Hot Isostatic Pressing (hip) Patents (Class 419/49)
  • Publication number: 20120012460
    Abstract: A metal article formed by compacting a sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the metal article to at least about 90% of theoretical density.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Applicant: Climax Engineered Materials, LLC
    Inventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
  • Publication number: 20120009080
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 12, 2012
    Applicant: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Patent number: 8087143
    Abstract: A method for the manufacture through diffusion bonding of metallically encapsulated ceramic armor providing enhanced ballistic efficiency and physical durability.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 3, 2012
    Assignee: Exothermics, Inc.
    Inventor: Stephen DiPietro
  • Patent number: 8080201
    Abstract: There is provided a method for producing sputtering target materials which are used for a Ni—W based interlayer in a perpendicular magnetic recording medium. In this producing method, a Ni—W based alloy powder is prepared as a raw material powder. The alloy powder comprises 5 to 20 at % of W and the balance Ni and unavoidable impurities and is produced by gas atomization. The raw material powder is consolidated at a temperature ranging from 900 to 1150° C. This producing method makes it possible to significantly restrain expansion of the powder-filled billet in the consolidation step, thus efficiently producing Ni—W based sputtering target materials with stable qualities.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: December 20, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20110123386
    Abstract: The present invention relates to a method of manufacturing a multiple composition component 10, comprising: arranging first, second and third constituent parts 40, 30, 42 having first, second and third compositions respectively A, B, C so that the first constituent part 40 shares a first boundary with the second constituent part 30 and the second constituent part 30 shares a second boundary with the third constituent part 40. The first, second and third constituent parts 40, 30, 42 are each either a powder or a solid so that the first and second boundaries are each a solid adjacent to a powder. The arrangement is then processed so as to form a single solid component having first, second and third regions 16, 18, 20 having first, second and third compositions A, B, C respectively.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 26, 2011
    Applicant: ROLLS-ROYCE PLC
    Inventors: Robert J. MITCHELL, Catherine M.F. RAE, Mark C. HARDY, Shaun R. HOLMES
  • Patent number: 7946035
    Abstract: A method of manufacturing a hollow article (10) comprising the steps of cold pressing two members (30,34) to form at least one depression (32,36) in the members (30,34). Arranging the two members (30,34) in abutting relationship such that the at least one depression (32,36) defines at least one chamber between the two members (30,34). Sealing (41) the edges (40,42) of the two members (30,34) together to form a core structure (44). Positioning the core structure (44) in a mold (46) to define a cavity (48) between the external surface (50) of the core structure (44) and the internal surface (52) of the mold (46), the internal surface (52) of the mold (46) substantially defining the external shape of the hollow article (10). Filling the cavity (48) between the core structure (44) and the mold (46) with a powder material (54), sealing the open edge of the core structure (44) to the mold (46).
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: May 24, 2011
    Assignee: Rolls-Royce PLC
    Inventor: Ewan F. Thompson
  • Patent number: 7909906
    Abstract: A cold work steel has the following chemical composition in weight-%: 1.25-1.75% (C+N), however at least 0.5% C 0.1-1.5% Si 0.1-1.5% Mn 4.0-5.5% Cr 2.5-4.5% (Mo+W/2), however max. 0.5% W 3.0-4.5% (V+Nb/2), however max. 0.5% Nb max 0.3% S balance iron and unavoidable impurities, and a microstructure which in the hardened and tempered condition of the steel contains 6-13 vol-% of vanadium-rich MX-carbides, -nitrides and/or carbonitrides which are evenly distributed in the matrix of the steel, where X is carbon and/or nitrogen, at least 90 vol-% of said carbides, nitrides and/or carbonitrides having an equivalent diameter, Deq, which is smaller than 3.0 ?m; and totally max. 1 vol-% of other, possibly existing carbides, nitrides or carbonitrides.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: March 22, 2011
    Assignee: Uddeholms AB
    Inventors: Odd Sandberg, Lennart Jönson, Magnus Tidesten
