Consolidation Of Powder Prior To Sintering Patents (Class 419/38)
  • Patent number: 10710156
    Abstract: A method of fabricating parts out of metallic, intermetallic, ceramic, ceramic matrix composite, or metal matrix composite material with discontinuous reinforcement, includes melting or sintering powder particles by means of a high-energy beam. The powder used is a single powder of particles that present sphericity lying in the range 0.8 to 1.0 and of form factor lying in the range 1 to ?2, each powder particle presenting substantially identical mean composition, and the grain size distribution of the particles of the powder is narrowed around the mean diameter value d50% in such a manner that: (d90%?d50%)/d50%?0.66; and (d50%?d10%)/d50%?0.33; with a “span”: (d90%?d10%)/d50%?1.00.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 14, 2020
    Assignees: SAFRAN AIRCRAFT ENGINES, EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS FRANCE, AIRBUS HELICOPTERS
    Inventors: Christophe Colin, Laetitia Kirschner
  • Patent number: 10675685
    Abstract: A method for preventing powder depletion/contamination during a consolidation process provides a can for holding a powdered material; the can having an interior wall; a protective layer is positioned intermediate the powdered material and the interior wall utilizing a sol-gel process utilizing monodisperse nanopowders; and the protective layer being formed from a material selected from the group consisting of nickel alloys, chrome alloys, and combinations thereof.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: June 9, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Agnieszka M Wusatowska-Sarnek, Larry G Housefield, Ruston M Moore, Enrique E Montero, Promila Bhaatia
  • Patent number: 10640851
    Abstract: Aluminium-silicon powder mixtures comprising a hypereutectic Al—Si powder, a near eutectic Al—Si powder, and a third powder which is aluminium or a hypoeutectic aluminium alloy containing alloying constituents other than silicon and less than 9 wt % silicon, with a sintering aid comprising a fourth, zinc-containing powder, are pressed and sintered to provide powder metallurgy products suitable for automotive component use in particular. The third powder in the composition permits such Al—Si powder mixtures to be compressed to a density approaching that obtained by use of an annealed powder mixture, but without the annealing step.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: May 5, 2020
    Inventors: Charles Grant Purnell, Henry Dickinson
  • Patent number: 10576542
    Abstract: The invention relates to a manufacturing system and method for manufacturing a part. A negative powder forms a holder suitable to hold particles of a positive powder in proximity to one another. A connection scheme such as heating, the use of pressure and/or a binder, when employed, connects the particles to one another to form the part.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 3, 2020
    Assignee: Grid Logic Incorporated
    Inventors: Matthew J. Holcomb, Ira J. Holcomb, Jr.
  • Patent number: 10546688
    Abstract: Provided is a method for producing a rare-earth magnet that can resolve a problem of deterioration of the residual magnetization and coercive force of the rare-earth magnet due to spring-back in producing the rare-earth magnet through performing hot deformation processing of upsetting on a sintered body. The method includes a first step of producing the sintered body through press-forming of magnetic powder for a rare-earth magnet, and a second step of producing a rare-earth magnet precursor through hot deformation processing of upsetting in which the sintered body is placed within a plastic processing mold and is pressurized in a predetermined direction so as to impart magnetic anisotropy to the sintered body, and performing cooling of the rare-earth magnet precursor while a predetermined pressure is kept being applied thereto in the predetermined direction, so that the rare-earth magnet is produced.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: January 28, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Ichigozaki, Takeshi Yamamoto
  • Patent number: 10532404
    Abstract: In molding a compact having portions of an equal thickness on opposite sides of a through-hole, an advancing speed of a holder holding a powder material is adjusted before the holder is advanced and retracted over a die cavity of a die. Specifically, a first preparation of determining in advance a relation between the advancing speed of the holder and a packing density of the powder material packed in the die cavity at each of the portions to be of an equal thickness of the compact on opposite sides of the through-hole is made; and, based on the relation determined in the first preparation, the advancing speed of the holder is adjusted to a speed at which the packing density becomes uniform. Thus, the packing density of the powder material packed in the die cavity can be uniformized, so that the dimensional accuracy of the molded compact can be improved.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: January 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiyuki Sanada, Kazumichi Nakatani
  • Patent number: 10442737
