Making Composite Or Hollow Article Patents (Class 419/5)
  • Patent number: 7527762
    Abstract: A method (100) of producing a heat pipe includes the following steps: (1) inserting a mandrel (10) into a hollow metal casing (20) with a space formed between the hollow metal casing and the mandrel; (2) filling into the space with a slurry (40) comprised of powders; (3) solidifying the slurry in the space; (4) drawing the mandrel out of the hollow metal casing after the slurry is solidified; and (5) sintering the powders contained in the slurry to form the heat pipe (60) with a sintered powder wick (61) arranged therein. In the sintering step of the method, no mandrel is required. Thus, the problem that the mandrel is difficult to be drawn out of the hollow metal casing as suffered in the conventional art is effectively solved.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: May 5, 2009
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Chuen-Shu Hou, Chao-Nien Tung, Tay-Jian Liu
  • Publication number: 20090098005
    Abstract: The present invention provides a method of manufacturing Ni-doped TiO2 nanotube-shaped powder and a method of manufacturing a sheet film to be inserted into a high-pressure hydrogen tank for a fuel cell vehicle by mixing the Ni-doped TiO2 nanotube-shaped powder with a binder and compressing the mixture. The method of manufacturing Ni-doped TiO2 nanotube-shaped powder includes: forming Ni-doped TiO2 nanotube-shaped powder using Ni-doped TiO2 powder as a starting material; and drying the Ni-doped TiO2 nanotube-shaped powder in the temperature range of 60 to 200° C. for 2 to 24 hours.
    Type: Application
    Filed: December 31, 2007
    Publication date: April 16, 2009
    Applicants: Hyundai Motor Company, IACG Sejong University
    Inventors: Woo Hyun Nam, Kyung Sub Lee, Dong Hyun Kim, Sun Jae Kim, Nam Hee Lee, Hyo Jin Oh
  • Publication number: 20090096138
    Abstract: A method for manufacturing a honeycomb seal by powder-metallurgical injection molding is described wherein, during the powder-metallurgical injection molding; mixing a metal powder and/or a ceramic powder with at least one binding agent to produce a homogeneous mass; subsequently fabricating a molded article for the honeycomb seal having honeycomb-structured cells from the homogeneous mass by injection molding; subsequently performing a debindering process on the molded article; and, subsequently thereto, compacting the molded article via a sintering process to form the honeycomb seal having the desired geometric properties. Prior to the sintering process, partially filling at least some of the cells of the molded article in each case with at least one hollow body, subsequently sintering the molded article together with the hollow bodies that have been introduced into the cells.
    Type: Application
    Filed: March 29, 2007
    Publication date: April 16, 2009
    Inventor: Reinhold Meier
  • Publication number: 20090074603
    Abstract: A method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing a large amount of magnesium-based powder and a large amount of nanoscale reinforcements; (b) uniformly mixing the magnesium-based powder and the nanoscale reinforcements to form a mixture; and (c) compacting the mixture at a high velocity in a protective gas to achieve the magnesium-based composite material. High velocity compaction equipment for fabricating the magnesium-based composite material includes a sealing chamber, a gas pumping device, a mold, and a hammer. The gas pumping device is connected to the sealing chamber. The mold is disposed in the sealing chamber with an aperture formed on the top thereof. The hammer is disposed in the sealing chamber and above the mold, and moving along longitudinal thereof at a controllable ramming speed.
    Type: Application
    Filed: April 9, 2008
    Publication date: March 19, 2009
    Applicants: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Qing-Chun Du, Wen-Zhen Li
  • Patent number: 7504008
    Abstract: In a method of refurbishing a deposition target, a surface of the target is provided in a process zone. An electrical arc is generated in the process zone, and a consumable metal wire is inserted into the process zone to form liquefied metal. A pressurized gas is injected into the process zone to direct the liquefied metal toward the surface of the target to splatter the liquefied metal on the surface, thereby forming a coating having the metal on at least a portion of the surface of the target that exhibits reduced contamination from the environment.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: March 17, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Trung T. Doan, Kenny King-Tai Ngan
  • Patent number: 7501090
    Abstract: One embodiment of the invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 10, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Narasimha-Rao Venkata Bangaru, ChangMin Chun, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Publication number: 20090053089
    Abstract: A method of making a homogeneous granulated metal-based powder, comprises steps of: providing preselected amounts of at least one metal element or metal alloy, at least one ceramic compound, and/or at least one non-metallic element; forming a homogeneous slurry/suspension or wet mixture comprising the preselected amounts of metal element(s) and/or metal alloys, ceramic compound(s), and/or non-metallic element(s), a liquid phase comprising at least one liquid, and at least one binder material; drying the slurry/suspension or mixture to remove at least a portion of the liquid phase and form a powder mixture comprising partially or completely dried granules; and subjecting the granules to a thermal de-binder process for effecting: additional removal of any remaining liquid phase, if necessary; removal of the at least one binder material; reduction of carbon content; reduction of oxygen on the surfaces or interior of the metal or metal alloy phases in the granules; and optional partial sintering for strengthening
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Applicant: HERAEUS INC.