  • Publication number: 20110058975
    Abstract: A method of processing a bimetallic part includes depositing an intermediary material having a metal powder onto a tooling surface of a cavity of a tool, transforming the intermediary material into a metal layer having a first composition on the tooling surface, and forming a metal core having a second, different composition in the cavity such that the metal layer bonds to the metal core to form a bimetallic part.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventor: Clifford C. Bampton
  • Publication number: 20110052441
    Abstract: A method and container for forming billets using hot isostatic pressing is provided. The method and container prevent or minimize the diffusion of metals between a high value powder alloy and the container used for hot isostatic pressing. In one exemplary embodiment, a diffusion barrier is placed on the container between the powder and the container to control diffusion therebetween.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Timothy Eden Channel, Jason Robert Parolini
  • Publication number: 20110044839
    Abstract: An improved container and method for forming billets using hot isostatic pressing is provided. The method and container allows for adjusting the volume of the container so as to obtain a billet of the desired shape based on selected powder charge for the container. In addition, the corner of the container can be adjusted to allow for elimination of edge effects and further shape control in the resulting billet.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: GEORGE ALBERT GOLLER, RAYMOND JOSEPH STONITSCH, JASON ROBERT PAROLINI
  • Publication number: 20110044840
    Abstract: An improved method and container for forming billets using hot isostatic pressing is provided. The improved method and container have features that control the deformations of the container during the high temperatures and pressures experienced in such processing so as to provide a billet having a predetermined shape such as, for example, substantially parallel, convex, and/or concave sides. Conservations of the powder used for the billet and more efficient use of the container upon the resulting billet can be achieved.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: GEORGE ALBERT GOLLER, RAYMOND JOSEPH STONITSCH, JASON ROBERT PAROLINI, DANIEL Y. WEI
  • Publication number: 20110027120
    Abstract: Improved methods and containers for forming billets using hot isostatic pressing are provided. The methods and containers have features that control the deformations of the container during the high temperatures and pressures experienced in such processing so that the loss or removal of material from the resulting billet can be optimized.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: GEORGE ALBERT GOLLER, PAUL STEPHEN DIMASCIO, RAYMOND JOSEPH STONITSCH
  • Patent number: 7842231
    Abstract: An article made of constituent elements is prepared by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively contain the constituent elements. The constituent elements include a titanium-base metallic composition, boron present at a level greater than its room-temperature solid solubility limit, and, optionally, a stable-oxide-forming additive element present at a level greater than its room-temperature solid solubility limit. The precursor compounds are chemically reduced to produce a material comprising a titanium-base metallic composition having titanium boride particles therein, without melting the titanium-base metallic composition. The titanium-base metallic composition having the titanium boride particles therein is consolidated without melting.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Gigliotti, David Alan Utah, Alan Glen Turner
  • Publication number: 20100297462
    Abstract: In one embodiment, the present invention may be a method of forming a porous and/or dense article from metal powder (12), including adding to a mold a first feedstock comprising an agglomerated metal powder (12) and an agglomeration agent, forming said first feedstock into a green state dense article (22); and removing said agglomeration agent. Furthermore, the present invention may include a second feedstock including an agglomerated metal powder (12), a space filling material and an agglomeration agent which may be formed into a green state porous article (21). The present invention also includes a dense and/or porous article (22 and 21) manufactured by various methods, as well as methods for creating the dense and porous feedstocks. Moreover, the present invention may include an article which may be a medical implant.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 25, 2010
    Applicant: HOWMEDICA OSTEONICS CORP.