    Abstract: A green body for a cross-hole, compacted cutting insert, as well as a cutting insert, equipment for making a green body, and method for making a green body, wherein the green body includes a first side, a second side, and a side surface extending between the first side and the second side entirely around the first side and the second side. The green body includes a quadrilateral-shaped cross-hole extending through the green body from a first location on the side surface to a second location on the side surface on an opposite side of the green body from the first location. The quadrilateral-shape of the cross-hole can assist in achieving a more uniform density of compactable material in the green body.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 15, 2019
    Assignee: SECO TOOLS AB
    Inventor: Dirk Sterkenburg
  • Patent number: 10395823
    Abstract: This disclosure is directed to methods for creating recycled Nd—Fe—B type permanent magnets, the methods comprising homogenizing a first population of particles of a rare earth transitional elemental additive with a second population of particles of a magnetic material, wherein the nature of the rare earth transitional elemental additive and the magnetic material are described herein. Additional steps may include compressing the population of homogenized particles together to form a green body, and heating the green body at a temperature and for a time sufficient to sinter the green body into a sintered body. Compositions resulting from these methods are also within the scope of the disclosure.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 27, 2019
    Assignee: Urban Mining Company
    Inventors: Miha Zakotnik, Walter Del Pozzo
  • Patent number: 10265767
    Abstract: It is an object of the present invention to provide an alloy powder that has high hardness and high corrosion resistance and can be produced from inexpensive raw materials, as well as to provide a shot material for shot peening, a powder metallurgical composition, and an iron-based sintered alloy using the alloy powder, and, in order to achieve such an object, there are provided an alloy powder including, in mass %, C: 0.6% or more and 2.4% or less, Cr: 36% or more and 60% or less, Mn: 0.1% or more and 10% or less, Mo: 0% or more and 10% or less, Si: 0% or more and less than 2%, Ni: 0% or more and 15% or less, Co: 0% or more and 5% or less, W: 0% or more and 5% or less, V: 0% or more and 5% or less, Nb: 0% or more and 5% or less, and the balance of Fe and unavoidable impurities, as well as the shot material for shot peening, the powder metallurgical composition, and the iron-based sintered alloy using the alloy powder.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: April 23, 2019
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventor: Toshiyuki Sawada
  • Patent number: 10207439
    Abstract: An apparatus or assembly for forming injection molded magnets in permanent magnet rotors or laminations for such rotors. The assembly includes a plurality of platens defining an axial boundary of a die cavity and a plurality of support shoes that are radially moveable between a closed position defining a radial boundary of the die cavity, and an open position creating a gap between the rotor core and the plurality of support shoes. The assembly has an injection system for filling at least one of the plurality of voids of the rotor core with a magnetic slurry, and a plurality of alignment magnets configured to magnetically align the magnetic slurry.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: February 19, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Edward L. Kaiser, Amanda Luedtke, Peter J. Savagian, Sinisa Jurkovic
  • Patent number: 10121589
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration and vertical reciprocation to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 6, 2018
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10121588
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 6, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10100386
    Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
  • Patent number: 10090104
    Abstract: A mold comprising a die, an upper punch, and a lower punch, the pressure surface of one or both of the upper and lower punches being shaped non-planar, a cavity being defined between the die and the lower punch, is combined with a feeder including a shooter provided with a main sieve at its lower end port, the main sieve having a sifting surface of substantially the same non-planar shape as the pressure surface. A rare earth sintered magnet is prepared by feeding an alloy powder into the cavity through the shooter and sieve while applying weak vibration and vertical reciprocation to the shooter, applying a uniaxial pressure to the alloy powder fill in the cavity under a magnetic field to form a precursor, and heat treating the precursor.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: October 2, 2018
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mitsuo Kitagawa, Kazuaki Sakaki
  • Patent number: 10081149
    Abstract: Provided is a stepped die which includes: an inner ring having a cylindrical shape, and an outer ring having a cylindrical shape which is fitted on an outer periphery of the inner ring by shrinkage fitting, in which a recessed portion for molding which has a stepped portion is formed on an inner side of the inner ring. A shrinkage fitting ratio of the outer ring to the inner ring is set to a value which falls within a range of from 0.12% to 0.25%.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 25, 2018
    Assignee: Sumitomo Electric Sintered Alloy, Ltd.
