyping. Binder removal is accomplished by thermal means and without a separate debinding step, despite the known heat resistance of thermosetting resins. Removal is due to the film forming characteristic of the binder leaving open the part's pores, by providing oxidizing conditions within the part's pores as the part is heated, and by insuring that the evolving resin vapor diffuses through the pores by heating the part in a vacuum.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: July 23, 1991
    Assignee: Megamet Industries
    Inventor: Gregory M. Brasel
  • Patent number: 5034186
    Abstract: A titanium or titanium alloy composite having a porous surface layer, which comprises a titanium or titanium alloy substrate and a porous titanium or titanium alloy layer that adheres strongly to said substrate, said porous layer being formed by first providing said substrate with a firmly adhering sinter of a mixture of a titanium or titanium alloy powder and a magnesium powder, and then removing magnesium from the sinter. A process for producing a titanium or titanium alloy composite having a porous surface layer, comprising: providing a coating composition comprising a binder added to a mixture of a titanium or titanium alloy powder and a magnesium powder; applying said composition to the surface of a titanium or titanium alloy substrate; heating the substrate at a temperature of from 650.degree. to 800.degree. C. in vacuo or an inert atmosphere so as to form a sinter of the powders of titanium or titanium alloy and magnesium which firmly adheres to said substrate; and removing magnesium from said sinter.
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: July 23, 1991
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Hideo Sato, Masashi Hosonuma
  • Patent number: 5032354
    Abstract: A composition for producing a metallic sintered body consisting essentially of a mixture of a powdered metal having an average particle size of not more than 50 microns with a lactone resin having a relative viscosity value in the range of from 1.15 to 3.20 is disclosed.The composition has excellent properties such as mechanical strength of a green body thereof, and only a short time being necessary for removal or elimination of binder in comparison with conventional sintering compositions.Furthermore, the binder in the present composition is substantially composed of a single component; accordingly, manufacturing process control can be simplified by use of the lactone resin.Furthermore, a method for producing a metallic sintered body using such composition is also disclosed.
    Type: Grant
    Filed: August 28, 1990
    Date of Patent: July 16, 1991
    Assignee: Daicel Chemical Industries Ltd.
    Inventors: Michio Nakanishi, Takuya Miho
  • Patent number: 5032355
    Abstract: A method of manufacturing a sintering product of Fe-Co alloy soft magnetic material by molding a powder comprising from 40 to 60% by weight of Co and the substantial balance of Fe, sintering the molding product and then applying heat treatment, wherein cooling after the heat treatment is conducted as slow cooling at a cooling rate of not more than 50.degree. C./min.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: July 16, 1991
    Assignee: Sumitomo Metal Mining Company Limited
    Inventors: Masakazu Achikita, Akihito Ohtsuka, Shinichi Sogame
  • Patent number: 5028386
    Abstract: In a process for making tools from medium and high alloy steels or stellites by superplastic precision forming a powder metallurgically produced starting material with an equiaxed structure and more than 30% by volume of carbidic and/or boridic precipitated phase of particle size 1 to 0.2 .mu.m is given a matrix grain size of 1 to 3 .mu.m by thermomechanical processing (hot forming) and formed in the superplastic state.
    Type: Grant
    Filed: October 17, 1990
    Date of Patent: July 2, 1991
    Assignee: Robert Zapp Werkstofftechnik GmbH & Co. KG
    Inventor: Georg Frommeyer
  • Patent number: 5022918
    Abstract: A heat-resistant aluminum alloy sinter comprises 5 to 12% by weight of Cr, less than 10% by weight of at least one selected from the group consisting of Co, Ni, Mn, Zr, V, Ce, Fe, Ti, Mo, La, Nb, Y and Hf, and the balance of Al containing unavoidable impurities. A silicon carbide fiber is included for reinforcing the sinter in a fiber volume fraction range of 2 to 30%.
    Type: Grant
    Filed: December 1, 1988
    Date of Patent: June 11, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seiichi Koike, Hiroyuki Horimura, Masao Ichikawa, Noriaki Matsumoto
  • Patent number: 5019330
    Abstract: A method of forming tungsten ingots having improved uniformity of density and improved uniformity in distribution of dopant within the ingot is disclosed. Doped tungsten powder is disposed in a cylindrical mold having sealing means at both ends. The powder completely fills a void space within the mold between the sealing means so that there is substantially no settling of the powder. A pressure of about 560 kg/cm.sup.2 is applied uniformly to the outer surface of the mold to form a cylindrical compact. The compact is removed from the mold and resistance sintered to a density of at least about 85 percent of theoretical density to form the ingot.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: May 28, 1991
    Assignee: General Electric Company
    Inventors: Bernard P. Bewlay, James Day
  • Patent number: 5019156
    Abstract: A sintered electric contact material for use in vacuum switch tubes comprises about 50 to 70% by volume of a Cr powder, about 0.1 to 1.15% by volume of a Ti powder, and the remainder of a Cu powder. The sintered material can be obtained advantageously by heating a mixture of the Cr powder, the Ti powder and the Cu powder in a non-oxidizing atmosphere under pressure, at a temperature below the melting point of Cu (the melting point is 1083.degree. C. at normal pressure).
    Type: Grant
    Filed: May 17, 1990
    Date of Patent: May 28, 1991
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Eizo Naya, Mitsuhiro Okumura
  • Patent number: 5017217
    Abstract: A method for manufacturing ceramic/metal or ceramic/ceramic composite articles is disclosed. The articles can be useful for the production of aluminum in fused salt electrolysis cells, as armor plates for the protection against projectiles, cutting tools, or in abrasion resistance applications. The temperature slope of the process if optimized such that one of the reactants in the manufacturing proceeds through peritectic decomposition at a heating rate of low temperature increase for desirably uniform temperature distribution over the reaction mixture. Then the temperature increase is greatly elevated to obtain a reaction sintering condition for avoiding grain growth of undesired reaction products. Elevated temperature reaction sintering conditions can be maintained to decompose undesired components before they are entrapped by the reaction product.