    Inventors: John Lapszynski, Robert W. Klein, Michael A. DeLuise
  • Patent number: 7790060
    Abstract: Silicon oxide and electrically conductive doped silicon materials are sintered in a protective environment to yield a composite SiOx:Si material that exhibits the properties of SiOx, and yet is electrically conductive due to the presence of Si. Such a composite material finds many uses, such as a target for DC and/or AC sputtering processes to produce silicon oxide thin films for touch-screen applications, barrier thin films in LCD displays and optical thin films used in a wide variety of applications.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: September 7, 2010
    Assignee: Wintek Electro Optics Corporation
    Inventors: David E. Stevenson, Li Q. Zhou
  • Publication number: 20100215978
    Abstract: There is provided a method for fabricating a dual alloy structure that may in turn be machined to fabricate a rotary component for use in a gas turbine engine. The method provides a powder metal (PM) nickel based superalloy and a nickel aluminide intermetallic based alloy. The powder metal (PM) nickel based superalloy displays characteristics, such as improved strength, low cycle fatigue resistance, fracture toughness, and crack growth resistance. The nickel aluminide intermetallic based alloy displays characteristics, such as high temperature creep and oxidation resistance, suitable for use in the outer radial area of an impeller. A bore sub-element is fabricated from the powder metal (PM) nickel based superalloy. A body sub-element is fabricated from the nickel aluminide intermetallic based alloy. The bore sub-element and body sub-element are joined by inertia welding or diffusion bonding at a common mating surface.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Derek Anthony Rice
  • Patent number: 7781698
    Abstract: A process for manufacturing a coiled insert of coated filaments is disclosed. Each filament includes a ceramic fiber coated with a metal sheath. The process includes a step of winding a sheet of coated filaments around a piece. At the start of winding, a first metal shim is placed beneath the sheet and coiled. At the end of winding, a second metal shim is placed on the sheet and coiled. The process is applied to the manufacture of aeronautical turbomachine components.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 24, 2010
    Assignees: SNECMA, FSP-One
    Inventors: Jean-Michel Patrick Maurice Franchet, Gilles Charles Casimir Klein, Louis Salvat
  • Patent number: 7761995
    Abstract: A gear wheel includes multiple helical toothings, each having a different helical angle. A pressing method for molding a gear wheel involves introducing a compactable material into a chamber of a pressing tool, compacting the material, exposing the helical toothings of the gear wheel, and removing the molded body from the pressing tool. A pressing tool for pressing, as one part, a gear wheel, includes a matrix, cylindrical first and second molding tool parts which can be translated along and then rotated about a longitudinal axis, and a driver coupled to the molding tool parts or driving them. The molding tool parts can be moved towards and away from each other and the inner surface of the matrix delimits the chamber and is shaped to allow a linear axial sliding movement of the compactable material relative to the matrix.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: July 27, 2010
    Assignee: Schwaebische Huettenwerke Automotive GmbH & Co. KG
    Inventors: Manfred Arlt, Gerhard Subek, Thomas Franz, Christian Reimann, Otto Stock, Anton Eiberger
  • Patent number: 7763204
    Abstract: A manufacturing process that comprises placing an article within a particulate medium (4), the article being provided with a molded body (8) of small ceramic particles. On application of heat and pressure the small ceramic particles are pushed between the particulate medium (4) to permit localized deformation of the article (2).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 27, 2010
    Assignee: Rolls-Royce plc
    Inventors: Wayne E. Voice, Nicholas Wain
  • Patent number: 7754185
    Abstract: The invention relates to high purity MoO2 powder by reduction of ammonium molybdate or molybdenum trioxide using hydrogen as the reducing agent in a rotary or boat furnace. Consolidation of the powder by press/sintering, hot pressing, and/or HIP is used to make discs, slabs, or plates, which are used as sputtering targets. The MoO2 disc, slab, or plate form is sputtered on a substrate using a suitable sputtering method or other physical means to provide a thin film having a desired film thickness. The thin films have properties such as electrical, optical, surface roughness, and uniformity comparable or superior to those of indium-tin oxide (ITO) and zinc-doped ITO in terms of transparency, conductivity, work function, uniformity, and surface roughness.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: July 13, 2010
    Assignee: H.C. Starck Inc.
    Inventors: Lawrence F. McHugh, Prabhat Kumar, David Meendering, Richard Wu, Gerhard Wötting, Richard Nicholson
  • Patent number: 7749406
    Abstract: Silicon oxide and electrically conductive doped silicon materials are joined in a protective environment to yield a composite SiOx:Si material that exhibits the properties of SiOx, and yet is electrically conductive due to the presence of the Si. Such a composite material finds use as a target for DC and/or AC sputtering processes to produce silicon oxide thin films for touch-screen applications, barrier thin films in LCD displays and optical thin films used in a wide variety of applications.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: July 6, 2010
    Inventors: David E. Stevenson, Li Q. Zhou
  • Publication number: 20100158742
    Abstract: In a hot isostatic pressing (HIP) process, for example for securing blades (5) to a disc (3) to form a blisk (1), the temperature of the powder (6) to be consolidated is raised to a predetermined temperature, which may be the eventual required pressing temperature, before the pressure rise to the pressing pressure is initiated. If the powder is a titanium alloy and the process employs steel tooling pieces, the application of pressure occurs only when the temperature has risen to the extent that the steel is harder than the titanium alloy.