    Inventors: Fenglin YANG, Carl Derrington, Bernd Kunkel
  • Publication number: 20090025508
    Abstract: The invention discloses nano/micron binary structured powders for superhydrophobic, self-cleaning applications. The powders are featured by micron-scale diameter and nano-scale surface roughness. In one embodiment, the average diameter is about 1-25 ?m, and the average roughness Ra is about 3-100 nm. The nano/micron binary structured powders may be made of silica, metal oxide, or combinations thereof.
    Type: Application
    Filed: October 5, 2007
    Publication date: January 29, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Chieh Liao, Hsiu-Fen Lin, Jin-Ming Chen
  • Publication number: 20090016923
    Abstract: A method for manufacturing at least one area of a filter structure, in particular for a particulate filter in the exhaust gas system of an internal combustion engine, includes the following steps: a. manufacturing a mixture from a sintering metal powder and an organic binder; b. manufacturing a sheet from the mixture; c. structuring the sheet; and d. sintering.
    Type: Application
    Filed: June 24, 2005
    Publication date: January 15, 2009
    Inventors: Christoph Treutler, Uwe Glanz, Leonore Schwegler
  • Patent number: 7459108
    Abstract: The present invention relates to a method for preparing a metallic membrane, more particularly to a method for preparing metallic membranes, which comprises dissolving a transition metal of Period 3 and its alloy particle powder and synthetic polymer in a fixed ratio; radiating or casting to prepare a membrane precursor; oxidizing the synthetic polymer on the membrane precursor under a mixed gaseous atmosphere of nitrogen and hydrogen; and sintering the membrane precursor at a predetermined temperature. The metallic membrane prepared by the process of the present invention has excellent mechanical and chemical properties and enables to maintain a relatively small pore size and high porocity than traditional membranes. Therefore, it is useful for water treatment.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: December 2, 2008
    Assignees: Korea Research Institute of Chemical Technology, Samwon Engineering Co., Ltd.
    Inventors: Kew-Ho Lee, In-Chul Kim, Soo-Min Lee, In-Hwan Choi
  • Publication number: 20080253916
    Abstract: Manufacturing methods are provided to build modulated medical devices and segments of the devices for applications in the field of intraluminal intervention, reconstruction, or therapy. The methods, comprise steps of metal injection molding and processes of modulation, improve the manufacturability of the devices and/or expand the design alternatives for the devices. The modulated medical devices and their segments, made from the present method inventions, enhance the versatility in intraluminal treatments.
    Type: Application
    Filed: March 11, 2008
    Publication date: October 16, 2008
    Inventors: Naim Istephanous, Keith Hanover, Darrel F. Untereker
  • Publication number: 20080254409
    Abstract: The present invention relates to a method for manufacturing a dental scaler tip using a powder injection molding process which can produce the article in large quantities to save the manufacturing cost and forms an eccentric discharge port of a scaler tip to operate the mould using only one core pin, a mould used for the same that is provided with slide cores having the various shapes machined according to the article to enable the uniform article to be manufactured rapidly to enhance a characteristic and design of the article, and a scaler tip manufactured by the same that is more excellent in shape-reliability and injects fluid to a front end thereof along a curved section of the tip section to perform effectively an operation.
    Type: Application
    Filed: April 13, 2006
    Publication date: October 16, 2008
    Inventors: Chul Jin Hwang, Hyung Pil Park, Young Bae Ko, Young Moo Heo, