Consolidation Of Powder Prior To Sintering Patents (Class 419/38)
  • Patent number: 7389905
    Abstract: A flip chip bonding tool tip comprising a dissipative material with a resistance low enough to prevent a discharge of a charge to a device being bonded and high enough to avoid current flow large enough to damage the device being bonded is disclosed. Methods for manufacturing a dissipative material for use in a flip chip bonding tool tip are further disclosed.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 24, 2008
    Inventor: Steven F. Reiber
  • Patent number: 7387230
    Abstract: In order to provide a brazing sheet having excellent workability, a powder of a brazing filler metal composition is obtained from a single type of powder or by mixing two or more powders to form the brazing filler metal composition. By powder roll compaction of the powder, the powder is formed into a sheet shape.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: June 17, 2008
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Chitoshi Mochizuki, Takayuki Iwasaki, Hiroki Yoshizawa
  • Patent number: 7384596
    Abstract: A method for preparing a metallic article made of metallic constituent elements includes furnishing a mixture of nonmetallic precursor compounds of the metallic constituent elements. The method further includes chemically reducing the mixture of nonmetallic precursor compounds to produce an initial metallic material, without melting the initial metallic material, and consolidating the initial metallic material to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: June 10, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 7378053
    Abstract: The invention proposes a copper-based material with low thermal expansion and high thermal conductivity having good machinability and adaptability to nickel plating and also proposes a method for producing the same. The copper-based material is prepared through the steps of: adding 5 to 60% of iron-based alloy power having a certain value in thermal expansion coefficient into a matrix powder of pure copper phase powder and/or a precipitation hardening copper alloy powder; mixing the powders together; compacting the obtained powder mixture into a green compact and sintering it at temperatures of 400 to 600° C.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: May 27, 2008
    Assignee: Hitachi Powered Metals Co., Ltd.
    Inventor: Zenzo Ishijima
  • Publication number: 20080112836
    Abstract: A powder metallurgy method includes the steps of forming a member, such as a work piece or an aerospace component, from a titanium alloy powder. The average size of a carbide phase in the titanium alloy powder is controlled in order to control an average size of a carbide phase in the member. In one example, an amount of carbon within the titanium alloy and size of the carbide phase are selected to provide a desirable balance of good hot workability, resisting formation of an alpha-titanium phase within the member and a desired level of fatigue performance.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 15, 2008
    Inventor: James O. Hansen
  • Patent number: 7371271
    Abstract: An object of the present invention is to provide a composite soft magnetic sintered material that has high density, high mechanical strength and high relative magnetic permeability at high frequencies and, in order to achieve this object, the present invention provides a method of producing the composite soft magnetic sintered material, which comprises mixing a composite soft magnetic powder, that consists of iron powder, Fe—Si based soft magnetic iron alloy powder, Fe—Al based soft magnetic iron alloy powder, Fe—Si—Al based soft magnetic iron alloy powder, Fe—Cr based soft magnetic iron alloy powder or nickel-based soft magnetic alloy powder (hereinafter these powders are referred to as soft magnetic metal powder) of which particles arc coated with a ferrite layer which has a spinel structure, with 0.05 to 1.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: May 13, 2008
    Assignee: Mitsubishi Materials PMG Corporation
    Inventors: Kazunori Igarashi, Ryoji Nakayama, Koichiro Morimoto, Muneaki Watanabe
  • Publication number: 20080107238
    Abstract: In some embodiments, an X-ray target includes a target cap formed of a substrate material and a focal track layer of emitting material, and at least one of the substrate material and the emitting material has a density greater than about 95.0% of theoretical density. In some embodiments, a method of manufacturing an X-ray target includes forming an intermediate target cap form of substrate material and a focal track layer of emitting material, and compacting the intermediate target cap form by application of gas pressure at elevated temperature to form a final target cap form, and at least the substrate material is dense substrate material having a final density greater than an intermediate density or the emitting material is dense emitting material having a final emitting material density greater than an intermediate emitting material density.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 8, 2008
    Applicant: GENERAL ELECTRIC COMPANY, A NEW YORK CORPORATION
    Inventors: Gregory Alan Steinlage, Thomas Carson Tiearney, Michael Scott Hebert, Paul Alfred Siemers, Kirk Alan Rogers, Ray Alden Henrichsen
  • Patent number: 7360309