    Type: Application
    Filed: April 1, 2009
    Publication date: June 24, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Wayne E. Voice, Junfa Mei, Xinhua Wu, Nicholas Wain
  • Patent number: 7713469
    Abstract: Device for monitoring the production of tablets in a rotary press, with die bores in a circular die plate for the accommodation of a powder to be pressed, upper- and lower stamps, a pressing station for pressing the powder in the die bores by means of the upper and lower stamps, a tablet stripper for stripping off the tablets ejected by the lower stamps from the upper side of the circular die plate and a machine computer, wherein a contactless working temperature measurement device, being in communication with the machine computer, with a measurement plane between the pressing station and the tablet stripper, is arranged in the press room of the rotary press, and the measurement time of the temperature measurement device is such that at least some of the tablets per rotation of the circular die plate can be established in their temperature.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 11, 2010
    Assignee: Fette GmbH
    Inventors: Ingo Schmidt, Werner Seifert
  • Patent number: 7687021
    Abstract: The invention provides a method of fabricating a turbine stator casing, the method comprising the operations consisting in: between the walls of portions of a mold, forming a cavity of shape corresponding to the shape of the shroud of said casing, securing soluble cores to at least one of said mold portions, said cores being held at a distance from the wall of said mold portion and representing empty spaces that are to be formed inside said shroud; putting soluble inserts into place between the cores to represent flow paths between said empty spaces; filling said cavity with a metal alloy powder; sintering said powder by hot isostatic pressing; eliminating the cores and the inserts by dissolving them; and extracting the shroud as molded in this way. The invention is applicable to fabricating a turbine stator casing for an airplane turbojet.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: March 30, 2010
    Assignee: Snecma
    Inventors: Sebastien Imbourg, Claude Mons, Philippe Pabion, Jean-Luc Soupizon
  • Patent number: 7687024
    Abstract: A method of cooling a load provided in a load compartment in a furnace chamber of a furnace of a hot isostatic pressing device includes releasing hot pressure medium from the load compartment. Cool pressure medium is provided for enabling it to fall through the released hot pressure medium outside the load compartment. The thus obtained mixed pressure medium is led into the load compartment. A hot isostatic pressing device includes a load compartment having an aperture near an upper portion thereof configured to vent warm pressure medium into a region surrounding the compartment, and a conduit configured to introduce cool pressure medium into the region surrounding the compartment for mixing with the warm medium. The compartment also includes an aperture near a lower portion thereof configured to receive a mix of warm and cool pressure medium from the region surrounding the compartment.
    Type: Grant
    Filed: February 17, 2003
    Date of Patent: March 30, 2010
    Assignee: Avure Technologies AB
    Inventor: Carl Bergman
  • Patent number: 7655182
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce an initial metallic material, without melting the initial metallic material. The initial metallic material is consolidated to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 2, 2010
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen
  • Publication number: 20090277301
    Abstract: The invention relates to mixtures of metal, alloy or composite powders which have a mean particle diameter D50 of not more than 75 ?m, preferably not more than 25 ?m, and are produced in a process in which a starting powder is firstly deformed to give platelet-like particles and these are then comminuted in the presence of milling aids together with further additives and also the use of these powder mixtures and shaped articles produced therefrom.