    Inventors: Masato Uozumi, Shinichi Hirono
  • Patent number: 9868154
    Abstract: A method for creating a dynamic mold from a ferrofluid substrate in or adjacent to curable molding material is disclosed. A combination of magnetic elements is used to create a magnetic field that is capable of concentrating a ferrofluid substrate in a 3-D space. The ferrofluid substrate shapes a molding material to effect its shape. The ferrofluid, under the influence of a magnetic field, is capable of creating surface features and internal features in the molding material. Once cured or partially cured, the ferrofluid may be removed, resulting in features that are difficult to form by conventional methods.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: January 16, 2018
    Assignee: Hummingbird Nano, Inc.
    Inventor: Eleanor Augusta Hawes
  • Patent number: 9831034
    Abstract: A mold which is inexpensive and easy to process and does not embrittle. Also provided is a process by which a sintered NdFeB magnet can be produced using the mold without suffering bending or deformation. At least part (e.g., a bottom plate) of the mold is made of a carbon material. Carbon materials have lower friction with a sinter during sintering than metals. The mold hence enables a sintered NdFeB magnet to be produced without suffering the bending or deformation caused by friction due to sintering shrinkage. Carbon materials are inexpensive and easy to process. The mold does not embrittle even when repeatedly used. Such effects can be significantly produced when a carbon material is used as the bottom plate, on which the load of the sinter is imposed during sintering.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: November 28, 2017
    Assignee: INTERMETALLICS CO., LTD.
    Inventor: Masato Sagawa
  • Patent number: 9713845
    Abstract: A method for manufacturing a cutting insert having a through-hole that extends in a direction that is non-parallel to the main pressing direction. The method includes the steps of moving first and second punches within a die cavity toward each other along a first pressing axis and compacting a powder around a core rod into a cutting insert green body, wherein, during at least a portion of the compaction step, the core rod is turned a predetermined angle in alternating direction around its longitudinal axis.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: July 25, 2017
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventor: Hjalmar Staf
  • Patent number: 9546071
    Abstract: A sheet transport device includes a transport unit that transports a sheet to a reading position by a first transport roller, a driving unit that switches a rotating direction, a rotating unit that rotates the first transport roller in one direction, the rotating unit including a one-direction gear that directly meshes with a first planet gear when the driving unit rotates in a first direction and meshes with a second planet gear when the driving unit rotates in a second direction, a switch unit that switches between states in which rotation of the one-direction gear is or is not transmitted to the first transport roller, and a displacement-force applying part that applies a force for displacing the first planet gear to mesh with the one-direction gear when the first planet gear touches the switch unit.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: January 17, 2017
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Masato Serikawa, Takakiyo Toba, Kazuyuki Koda, Takato Kato
  • Patent number: 9533351
    Abstract: A zirconium-doped aluminum powder metal and a method of making this powder metal are disclosed. The method of making includes forming an aluminum—zirconium melt in which a zirconium content of the aluminum—zirconium melt is less than 2.0 percent by weight. The aluminum—zirconium melt then powderized to form a zirconium-doped aluminum powder metal. The powderization may occur by, for example, air atomization.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 3, 2017
    Assignee: GKN Sinter Metals, LLC
    Inventors: Donald Paul Bishop, Richard L. Hexemer, Jr., Ian W. Donaldson, Randy William Cooke
  • Patent number: 9267189
    Abstract: In accordance with an exemplary embodiment, a method of forming a dispersion-strengthened aluminum alloy metal includes the steps of providing a dispersion-strengthened aluminum alloy composition in a powdered form, directing a low energy density laser beam at a portion of the powdered alloy composition, and withdrawing the laser beam from the portion of the powdered alloy composition. Subsequent to withdrawal of the laser beam, the portion of the powdered alloy composition cools at a rate greater than or equal to about 106° C. per second, thereby forming the dispersion-strengthened aluminum alloy metal.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 23, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Richard Bye, Mark C. Morris, Harry Kington
  • Patent number: 9102015
    Abstract: A thermal barrier tile (34) with a braze layer (46) co-sintered to a ceramic layer (48) is brazed to a substrate (26) of a component for fabrication or repair of a thermal barrier coating (28) for example on a gas turbine ring segment (22, 24). The tile may be fabricated by disposing a first layer of a metal brazing material in a die case (40); disposing a second layer of a ceramic powder on the metal brazing material; and co-sintering the two layers with spark plasma sintering to form the co-sintered ceramic/metal tile. A material property of an existing thermal barrier coating to be repaired may be determined (90), and the co-sintering may be controlled (93) responsive to the property to produce tiles compatible with the existing thermal barrier coating in a material property such as thermal conductivity.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 11, 2015
    Assignee: Siemens Energy, Inc
    Inventors: Anand A. Kulkarni, Ahmed Kamel, Stefan Lampenscherf, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill
  • Patent number: 9096034
    Abstract: A syntactic metal foam composite that is substantially fully dense except for syntactic porosity is formed from a mixture of ceramic microballoons and matrix forming metal. The ceramic microballoons have a uniaxial crush strength and a much higher omniaxial crush strength. The mixture is continuously constrained while it is consolidated. The constraining force is less than the omniaxial crush strength. The substantially fully dense syntactic metal foam composite is then constrained and deformation worked at a substantially constant volume. The deformation working is typically performed at a yield strength that is adjusted by way of selecting a working temperature at which the yield strength is approximately less than the omniaxial crush strength of the included ceramic microballoons. This deformation causes at least work hardening and grain refinement in the matrix metal.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: August 4, 2015
    Assignee: Powdermet, Inc.
    Inventors: Andrew J. Sherman, Brian Doud
  • Patent number: 9096474
    Abstract: This invention relates to a mold for synthesizing powder, and particularly to a mold for synthesizing ceramic powder suitable for use as a mold system which is subjected to spark plasma sintering, which includes a cylindrical mold body into which a powder material used to synthesize ceramic powder is charged, and a pair of mold covers respectively disposed in contact with the top and the bottom of the mold body, thus basically suppressing the production of aggregates in synthesized powder due to pressing and also enabling the mold system to operate even when using a small amount of power, so that the system is prevented from malfunctioning and the power consumption thereof is reduced upon operating.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: August 4, 2015
    Assignee: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Sea Hoon Lee, Hai Doo Kim, Jae Woong Ko
  • Publication number: 20150147590
    Abstract: A new Enhanced High Pressure Sintering (EHPS) method for making three-dimensional fully dense nanostructures and nano-heterostructures formed from nanoparticle powders, and three-dimensional fully dense nanostructures and nano-heterostructures formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated at an elevated temperature under a gas flow to produce a cleaned powder. The cleaned powder is formed into a low density green compact which is then sintered at a temperature below conventional sintering temperatures to produce a fully dense bulk material having a retained nanostructure or nano-heterostructure corresponding to the nanostructure of the constituent nanoparticles. All steps are performed without exposing the nanoparticle powder to the ambient.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 28, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser
  • Publication number: 20150132175
    Abstract: A mixed powder placed in a container cavity is transferred to the cavity of a first die. A first pressure is applied to the mixed powder in the first die to form an intermediate green compact. The first die and the intermediate green compact are heated to heat the intermediate green compact to the melting point of a lubricant. The heated intermediate green compact is transferred to the cavity of a second die, and a second pressure is applied to the intermediate green compact to form a high-density final green compact.
    Type: Application
    Filed: April 22, 2013
    Publication date: May 14, 2015
    Inventors: Kazuhiro Hasegawa, Yoshiki Hirai
  • Publication number: 20150132176
    Abstract: A method for the production of a metal bearing layer (L) on a cylinder barrel (3) of a hydrostatic displacement machine (1), in particular of an axial piston machine, in which the metal bearing layer (L) is produced from a sintering powder in a sintering process. In a first production step, a dimensionally stable green compact (31) is produced from a sintering powder by a cold pressing process. In a second subsequent production step, the green compact (31) produced by the cold pressing process is sintered onto the cylinder barrel (3) in a sintering process.
    Type: Application
    Filed: September 23, 2014
    Publication date: May 14, 2015
    Inventors: Klaus Volker, Jens Gabelmann, Klaus Syndikus, Sebastian Weber
  • Publication number: 20150118096
    Abstract: A first die is filled with a mixed powder that is a mixture of a basic metal powder and a low-melting-point lubricant powder. A first pressure is applied to the mixed powder to form a mixed powder intermediate compressed body having a protrusion that protrudes in the pressing direction as compared with the configuration of a mixed powder final compressed body. The mixed powder intermediate compressed body is heated to the melting point of the lubricant powder. The heated mixed powder intermediate compressed body is placed in a second die. A second pressure is applied to the mixed powder intermediate compressed body to press-mold the mixed powder intermediate compressed body while crushing the protrusion in the pressing direction to form the high-density mixed powder final compressed body having high density and the desired configuration.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 30, 2015
    Inventors: Kazuhiro Hasegawa, Yoshiki Hirai
  • Patent number: 9017599
    Abstract: There is provided a sliding part in which a surface coverage ratio of copper in the sliding part increases. A bearing which is the sliding part is formed by filling the raw powder into the filling portion of the forming mold, compacting the raw powder to form a powder compact, which is sintered. A copper-based raw powder is composed of a copper-based flat raw powder whose diameter is smaller than that of an iron-based raw powder and an aspect ratio larger than that of the iron-based raw powder, and a copper-based small-sized raw powder whose diameter is smaller than that of the copper-based flat raw powder. The copper is allowed to segregate at the surface of the sliding part. The surface of the bearing is covered with the copper-based small-sized raw powder and the copper-based flat raw powder, thereby the surface coverage ratio of copper can be increased.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 28, 2015
    Assignee: Diamet Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Patent number: 8999230
    Abstract: New net shape strength retaining high temperature alloy parts are formed from fine metallurgical powders by mechanically blending the powders and placing them in die, placing a piston in the die, extending the piston into a driving chamber, filling the chamber with CH4 and air and compressing the powders with the filling pressure. Igniting gas in the chamber drives the piston into the cavity, producing pressures of about 85 to 150 tsi, compacting the powders into a near net shape alloy part, ready for sintering at 2300° C. without shrinking. The alloy parts are Re, Mo—Re, W—Re, Re—Hf—HfC, Re—Ta—Hf—HfC, Re—Mo—Hf—HfC, Mo—Re—Ta, Mo—Re-f-HfC, W—Re—Hf—HfC, W—Re—Ta—Hf—HfC or W—Re—Mo—Hf alloys.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 7, 2015
    Assignee: Utron Kinetics, LLC
    Inventors: Karthik Nagarathnam, Donald Trostle, Dennis Massey
  • Publication number: 20150093274
    Abstract: Scroll members for scroll compressors made from one or more near-net shaped powder metal processes, either wholly or partially fabricated together from sections. In certain variations, the involute scroll portion of the scroll member has a modified terminal end region. The terminal end region may include an as-sintered coupling feature comprising a tip component that forms a contact surface for contacting an opposing scroll member during compressor operation. The tip component can be a tip seal or a tip cap received by the as-sintered coupling feature. The tip cap may be sinter-bonded or otherwise coupled to the terminal end region. In other variations, a terminal end region may comprise a second material including a tribological material that forms a contact surface. Methods of making such scroll members for scroll compressors are also provided.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Inventors: Robert C. Stover, Marc J. Scancarello, Jean-Luc M. Caillat
  • Publication number: 20150093282
    Abstract: A brazing rod for forming a wear resistant coating on a substrate by a brazing process. The brazing rod includes a composite material having a plurality of round particles bound together by a binding material. Each of the plurality of round particles includes a round outer layer encapsulating a wear resistant element.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventor: Andrew BELL
  • Publication number: 20150093281
    Abstract: A method of creating a texture on at least one surface of a part is disclosed. The part is molded from a feedstock including a powder remaining solid during molding and a binder, and solidified. Then, a physical state of the binder is changed in only a predetermined portion of each surface of the part to be textured. The texture is then created from the predetermined portion by debinding and sintering the part.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Marc CAMPOMANES, Orlando SCALZO, Guillaume POITRAS