    Abstract: A heat exchanger device includes an extruded body that includes one or more layers of channels for coolant flow therethrough, the channels generally having inner diameters of between about 50 microns to about 2000 microns. The device is formed of a material having a high thermal conductivity to facilitate transfer of heat from the heating components present in the subject cooling application to the coolant passing through the heat exchanger and to be compatible with materials of the heating components. The device material is selected from the group consisting of ceramic oxides, ceramic carbides, ceramic nitrides, ceramic borides, ceramic silicides, metals, and intermetallics, and combinations thereof. The heat exchanger device is formed from an extruded filament that is arranged to give the desired channel configuration. The filament includes a central, removable material and an outer material that forms the channel walls upon removal of the central material.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: April 22, 2008
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Alfonso Ortega, Marlene Platero, Prathib Skandakumaran, Chad Bower
  • Patent number: 7361203
    Abstract: A bearing is manufactured by filling iron-based material powder and copper-based material powder in a filling portion of a mold, compacting those material powder so as to form a green compact, and then sintering the green compact. The copper-based material powder contains flat powder particles, the flat powder particles having a large aspect ratio than particles of the iron-based material powder. The coppers-based powder particles segregate on a sliding surface by vibration. The sliding surface of a bearing is covered with copper, and a ratio of iron increases from the sliding surface toward the inside. Since a rotation shaft slides on the sliding surface covered with copper, a frictional coefficient between the rotation shaft and the sliding surface is reduced, thus enabling a smooth rotation thereof. Simultaneously the usage of iron imparts predetermined strength and durability.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: April 22, 2008
    Assignee: Mitsubishi Materials Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Patent number: 7329380
    Abstract: The invention concerns a method of controlling the dimensional change to a predetermined value including the steps of providing a first powder (A) consisting of an iron based powder (1) and copper in the form of elemental copper (2), or copper diffusion-bonded to the iron-based powder (3); providing a second powder (B) consisting of the iron-based powder (1) and a pre-alloyed iron-copper powder (4); mixing the first and second powder mixtures (A) and (B) in proportions resulting in the desired dimensional change adding graphite and lubricant and optionally hard phase materials and other alloying elements to the obtained mixture; compacting the obtained mixture; and sintering the compacted body.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 12, 2008
    Assignee: Höganäs AB
    Inventor: Yang Yu
  • Patent number: 7329302
    Abstract: Particulate lubricants are disclosed which comprise discrete particles of a fatty monoamide, especially oleamide and discrete particles of at least one other powder metallurgy lubricant, which provide a synergistic free-flowing composition; there are also provided novel compositions of matter for forming sintered metal components comprising a mixture of sinterable powdered metal and the particulate lubricants.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: February 12, 2008
    Assignee: H. L. Blachford Ltd./Ltee
    Inventor: James M. McCall
  • Publication number: 20080008897
    Abstract: A magnetic powder according to the present invention comprises powder made of the iron element as a main component, and an insulator covering the surface of the powder. The powder has a spherical shape or a smoothed surface. The insulator comprises rare earth fluorides, alkaline metal fluorides, or alkaline earth metal fluorides. A soft magnetic composite formed by using this magnetic powder can suppress its eddy current loss in a wide frequency band and can also suppress its hysteresis loss due to compressed residual distortion in soft magnetic powder.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 10, 2008
    Inventors: Takao IMAGAWA, Yuichi Satsu, Matahiro Komuro
  • Patent number: 7311875
    Abstract: The invention concerns a method of preparing products having a sintered density of above 7.3 g/cm3. This method comprises the steps of subjecting a water-atomised, stainless steel powder to HVC compaction with an uniaxial pressure movement with a ram speed of at least 2 m/s, and sintering the green body.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: December 25, 2007
    Assignee: Höganäs AB
    Inventors: Anders Bergkvist, Sven Allroth, Paul Skoglund
  • Patent number: 7309465
    Abstract: A sintered sprocket for a silent chain is obtained from a material with few addition elements by a simple densifying method. The sintered sprocket is made of an ferrous material having an ovarall composition containing Cu at 1 to 2%, C at 0.5 to 0.8%, Mn as an inevitable impurity at 0.10% or less, and balance of Fe and other inevitable impurities by mass and has a density of 7.1 Mg/m3 or higher, 65 HRA or higher as a hardness in the gear teeth, and a martensite, sorbite, bainite, or their mixed structure as a cross-sectional microscopic structure in at least the gear teeth and the peripheral area of the gear teeth.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: December 18, 2007