    Type: Application
    Filed: July 9, 2007
    Publication date: November 12, 2009
    Applicant: H.C. Starck GmbH
    Inventors: Roland Scholl, Ulf Waag, Aloys Eiling
  • Patent number: 7601296
    Abstract: A method of forming a sputtering target and other metal articles having controlled oxygen and nitrogen content levels and the articles so formed are described. The method includes surface-nitriding a deoxidized metal powder and further includes consolidating the powder by a powder metallurgy technique. Preferred metal powders include, but are not limited to, valve metals, including tantalum, niobium, and alloys thereof.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: October 13, 2009
    Assignee: Cabot Corporation
    Inventors: Christopher A. Michaluk, Shi Yuan, James Maguire
  • Patent number: 7566415
    Abstract: The method is suitable for the manufacture of flat or shaped titanium aluminide articles and layered metal matrix composites such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and blades, composite electrodes, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: July 28, 2009
    Inventors: Vladimir S. Moxson, Eugene Ivanov
  • Patent number: 7560065
    Abstract: Method and system for manufacturing multi-component complex shape parts consisting of monolithic and powder materials working at different performance conditions based on hot isostatic pressing of the monolithic elements and powder material including preliminary heat treatment of the said monolithic elements of the multi-component part wherein they are a subject to high temperature solution treatment at elevated isostatic gas pressure followed by quenching in order to homogenize their material, to dissolve residual cast eutectic and to provide the micro-structure and the properties insensitive and steady during the subsequent HIP and heat treatment of the powder material.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: July 14, 2009
    Inventors: Igor Troitski, Roman Haykin, Eugene Kratt, Victor Samarov, Dmitry Seliverstov, Evgeny Khomiakov
  • Patent number: 7556668
    Abstract: The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the CERACON™ process, or hot ecstatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: July 7, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, James C. Westhoff, Roy Carl Lueth
  • Publication number: 20090110556
    Abstract: A method of fabricating a shrouded impeller is disclosed. The method includes providing an open faced impeller, the open faced impeller including a plurality of blades extending at least partially radially from a hub. The method also includes performing a first powder metallurgical process to form a first material over at least part of the open faced impeller. The method further includes forming a shroud circumferentially disposed about the hub and connected to one of more of the blades. Forming the shroud includes performing a second powder metallurgical process to metallurgically bond the shroud to at least some of the blades.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Inventors: David Brian Jahnz, Jess Lee Freeman
  • Patent number: 7452430
    Abstract: In reforming mechanical characteristics of a precipitation hardening type Al alloy casting, the Al alloy casting is subjected to a high temperature/high pressure treatment, then the pressure is reduced while maintaining the temperature of the Al alloy casting, and subsequently the Al alloy casting is subjected to solution treatment, quenching, and aging in this order. According to this method, mechanical characteristics of the casting can be reformed efficiently and economically and there can be obtained a reformed product of good quality.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: November 18, 2008
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuo Manabe, Makoto Yoneda, Shigeo Kofune
  • Patent number: 7419528
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds contains more of a base-metal element, such as nickel, cobalt, iron, iron-nickel, and iron-nickel-cobalt than any other metallic element. The mixture of nonmetallic precursor compounds is chemically reduced to produce a metallic superalloy material, without melting the metallic superalloy material. The metallic superalloy material is consolidated to produce a consolidated metallic article, without melting the metallic superalloy material and without melting the consolidated metallic article.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: September 2, 2008
    Assignee: General Electric Company
    Inventors: Clifford Earl Shamblen, Andrew Philip Woodfield, Eric Allen Ott, Michael Francis Xavier Gigliotti
  • Patent number: 7410610
    Abstract: An article made of constituent elements is prepared by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively contain the constituent elements. The constituent elements include a titanium-base metallic composition, boron present at a level greater than its room-temperature solid solubility limit, and, optionally, a stable-oxide-forming additive element present at a level greater than its room-temperature solid solubility limit. The precursor compounds are chemically reduced to produce a material comprising a titanium-base metallic composition having titanium boride particles therein, without melting the titanium-base metallic composition. The titanium-base metallic composition having the titanium boride particles therein is consolidated without melting.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 12, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti, David Alan Utah, Alan Glen Turner
  • Patent number: 7407622
    Abstract: A method of manufacturing a fan blade (26) for a gas turbine engine by powder metallurgy comprises the steps of forming a container (52) and placing at least one metal insert (52) at a predetermined position within the container (52) and filling the container (52) with metal powder (60). The at least one metal insert (62) has a predetermined pattern of stop off material (68,70) on at least one surface of the metal insert (64,66). The container (52) is evacuated and then sealed. The container (52) is hot pressed to consolidate the metal powder (60) into a consolidated metal powder preform (72). The container (52) is removed from the consolidated metal powder preform (72). The consolidated metal powder preform (72) is heated and a fluid is supplied to the predetermined pattern of stop off material (68,70) to hot form at least a portion of the consolidated metal powder preform (72) to form the hollow metal fan blade (26).