  • Patent number: 8992828
    Abstract: A method for manufacturing a high ductility Ti-, Ti-alloy or NiTi-foam, meaning a compression strain higher than 10%, includes: preparing a powder suspension of a Ti-, NiTi- or Ti-alloy powder, bringing the said powder suspension into a desired form by gelcasting to form a green artifact. The method also includes a calcination step wherein the green artifact is calcined, and sintering the artifact. The calcination step includes a slow heating step wherein said green artifact is heated at a rate lower or equal to 20° C./hour to a temperature between 400° C. and 600° C. and the Ti-, NiTi- or Ti-alloy powder has a particle size less than 100 ?m. A high ductility Ti-, Ti-alloy or NiTi foam, with a compression higher than 10%, with a theoretical density less than 30%, pore size (cell size) between 50 to 1000 ?m can be obtained with such a method.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: March 31, 2015
    Assignee: Vlaamse Instelling Voor Technologisch Onderzoek (VITO)
    Inventors: Steven Mullens, Ivo Thijs, Jozef Cooymans, Jan Luyten
  • Patent number: 8980166
    Abstract: The invention relates to a method for producing a strand-like, particularly band-like semi-finished part for electrical contacts, wherein the semi-finished part has a top side intended for making the electrical contact, said top side made from a silver-based composite material in which one or multiple metal oxides or carbon are embedded, and has a carrier layer supporting the composite material made of silver or a silver-based alloy, said method having the following steps: Powder-metallurgic production of a block made from the silver-based composite material, encasing of the block made of the composite material with a powder made primarily of silver, compressing the block, encased by the metal powder, to condense the metal powder, sintering the compressed block, reshaping the sintered block by extrusion pressing, creating a partial strand with a top side made from composite material and a bottom side made from silver or a silver-based alloy.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 17, 2015
    Assignee: Doduco GmbH
    Inventors: Helmut Heinzel, Andreas Kraus, Evelyn Mahle-Moessner, Johann Wenz
  • Patent number: 8961719
    Abstract: A method for making a treated super-hard structure, the method including providing a super-hard structure comprising super-hard material selected from polycrystalline cubic boron nitride (PCBN) material or thermally stable polycrystalline diamond (PCD) material; subjecting the super-hard structure to heat treatment at a treatment temperature of greater than 700 degrees centigrade at a treatment pressure at which the super-hard material is not thermodynamically stable, for a treatment period of at least about 5 minutes to produce the treated super-hard structure.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Element Six Limited
    Inventors: Stig Åke Andersin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Lars-Ivar Nilsson
  • Publication number: 20150050179
    Abstract: The present invention provides a method to cure material (polymer, metals) into a mold against the shape of a fluid (aka the substrate). The substrate is a ferrofluid, and its shape can be dictated by surrounding magnetic fields. By manipulating the applied magnetic fields, the ferrofluid can be formed into a specific shape; then, the curing material (in fluid or powder form) can be molded against that specific shape. The ferrofluid shape can further be changed during the curing step to impact the final shape. The methods of the present invention permit fast three-dimensional molding in a programmable fashion.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventor: Eleanor Augusta Hawes
  • Publication number: 20150037163
    Abstract: An axial flow compressor blade unit including a platform section and an airfoil section, which are used as arranged on a circumference about an axis of the compressor. The platform section includes an inner diametric surface segment inwardly of the circumference, an outer diametric surface segment outwardly of the circumference, two annular side surface segments extending in a circumferential direction, two axially side surface segments extending in the axial direction, and a coupling portion formed in each of the annular side surface segments so as to extend in the circumferential direction and being of a shape projecting or recessed in the axial direction. The airfoil section is formed to erect from the platform section so as to extend in a radial direction. The platform section and the airfoil section are formed integrally with each other while having a powdered metal sintered structure.