    Assignees: Nissan Motor Co., Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Akira Fujiki, Yukihiro Maekawa, Yutaka Mabuchi, Takashi Murata, Takashi Suzuki, Jyun-ichi Yamada, Tadayuki Tsutsui, Kei Ishii
  • Patent number: 7309373
    Abstract: A method of making tungsten carbide and a method of making a densified tungsten carbide-containing ceramic body with a transverse rupture strength greater than 300,000 psi are disclosed.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: December 18, 2007
    Assignee: Cerbide Corporation
    Inventor: Linwood Anderson
  • Patent number: 7309374
    Abstract: In contrast to current industrial practice where alloying powders are added to starting powder metallurgy compositions either as powder mixtures or fully prealloyed powders, the present invention posits a diffusion bonded nickel-copper precursor additive mixture for direct one step addition to the starting powder metallurgy master blend composition. Segregation and dusting are substantially reduced and the mechanical properties of the resultant compact are improved.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: December 18, 2007
    Assignee: Inco Limited
    Inventors: Tajpreet Singh, Scott Thomas Campbell, Thomas Francis Stephenson, Ouan Min Yang
  • Patent number: 7309466
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 18, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 7300488
    Abstract: The present invention concerns a powder metal composition for producing powder metal components comprising a Co-based pre-alloyed powder, with irregularly shaped particles comprising at least 15% by weight Cr and less than 0.3% by weight C, admixed with graphite. The invention also concerns a method for producing PM components by pressing of articles to shape from the powder metal composition according to the invention and sintering them.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 27, 2007
    Assignee: Höganäs ab
    Inventors: Christophe Szabo, Owe Mårs
  • Patent number: 7297271
    Abstract: Provided are a porous sintered compact suitable for a filter, a power feeder in a polymer electrolyte membrane type water electrolyzer, a current collector in a solid polymer fuel cell and in addition a liquid dispersion plate, especially an ink dispersion plate for an ink jet printer ink and the like. A titanium powder sintered compact made of a plate-like porous compact is obtained by sintering spherical powder made of titanium or a titanium alloy produced by means of a gas atomization method. A void ratio in the range of from 35 to 55% is realized by filling without applying a pressure and sintering without applying a pressure.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: November 20, 2007
    Assignee: Sumitomo Titanium Corporation
    Inventors: Takashi Onishi, Tadashi Ogasawara, Munetoshi Watanabe, Masamichi Kato
  • Patent number: 7258812
    Abstract: A compound magnetic material having high heat resistance is provided. A fabrication method of a compound magnetic material includes the step of preparing mixed powder including an organic resin and compound magnetic particles. The long-period heat resistance temperature of the organic resin is at least 200° C. The containing ratio of the organic resin to the compound magnetic particles exceeds 0 mass % and not more than 0.2 mass %. The compound magnetic particle includes a metal magnetic particles, and a coat layer containing metal oxide, directly bound to the surface of the metal magnetic particle. The fabrication method of a compound magnetic material includes the steps of forming a compact by introducing mixed powder into a die having a lubricant applied to its surface and conducting warm-compacting, and applying heat treatment to the compact.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: August 21, 2007
    Assignees: Sumitomo Electric Sintered Alloy, Ltd., DENSO CORPORATION
    Inventors: Yoshiyuki Shimada, Hitoshi Oyama, Takao Nishioka
  • Patent number: 7255933
    Abstract: A multi-layer sliding part is prepared by a process including mixing 1–50 parts by volume of a Cu-plated solid lubricant powder with 100 parts by volume of a Cu-based alloy powder comprising 5–20 mass % of Sn and a remainder of Cu to form a mixed powder, sintering the mixed powder in a reducing atmosphere to form a sintered mass, pulverizing the sintered mass to form a powder, dispersing the powder formed by pulverizing on a metal backing plate, and sintering the dispersed powder to bond grains of the dispersed powder to each other and to the backing plate. After sintering of the pulverized powder to form bearing metal layer, the bearing metal layer is pressed and densified. After densification, the bearing metal layer is annealed, again pressed, and then coated with a resin having good sliding properties.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 14, 2007
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Issaku Sato, Kenzo Tadokoro, Hideaki Tanibata
  • Publication number: 20070166349