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 5, 2008
    Assignee: Rolls-Royce plc
    Inventors: Wayne E Voice, Junfa Mei
  • Patent number: 7387763
    Abstract: A sheet is prepared by mixing a mass of metallic powders with a temporary thermoplastic binder to form an injection-moldable mixture, thereafter injection molding the injection-moldable mixture to form a sheet precursor. The sheet precursor is consolidated to a relative density of substantially 100 percent to form the sheet, and thereafter heat treated. The final sheet is preferably a nickel-base superalloy having more than about 30 volume percent of gamma prime phase, or an intermetallic such as a titanium aluminide.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 17, 2008
    Assignee: General Electric Company
    Inventor: Thomas Joseph Kelly
  • Publication number: 20080115358
    Abstract: A rotor component assembly including at least one void space formed therein that provides for reduction in weight of the component and/or cooling of the component during operation. The rotor component is formed by positioning a coated mild steel insert within a mold having an internal cross-section substantially the same in dimensions as the final rotor component. The mold is filled with a superalloy metal powder and undergoes hot-isostatic pressing to consolidate the powder about the coated core insert and form a superalloy structure. The mold is removed from about the superalloy structure and the core insert is removed from within the superalloy structure, thereby defining the at least one internal void within the rotor component.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 22, 2008
    Inventors: Derek A. Rice, Brian A. Hann, Andrew F. Hieber
  • Patent number: 7371271
    Abstract: An object of the present invention is to provide a composite soft magnetic sintered material that has high density, high mechanical strength and high relative magnetic permeability at high frequencies and, in order to achieve this object, the present invention provides a method of producing the composite soft magnetic sintered material, which comprises mixing a composite soft magnetic powder, that consists of iron powder, Fe—Si based soft magnetic iron alloy powder, Fe—Al based soft magnetic iron alloy powder, Fe—Si—Al based soft magnetic iron alloy powder, Fe—Cr based soft magnetic iron alloy powder or nickel-based soft magnetic alloy powder (hereinafter these powders are referred to as soft magnetic metal powder) of which particles arc coated with a ferrite layer which has a spinel structure, with 0.05 to 1.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: May 13, 2008
    Assignee: Mitsubishi Materials PMG Corporation
    Inventors: Kazunori Igarashi, Ryoji Nakayama, Koichiro Morimoto, Muneaki Watanabe
  • Patent number: 7354548
    Abstract: Hardmetal compositions each including hard particles having a first material and a binder matrix having a second, different material comprising rhenium or a Ni-based superalloy. A two-step sintering process may be used to fabricate such hardmetals at relatively low sintering temperatures in the solid-state phase to produce substantially fully-densified hardmetals.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: April 8, 2008
    Assignee: Genius Metal, Inc.
    Inventor: Shaiw-Rong Scott Liu
  • Patent number: 7329381
    Abstract: A metallic article made of metallic constituent elements is fabricated from a mixture of nonmetallic precursor compounds of the metallic constituent elements. The mixture of nonmetallic precursor compounds is chemically reduced to produce an initial metallic material, without melting the initial metallic material. The initial metallic material is consolidated to produce a consolidated metallic article, without melting the initial metallic material and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: February 12, 2008
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen
  • Patent number: 7311874
    Abstract: A method of fabricating a sputter target comprises: homogenously blending a plurality of powders including at least a first powder and a second powder. The first powder is comprised of chromium (Cr), cobalt (Co), ruthenium (Ru), nickel (Ni), or iron (Fe). The second powder is comprised of boron (B), carbon (C), a nitrogen (N)-containing material, a boride, a carbide, a nitride, a silicide, an oxygen (O)-containing material or an oxide. The second powder has a particle size of between 0.01 microns and 50 microns. The method further comprises: canning the blended plurality of powders to form a substantially non-segregated encapsulated powdered material mix; pressing the encapsulated powdered material mix to form a billet; and machining the billet to form a sputter target.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 25, 2007
    Assignee: Heraeus Inc.
    Inventor: Wenjun Zhang
  • Patent number: 7309466
    Abstract: A sintered cemented carbide body (e.g., a cutting tool) and a method of making the same. The sintered cemented carbide body includes tungsten carbide, a binder phase of at least one metal of the iron group or an alloy thereof, and one or more solid solution phases. Each one of the solid solution phases has at least one of the carbides and carbonitrides of a combination of zirconium, niobium, and tungsten. The method includes the steps of providing a powder mixture that contains tungsten carbide, a binder metal powder comprising at least one metal of the iron group or an alloy thereof, and at least one of the carbides and carbonitrides of both zirconium and niobium including a powder of the carbides or carbonitrides of zirconium and niobium, forming a green compact of said powder mixture, and vacuum sintering or sinter-HIP said green compact at a temperature of from 1400 to 1560° C.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 18, 2007
    Assignee: Kennametal Inc.