    Type: Application
    Filed: January 21, 2013
    Publication date: February 5, 2015
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Tomoaki Ikegaya, Daisuke Hayashi, Makoto Gouda, Yuji Matsuzaki, Kei Shimada, Katsumi Ikeda
  • Publication number: 20150030494
    Abstract: Methods and apparatus for producing an object, the method comprising: performing an Additive Manufacturing process to produce an intermediate object from provided metal or alloy, whereby the intermediate object comprises regions having a contaminant concentration level above a threshold level; based upon one or more parameters, determining a temperature and a duration; and performing, on the intermediate object, a contaminant dispersion process by, for a duration that is greater than or equal to the determined duration, heating the intermediate object to a temperature that is greater than or equal to the determined temperature and less than the melting point of the metal or alloy, the contaminant dispersion process being performed so as to disperse, within the intermediate object, a contaminant from regions of high contaminant concentration to regions of low contaminant concentration until the intermediate object comprises no regions having a contaminant concentration level above the threshold level.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 29, 2015
    Inventor: Charles Malcolm WARD-CLOSE
  • Patent number: 8937419
    Abstract: A method for producing a radially anisotropic ring magnet having at least one axial groove on the inner surface comprises using a die comprising a cylindrical, magnetic core, a magnetic sleeve having an axial ridge in alignment with the groove on the outer surface and disposed on an outer peripheral surface of the core, and an outer, cylindrical die member defining a cavity for forming the ring magnet with the magnetic sleeve, and compression-molding magnet powder charged into the cavity while applying a magnetic field in a radial direction, and a radially anisotropic ring magnet substantially having a composition of R-TM-B, wherein R is at least one of rare earth elements including Y, TM is at least one of transition metals, and B is boron, having at least one axial groove on the inner surface, and magnetized such that centerlines between magnetic poles do not overlap grooves.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 20, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Nobuyuki Hirai, Mitsutoshi Natsumeda
  • Patent number: 8936665
    Abstract: The present invention relates to a method for producing diamond-metal composites comprising mixing diamond particles with metal-filler particles forming a diamond/metal-filler mixture, forming a green body of the diamond/metal-filler mixture, optionally green machining the green body to a work piece before or after pre-sintering by heating the green body to a temperature ?500° C., infiltrating the green body or the work piece with one or more wetting elements or infiltrating the green body or the work piece with one or more wetting alloys, which infiltration step being carried out under vacuum or in an inert gas atmosphere at a pressure ?200 Bar. The invention relates further to a green body, a diamond metal composite, and use of the diamond metal composite.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: January 20, 2015
    Assignee: Alfa Laval Corporate AB
    Inventor: Jie Zheng
  • Patent number: 8932516
    Abstract: It is an objective of the present invention to provide an aluminum porous body which is formed of a pure aluminum and/or aluminum alloy base material and has excellent sinterability and high dimensional accuracy without employing metal stamping. There is provided an aluminum porous body having a relative density of from 5 to 80% with respect to the theoretical density of pure aluminum, in which the aluminum porous body contains 50 mass % or more of aluminum (Al) and from 0.001 to 5 mass % of at least one selected from chlorine (Cl), sodium (Na), potassium (K), fluorine (F), and barium (Ba). It is preferred that the aluminum porous body further contains from 0.1 to 20 mass % of at least one selected from carbon (C), silicon carbide (SiC), iron (II) oxide (FeO), iron (III) oxide (Fe2O3), and iron (II,III) oxide (Fe3O4).
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Masami Taguchi, Kazutaka Okamoto, Akio Hamaoka, Kouji Sasaki
  • Patent number: 8920533
    Abstract: A powder metal mixture is disclosed that provides improved mechanical properties for parts made from powder metal, such as cam caps. The powder metal mixture, upon sintering, forms an S phase intermetallic in the Al—Cu—Mg alloy system. The S phase is present in a concentration that results in an enhanced response to cold work strengthening of the powder metal part. Further, by minor adjustments to certain alloy elements, such as tin, the tensile properties of the resultant part may be adjusted.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: December 30, 2014
    Assignee: GKN Sinter Metals, LLC
    Inventors: Donald Paul Bishop, Christopher D. Boland, Richard L. Hexemer, Jr., Ian W. Donaldson
  • Patent number: 8911528
    Abstract: Molybdenum titanium sputter targets are provided. In one aspect, the targets are substantially free of the ?(Ti, Mo) alloy phase. In another aspect, the targets are substantially comprised of single phase ?(Ti, Mo) alloy. In both aspects, particulate emission during sputtering is reduced. Methods of preparing the targets, methods of bonding targets together to produce large area sputter targets, and films produced by the targets, are also provided.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 16, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Mark E. Gaydos, Prabhat Kumar, Steve Miller, Norman C. Mills, Gary Rozak, Rong-Chein Richard Wu
  • Publication number: 20140360635
    Abstract: A method for the manufacture of a composite fragmenting material having exothermic properties includes the steps of packing a mold with preformed metal fragments; filling interstitial spaces surrounding the metal fragments with a reactive metal powder to form a mixture; and then sintering the mixture at a temperature effective to both coat the metal fragments with the reactive metal powder and to bond the metal fragments together. In one embodiment the composite fragmenting material is formed into a nosecone for a warhead.