    Abstract: Orthopaedic implants are formed using processes whereby a metal alloy is cooled at a rate rapid enough that an amorphous or partially amorphous structure is retained. In the preferred embodiment, the metal alloy is a calcium-based metal alloy. The fabrication process may include die-casting or additive manufacturing process of the type wherein material increments are consolidated in accordance with the description without melting the material in bulk. Such processes include ultrasonic consolidation, electrical resistance consolidation, and frictional consolidation. The material increments are provided in the form of sheets, elongated tapes, filaments, dots or droplets. A preferred method includes a casting process to produce an initial form having an outer surface followed by an additive manufacturing process used to build up at least a portion of the outer surface. For example, the portion may include an intramedullary stem, bone-ingrowth surface, or articulating surface.
    Type: Application
    Filed: January 15, 2007
    Publication date: July 19, 2007
    Inventor: Dawn White
  • Patent number: 7241368
    Abstract: The present invention relates to a hafnium silicide target for forming a gate oxide film composed of HfSi0.05-0.37. Obtained is a hafnium silicide target superior in workability and embrittlement resistance, and suitable for forming a HfSiO film and HfSiON film that may be used as a high dielectric gate insulation film in substitute for a SiO2 film, and the manufacturing method thereof.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: July 10, 2007
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Shuichi Irumata, Ryo Suzuki
  • Patent number: 7217389
    Abstract: Articles formed from powders containing tungsten and at least one binder. In some embodiments, the article contains at least one metallic binder. In some embodiments, the article contains at least one non-metallic binder, such as a polymeric binder. In some embodiments, the article contains both a metallic binder and a non-metallic binder. In some embodiments the article is a firearms projectile, such as a bullet or shot, which may be ferromagnetic or non-ferromagnetic, which may be frangible or infrangible, and which may be jacketed or unjacketed. In some embodiments, the article is a radiation shield, and in other embodiments, the article is a weight or foundry article. In some embodiments, the article has a density in the range of approximately 8 g/cc and approximately 15 g/cc.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: May 15, 2007
    Inventor: Darryl D. Amick
  • Patent number: 7217390
    Abstract: The present invention relates to a method of fabricating ultra-fine grain cermet alloys with a homogenous solid solution grain structure. More particularly, the invention relates to a method of fabricating an ultra-fine TiC-base cermet alloy with a homogenous solid solution structure which does not comprise a core-rim structure in the carbide grain. The object of the present invention is to provide a method of fabricating a TiC-base cermet alloy without the core-rim structure. The above objects of the present invention could be achieved by employing a conventional sintering process (vacuum sintering) of (Ti,TM)C carbide obtained from a mechano-chemical synthesis (high energy ball-milling) from milling the powders of Ti, TM, Ni and Co metals.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: May 15, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae Hyeok Shim, Jong Ku Park, Young Whan Cho
  • Patent number: 7211217
    Abstract: A process for the manufacture of compacts, particularly cemented-carbide cutting blades, by compressing metallic powder and subsequently sintering the compacts wherein the compacts are formed in a powder press having a die-plate, an upper ram and at least one lower ram which are associated with a die-bore and are adapted to be actuated by a hydraulic press cylinder with the rams having associated thereto force-measuring devices and path-measuring devices to measure the compression forces during the ram feed motion up to the final positions, wherein the value of the energy to be applied by the upper ram is stored for a compact of predetermined geometry and dimensions and a predetermined material, that the overall energy to be applied by the upper and lower rams is further stored as a second value, that the feed motion of the upper ram is completed when the energy applied by the ram has reached the predetermined first value and the feed motion of the lower ram is effected depending on the application of the res
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 1, 2007
    Assignee: Fette GmbH
    Inventors: Jurgen Hinzpeter, Ulrich Zeuschner, Ingo Schmidt, Thomas Pannewitz, Udo Baltruschat, Thorsten Ehrich, Ulf Hauschild
  • Patent number: 7211219
    Abstract: The present invention is for providing an oil-impregnant sintered bearing, which can reliably preserve an oil film on a sliding face, and a method for manufacturing the oil-impregnant sintered bearing. An oil-impregnant sintered bearing is made by providing an internal diameter, which a rotating axis member is inserted through, in a bearing main body, formed by a porous sintered alloy having internal pores therein, and providing a sliding face in one region of the inner peripheral face of the internal diameter, the sliding face being obtained by closing the pores which have been opened in the inner peripheral face. The density in a section preserving oil pressure, which extends from the sliding face of the bearing main body toward the outer side of the diameter, is made higher than the density in other sections of the bearing main body.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: May 1, 2007
    Assignees: Mitsubishi Materials PMG Corporation, ASMO Co., Ltd.
    Inventors: Tsuneo Maruyama, Junichi Iguchi, Kenji Nishio, Tooru Itoh, Takeshi Tanaka
  • Patent number: 7195825
    Abstract: A multi-layer sliding part is prepared by a process including mixing 1–50 parts by volume of a Cu-plated solid lubricant powder with 100 parts by volume of a Cu-based alloy powder comprising 5–20 mass % of Sn and a remainder of Cu to form a mixed powder, sintering the mixed powder in a reducing atmosphere to form a sintered mass, pulverizing the sintered mass to form a powder, dispersing the powder formed by pulverizing on a steel backing plate, and sintering the dispersed powder to bond grains of the dispersed powder to each other and to the backing plate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: March 27, 2007
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Issaku Sato, Kenzou Tadokoro, Hideaki Tanibata
  • Patent number: 7172725
    Abstract: In W—Cu alloy having a homogeneous micro-structure and a fabrication method thereof, the method includes forming mixed powders by mixing tungsten powders with W—Cu composite powders; forming a compact by pressurizing-forming the mixed powders; forming a skeleton by sintering the compact; and contacting copper to the skeleton and performing infiltration. W—Cu alloy having a homogeneous structure fabricated by the present invention shows better performance by being used as a material for high voltage electric contact of a contact braker, a material for heat sink of an IC semiconductor and a shaped charge liner.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: February 6, 2007
    Assignee: Agency For Defense Development
    Inventors: Moon-Hee Hong, Ja-Ho Choi, Seoung Lee, Eun-Pyo Kim, Sung-Ho Lee, Joon-Woong Noh
  • Patent number: 7169208
    Abstract: A composition for use with alloys including extra-fine nickel powder dispersed with a hydrophobic inorganic dispersant which is preferably high-purity silica treated with hexamethyldisilazane (fumed silica). The composition breaks and prevents the agglomeration of the nickel powder, thereby preventing weaknesses in alloys, like steel for example, formed with the nickel powder. A method for making an alloy with the composition includes mixing the nickel powder with other metals and/or nonmetals and the hydrophobic fumed silica to form an alloy blend, pressing the alloy blend, and sintering the alloy blend.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 30, 2007
    Assignee: Inco Limited
    Inventors: Scott Thomas Campbell, Thomas Francis Stephenson, Tajpreet Singh
  • Patent number: 7166255
    Abstract: The temporary compacting of the powder for use in sintering is carried out, the temporary sintering is carried out, the main compacting is carried out, the main sintering is carried out, and the thickness of the radius direction of the base part of the cam before the heat-treatment is set to 3.0 mm or more.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 23, 2007
    Assignee: Nippon Piston Ring Co., Ltd.
    Inventors: Shunsuke Takeguchi, Hiroyuki Takamura
  • Patent number: 7163569
    Abstract: An object of the present invention is to provide a low-alloyed steel powder for sintering that can yield a sintered compact with high density and uniform characteristics, and to provide a sintered compact having such characteristics. The present invention is a raw powder for sintering, comprising Fe as its primary component and also comprising 0.8 wt % or less of C, 0.05 to 1.0 wt % of Si, 1.0 wt % or less of Mn, and 1.0 to 10.0 wt % or less of Ni, wherein the mean grain size of the raw powder for sintering is 8.5 ?m or less; and is also a granulated powder for sintering obtained by granulating the raw powder for sintering by means of a binder.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: January 16, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Hisataka Toyoshima, Atsushi Watanabe
  • Patent number: 7163657
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 16, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 7150851
    Abstract: An apparatus for pressing a mass into a coherent workpiece has a mold body defining a chamber and a mold liner in the chamber having a generally cylindrical pressing surface centered on an axis, directed in one radial direction, and defining a mold cavity and an opposite surface directed in an opposite radial direction. A plunger is engageable axially in the cavity. The cavity holds the mass in engagement with the pressing surface and with the plunger. The plunger can be pressed axially against the mass and thereby compress the mass in the cavity. A force, typically effected hydraulically, is exerted against the liner in the one radial direction between the mold body and the opposite surface of the liner to thereby elastically deform the liner in the one radial direction toward the mass and radially compress the liner and mass in the cavity.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 19, 2006
    Assignee: SMS Meer GmbH
    Inventors: Matthias Holthausen, Martin Zingsem, Guido Schrömges, Rolf Vest
  • Patent number: 7147820
    Abstract: A method for minimizing the spread of the maximum compression forces in compacting powder, specifically metallic powder, by means of a powder press which has a die-plate, an upper ram, and at least one lower ram which are associated with a die-bore and are respectively operable by a hydraulic press cylinder, and a charging shoe movable on the die-plate along a predetermined path for filling the die-bore with the powder, wherein the maximum compression force of at least the upper ram is measured upon arrival at a predetermined position, the charging shoe, the die-plate, the upper ram and/or lower ram are vibrated at a predetermined frequency and amplitude during the filling operation and/or at the beginning of the compression procedure and, in addition, the filling time or the course of charging shoe motion in time are predetermined, wherein the frequency distribution of the maximum compression force values is determined at intervals and the standard deviation is determined therefrom for the maximum compressio
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: December 12, 2006
    Assignee: Fette GmbH
    Inventors: Jurgen Hinzpeter, Ulrich Zeuschner, Ingo Schmidt, Thomas Pannewitz, Udo Baltruschat, Thorsten Ehrich, Ulf Hauschild
  • Patent number: 7144440
    Abstract: A hard particle having improved adhesion to a base material, a wear-resistant iron-base sintered alloy, a method of manufacturing the same, and a valve seat are provided. The hard particle comprises 20% to 70% Mo by mass, 0.2% to 3% C by mass, 1% to 15% Mn by mass, with the remainder being unavoidable impurities and Co. The sintered alloy comprises, as a whole, 4% to 35% Mo by mass, 0.2% to 3% C by mass, 0.5% to 8% Mn by mass, 3% to 40% Co by mass, with the remainder being unavoidable impurities and Fe. The alloy comprises a base material component comprising 0.2% to 5% C by mass, 0.1% to 10% Mn by mass, with the remainder being unavoidable impurities and Fe. The alloy further comprises a hard particle component comprising 20% to 70% Mo by mass, 0.2% to 3% C by mass, 1% to 15% Mn by mass, with the remainder being unavoidable impurities and Co. The hard particles are dispersed in the base material in an areal ratio of 10% to 60 %.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: December 5, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kimihiko Ando
  • Patent number: 7141126
    Abstract: Rare earth alloy powder having an oxygen content of 50 to 4000 wt. ppm and a nitrogen content of 150 to 1500 wt. ppm is compacted by dry pressing to produce a compact. The compact is impregnated with an oil agent and then sintered. The sintering process includes a first step of retaining the compact at a temperature of 700° C. to less than 1000° C. for a period of time of 10 to 420 minutes and a second step of permitting proceeding of sintering at a temperature of 1000° C. to 1200° C. The average crystal grain size of the rare earth magnet after the sintering is controlled to be 3 ?m to 9 ?m.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: November 28, 2006
    Assignee: Neomax Co., Ltd.
    Inventors: Futoshi Kuniyoshi, Hitoshi Morimoto
  • Patent number: 7138019
    Abstract: In the step of sintering a compact that is finally to be a magnetostrictive element, when the temperature in a furnace is elevated, the atmosphere in the furnace is evacuated by a vacuum pump to keep the pressure in the furnace at negative pressure in a temperature range that allows thermal decomposition of hydride present in the compact to release hydrogen gas to accelerate release of hydrogen from the compact.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: November 21, 2006
    Assignee: TDK Corporation
    Inventors: Seigo Tokoro, Shiro Tomizawa, Teruo Mori
  • Patent number: 7074247
    Abstract: There is provided a method of making a composite abrasive compact which comprises an abrasive compact bonded to a substrate. The abrasive compact will generally be a diamond compact and the substrate will generally be a cemented carbide substrate. The composite abrasive compact is made under known conditions of elevated temperature and pressure suitable for producing abrasive compacts. The method is characterised by the mass of abrasive particles from which the abrasive compact is made. This mass has three regions which are: (i) an inner region, adjacent the surface of the substrate on which the mass is provided, containing particles having at least four different average particle sizes; (ii) an outer region containing particles having at least three different average particle sizes; and (iii) an intermediate region between the first and second regions.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: July 11, 2006
    Inventors: Klaus Tank, Moosa Mahomed Adia, Roy Derrick Achilles, Paul Machael Daniel
  • Patent number: 7056393
    Abstract: A method of making a sintered body for a rare earth magnet includes the steps of (a) preparing a first coarse powder by coarsely pulverizing a rare earth alloy sintered body by a hydrogen pulverization process, (b) preparing a first fine powder by finely pulverizing the first coarse powder, (c) preparing a second fine powder by pulverizing an alloy block of a rare earth alloy material, and (d) sintering a mixed powder including the first and second fine powders. The first and second fine powders each includes a main phase represented by (LR1-xHRx)2T14A, where T is Fe and/or at least one non-Fe transition metal element; A is boron and/or carbon; LR is at least one light rare earth element; HR is at least one heavy rare earth element; and 0?x<1.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: June 6, 2006
    Assignee: Neomax, Co., Ltd.
    Inventors: Koki Tokuhara, Hitoshi Morimoto
  • Patent number: 7052648
    Abstract: To manufacture a flange for a compressor with a relief groove by using powder metallurgy in order to prevent deformation of the compressor in operation, powder material for the flange is charged into a mold; an ablative member having a melting point lower than that of the powder material is positioned at a place where a relief groove is to be formed; the flange is formed by compressing the powder material and the ablative member; and the formed flange is sintered at a temperature between the melting points of the power material and the ablative member so as to melt and remove the ablative member.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: May 30, 2006
    Assignee: Korea Sintered Metal Co., Ltd.
    Inventor: Jong-Kwan Park
  • Patent number: 7045092
    Abstract: A perpendicular pressing/compacting method for a rare-earth alloy powder is provided to produce a sintered magnet with excellent magnetic properties. A method for pressing a rare-earth alloy powder by using a die is provided. The die is made of a non-magnetic material and has a die hole to define a cavity and a pair of yoke members provided on both sides of the cavity. The method includes the steps of: providing the rare-earth alloy powder; filling the cavity of the die with the rare-earth alloy powder; and compressing the rare-earth alloy powder, loaded in the cavity, between a pair of opposed press surfaces. A pulse magnetic field substantially perpendicular to a compressing direction is not applied until the apparent density of the rare-earth alloy powder in the cavity reaches a predetermined value, at least equal to 47% of the true density thereof, while the compressing step is being carried out.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: May 16, 2006
    Assignee: Neomax Co., Ltd.
    Inventors: Atsushi Ogawa, Shuhei Okumura
  • Patent number: 7037465
    Abstract: A powder compacting method includes the steps of: providing a powder material; loading the powder material into a cavity; uniaxially pressing the powder material, which has been loaded into the cavity, between two opposed press surfaces, thereby obtaining a compact, wherein at least one of the two press surfaces is deformed elastically under a compacting pressure when contacting with the powder material in the cavity; and unloading the compact from the cavity. According to this powder compacting method, even when the powder material has a non-uniform fill density distribution, a compact with a uniform density distribution can be obtained at a high productivity.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: May 2, 2006
    Assignee: Neomax Co., Ltd.