    Type: Grant
    Filed: August 21, 1990
    Date of Patent: May 21, 1991
    Assignee: Eltech Systems Corporation
    Inventors: Thomas M. Clere, Gholamreza J. Abbaschian, Douglas J. Wheeler, Albert L. Barnes
  • Patent number: 5015438
    Abstract: A metal extrusion process and apparatus in which a semisolid material is fed into a passageway formed between first and second members, with one of the members being moved toward a die such that the semisolid material is drawn through the passageway and solidifies before passing through the die means.
    Type: Grant
    Filed: January 2, 1990
    Date of Patent: May 14, 1991
    Assignee: Olin Corporation
    Inventors: Sankaranarayanan Ashok, Harvey P. Cheskis, Derek E. Tyler
  • Patent number: 5015439
    Abstract: A metal extrusion process and apparatus in wich a semisolid material is fed into a passageway formed between first and second members, with one of the members being moved toward a die such that the moveable member draws the semisolid material through the passageway and through the die means.
    Type: Grant
    Filed: January 2, 1990
    Date of Patent: May 14, 1991
    Assignee: Olin Corporation
    Inventors: Derek E. Tyler, Sankaranarayanan Ashok, Harvey P. Cheskis
  • Patent number: 5009841
    Abstract: A process for dewaxing injection molded metal pieces consisting of a metal/binder mixture, wherein a metal oxide is added to the metal/binder mixture.
    Type: Grant
    Filed: April 12, 1990
    Date of Patent: April 23, 1991
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Bloemacher, Reinhold Schlegel, Dieter Weinand
  • Patent number: 5009706
    Abstract: Rare-earth alloy anisotropic powders consist of, in atomic percent, over 12 percent and not more than 20 percent of R (R is at least one on neodymium and praseodymium or at least one of them and or more rare-earth elements), not less than 4 percent and not more than 10 percent of boron, not less than 0.05 percent and not more than 5 percent of copper and the rest that consists of iron and unavoidable impurities. Up to 20 percent of the iron contained is replaceable with cobalt. The alloy powders are made up of flat crystal grains having mean thickness h (the shortest measure), d not smaller than 0.01 .mu.m and not larger than 0.5 .mu.m and ratio d/h not smaller than 2, where d is the means measure of the grains taken at right angles to the widthwide direction thereof, and the alloy powders are magnetically anisotropic.
    Type: Grant
    Filed: July 18, 1990
    Date of Patent: April 23, 1991
    Assignee: Nippon Steel Corporation
    Inventors: Hiroaki Sakamoto, Masahiro Fujikura, Toshio Mukai
  • Patent number: 5006164
    Abstract: A starting material for injection molding of a metal powder including from 38 to 46% by volume of an organic binder and the balance of spherical iron powder with an average particle size from 2 to 6 .mu.m, which provides a sintered part having a density ratio of higher than 94%, by conducting injection molding, debinding and sintering in a non-oxidizing atmosphere at a temperature lower than the A.sub.3 transformation point of carbon steel.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: April 9, 1991
    Assignee: Kawasaki Steel Corporation
    Inventor: Yoshisato Kiyota
  • Patent number: 5004498
    Abstract: A dispersion strengthened copper alloy containing a copper matrix, and dispersion particles dispersed in the copper matrix within a range of 0.5 to 6 vol %. In this alloy, an average diameter of a matrix region where the dispersion particles are not present is 0.3 .mu.m or less, and the total amount of solid solution elements contained in the copper matrix is determined such that, when this amount of the solid solution elements is added to pure copper, the electric conductivity of the matrix is lowered by 5% IACS or less.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: April 2, 1991
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keizo Shimamura, Kagetaka Amano, Tatsuyoshi Aisaka, Satoshi Hanai, Kohsoku Nagata
  • Patent number: 5002728
    Abstract: A method of manufacturing a soft magnetic Fe-Si alloy sintered product comprising a step of injection molding a composition comprising an Fe-Si powder mixture blended so as to contain from 1 to 10% by weight of Si and the substantial balance of Fe and a binder a step of applying binder-removal under heating to the resultant green body and applying a degassing and Si-diffusing; and a step of subsequently applying sintering. The sintered product is, preferably, applied with further heating for obtaining better soft magnetic property. Soft magnetic property of the sintered products is as comparable with or superior to products by conventional powder metallurgy.
    Type: Grant
    Filed: December 18, 1989
    Date of Patent: March 26, 1991
    Assignee: Sumitomo Metal Mining Company, Ltd.
    Inventors: Masakazu Achikita, Shinichi Sogame
  • Patent number: 5000779
    Abstract: The subject of this invention is the development of new alloys along with new processing approaches for the utilization of the alloys. A particular class of alloys comprises at least one noble metal selected from the group comprising gold, palladium, silver and copper and an amount of between about 0.20 weight percent and about 0.80 weight percent of at least one metalloid selected from the group of metalloids consisting of boron, phosphorous, silicon and lithium. Rapid solidification technology in powder fabrication and the addition of metalloids have been combined to produce a new class of palladium based alloys. The metalloid additions greatly increase the hardness, enhance the fine grain structure and aid sintering densification. Net-shape forming is a benefit derived from the characteristics of the new alloys.
    Type: Grant
    Filed: May 18, 1988
    Date of Patent: March 19, 1991
    Assignee: Leach & Garner
    Inventors: Randall M. German, Laura L. Bourguignon, Dwarika P. Agarwal, Shaji Faroog