    Type: Application
    Filed: March 3, 2014
    Publication date: December 11, 2014
    Applicant: Aerojet Rocketdyne, Inc.
    Inventor: David A. Alven
  • Publication number: 20140355178
    Abstract: A capacitor anode including a tungsten sintered body having an average pore diameter of 0.3 ?m or less; and a method for producing the anode. The method includes forming tungsten powder into a molded body having a density (Dg) of 8 g/cm3 or more and then sintering the molded body to a density (Ds) of at least 1.15 times the density (Dg) to form a tungsten sintered body having an average pore diameter of 0.3 ?m or less.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 4, 2014
    Applicant: SHOWA DENKO K.K.
    Inventor: Kazumi Naito
  • Publication number: 20140348690
    Abstract: A method for flexibly sintering rare earth permanent magnetic alloy comprises: (1) weighing fine powder of rare earth permanent magnetic alloy, loading the fine powder in moulds, and orientedly compacting the fine powder in a press machine and in inert atmosphere to obtain blanks and loading the blanks into charging boxes; (2) opening the two isolating valves connected with each other; wherein after a first rolling wheel transmission in the second conveying vehicle transfers the charging tray into the first chamber of the glove box, the two isolating valves are closed, and the second conveying vehicle leaves; (3) locking two matching flanges of the two isolating valves tightly; (4) locking matching flanges tightly; and (5) processing the blanks with heating and heat preservation according to a preset process curve; wherein the blanks are sintered at a highest temperature of 1200° C.
    Type: Application
    Filed: February 5, 2013
    Publication date: November 27, 2014
    Inventors: Xiaodong Chen, Baoyu Sun
  • Patent number: 8871142
    Abstract: Provided are methods for processing a green body that includes compacted metal powder, comprising impacting the green body with a particulate material for a time and under conditions effective to displace a portion of the metal powder from the green body. The present methods can be used to prepare green bodies that have “roughened” surfaces and that can be used to make orthopedic implants displaying low movement relative to bone when installed in situ, which corresponds to higher stability upon implantation and decreases the time required for biological fixation of the implant. Also provided are implants comprising a metallic matrix, and methods comprising surgically installing an implant prepared from a “surface roughened” green body in accordance with the present invention.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: October 28, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: Bryan Smith, Jeffrey A. Rybolt, Derek Hengda Liu, Andrew James Martin
  • Patent number: 8870997
    Abstract: A pre-alloyed iron-based powder is provided including small amounts of alloying elements which make possible a cost efficient manufacture of sintered parts. The pre-alloyed iron-based powder comprises 0.2-1% by weight of Cr, 0.05-0.3% by weight of Mo, 0.1-1% by weight of Ni, 0.09-0.3% by weight of Mn, 0.01% by weight or less of C, less than 0.25% by weight of O, and less than 1% by weight of inevitable impurities, the balance being iron.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 28, 2014
    Assignee: Hoganas AB (Publ)
    Inventors: Alexander Klekovkin, David Milligan, Nagarjuna Nandivada
  • Patent number: 8871355
    Abstract: Composites that include a metal injection molded component bonded to a support substrate and methods for forming the composites are described. Methods include forming a metal injection molded green part that includes microstructures on a surface of the green part. The metal injection molded component is located adjacent to a support substrate with the microstructure ends contacting the support substrate at a contact surface. During sintering the metal injection molded component is bonded to the support substrate at the ends of the microstructures. The presence of the microstructures can allow for relative motion between the metal injection molded component and the support substrate during sintering. The large bonding surface area provided by the multiple points of contact between the ends of the microstructures and the support substrate can provide excellent bonding force between the metal injection molded component and the support substrate.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Clemson University
    Inventors: Laine Mears, Thomas Martens