    Inventor: Atsushi Ogawa
  • Patent number: 7025930
    Abstract: In a process for handling green compacts made from a rare earth metal-based magnetic alloy powder by a press machine to slide, on a sintering support plate, the green compacts, the support plate used has a surface roughness degree Ra in a range of 0.6 to 47 ?m. At a first step, the green compacts are disposed in a first position near a final transport position, and at a second step, the said green compacts disposed in the first position are slid on the sintering support plate and disposed in the final transport position. Thus, by using the support plate having a surface roughness degree in a particular range, the green compacts made from the rare earth metal-based magnetic alloy powder can be sintered without occurrence of the deposition of the green compacts to the support plate, the chipping of the green compacts and the like. In addition, the efficiency of operation of the press machine can be increased.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: April 11, 2006
    Assignee: Neomax Co. Ltd.
    Inventors: Shuhei Okumura, Hiroshi Hashikawa
  • Patent number: 7018485
    Abstract: An apparatus for subjecting a rare earth alloy block to a hydrogenation process includes a casing, gas inlet and outlet ports, a member arranged to produce a gaseous flow, and a windbreak plate. The casing defines an inner space for receiving a container. The container includes an upper opening and stores the rare earth alloy block therein. A hydrogen gas and an inert gas are introduced into the inner space through the gas inlet port, and are exhausted from the inner space through the gas outlet port. The gaseous flow is produced by a fan, for example, in the inner space. The windbreak plate is disposed upstream with respect to the gaseous flow that has been produced inside the inner space. Also, the windbreak plate reduces a flow rate of the gaseous flow that has been produced near the upper opening of the container.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 28, 2006
    Assignee: Neomax Co., Ltd.
    Inventors: Akihito Tsujimoto, Katsumi Okayama, Shinji Kidowaki, Tadayoshi Muneto
  • Patent number: 7014811
    Abstract: A method for producing rare earth sintered magnets includes the steps of pressing and compacting an alloy powder for the rare earth sintered magnets, thereby preparing a plurality of green compacts, arranging the green compacts on a receiving plane in a direction in which a projection area of each of the green compacts onto the receiving plane is not maximized, and heating the green compacts, thereby sintering the green compacts and obtaining a plurality of sintered bodies.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 21, 2006
    Assignee: Neomax Co., Ltd.
    Inventors: Daisuke Harimoto, Yuji Kaneko, Akira Nakamura
  • Patent number: 6986866
    Abstract: A method and apparatus for the cross-hole pressing of cutting inserts is disclosed whereby a green part is fabricated using metallurgical powder and an opening is imparted within the green part by placing the metallurgical powder about an oval-shaped core rod. Using a press with a uni-axial press motion, a core rod is placed within the cavity of a mold and metallurgical powder placed around the core rod and thereafter compressed to form a green part. The subject invention is also directed to an article formed utilizing such a process and the uni-axial press used to produce such an insert.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: January 17, 2006
    Assignee: Kennametal Inc.
    Inventors: Richard J. Gubanich, Edward M. Dinco
  • Patent number: 6984270
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: January 10, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa
  • Patent number: 6974558
    Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10?6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: December 13, 2005
    Assignee: Sumotomo Electric Industries, Ltd.
    Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
  • Patent number: RE40273
    Abstract: The present invention relates generally to a method of manufacturing broadhead components utilizing a powder injection molding (PIM) process that reduces the number of operations, thus simplifying the manufacturing process required to produce a finished product while maintaining the precision essential to the function of this commodity. The method of manufacturing includes powder injection molding one or more than one components for a broadhead, sintering the component(s) at an elevated temperature to form component(s) and assembling the component(s) to form a broadhead.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: April 29, 2008
    Assignee: G5 Outdoors, L.L.C.
    Inventors: Louis Grace, Jr., Nathaniel E. Grace