    Inventors: Hans-Wilm Heinrich, Manfred Wolf, Dieter Schmidt
  • Patent number: 7303724
    Abstract: A composite material and method of making the same are disclosed. An example method for fabricating a composite material forms a core layer between opposing outer layers. The core layer includes a mixture of at least one metallic powder and at least one expanding agent. The example method removes moisture and gasses from the core layer by applying a first vacuum pressure to at least the core layer. The example method compresses the core layer to bond the core layer to the outer layers while a second vacuum pressure is applied to at least one of the outer layers. The resulting composite material has a compacted core layer that is substantially free from moisture and imbedded gasses. Additionally, the outer layers are substantially free from perforations enabling the escape of gas and moisture during foaming of the core layer. The composite material may be reshaped to form semi-finished products which, in turn, may be heated to foam the core material to form finished products.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 4, 2007
    Assignee: alm GmbH Gewerbepark Eschberger Weg
    Inventors: Dirk Schwingel, Michael Theobald
  • Patent number: 7241368
    Abstract: The present invention relates to a hafnium silicide target for forming a gate oxide film composed of HfSi0.05-0.37. Obtained is a hafnium silicide target superior in workability and embrittlement resistance, and suitable for forming a HfSiO film and HfSiON film that may be used as a high dielectric gate insulation film in substitute for a SiO2 film, and the manufacturing method thereof.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: July 10, 2007
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Shuichi Irumata, Ryo Suzuki
  • Patent number: 7234920
    Abstract: A turbine stator casing comprising a jacket and fastener hooks for fastening a turbine distributor nozzle, the hooks projecting from the inside face of the jacket, said jacket being made of a first alloy by hot isostatic compression using metal powder, said fastener hooks being made out of a second alloy that is more refractory than the first, and being secured to said jacket by diffusion welding during the hot isostatic compression. The casing also comprises inserts passing through the fastener hooks and through said jacket. These inserts, which are likewise secured to the jacket by diffusion welding, serve during manufacture of the casing to fasten the hooks to a mold portion inside which the jacket is formed. The invention is applicable to the turbines of airplane turbojets.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: June 26, 2007
    Assignee: SNECMA Moteurs
    Inventors: Sébastien Imbourg, Claude Mons, Philippe Pabion, Jean-Iuc Soupizon
  • Patent number: 7175802
    Abstract: Spent sputtering targets are refurbished by filling the depleted region of the target with new sputter material using a hot isostatic pressing or HIP'ing technique.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 13, 2007
    Assignee: Heraeus, Inc.
    Inventors: Michael Sandlin, Wenjun Zhang, Bernd Kunkel
  • Patent number: 7144548
    Abstract: Gravitational sag and shape distortion by friction over supporting hardware during binder removal and sintering of green bodies made from sinterable particulate materials are overcome by processing in a supercritical fluid medium at a pressure whereby the density of the medium approaches or equals that of the green bodies.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: December 5, 2006
    Inventors: Romain Louis Billiet, Hanh Thi Nguyen
  • Patent number: 7144547
    Abstract: In a target for cathode discharging arc ion plating containing Al and Cr as an essential ingredient according to the invention, the thickness of the Al and Cr compound layer formed between Cr particles and Al contained in a target is 30 ?m or less. Alternatively, the total for the peak intensities of Al—Cr compound observed between diffraction angles between 10 to 80° by X-ray diffractiometry according to ?=2? method is 10% or less relative to the total for the peak intensities of Al, Cr and the Al—Cr compound. Further, the relative density of the target is 92% or more. The target is capable of forming hard films of high quality while preventing not uniform movement of arc spots and suppressing formation of macro particles.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: December 5, 2006
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Kenji Yamamoto, Toshiki Sato, Yasuo Nakane, Hidekazu Morimoto, Yoichiro Yoneda
  • Patent number: RE40100
    Abstract: The present invention relates to a method of manufacturing sputtering targets doped with non-metal components including boron, carbon, nitrogen, oxygen and silicon. A powder process is utilized whereby alloyed powders, which contain non-metal elements of B/C/N/O/Si and non-metal containing phases of less than ten microns in microstructure, are blended, canned and subjected to hot isostatic press consolidation. The sputtering targets of the present invention avoid spitting problems during sputtering of the target material on a substrate.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: February 26, 2008
    Assignee: Heraeus Inc.
    Inventor: Wenjun Zhang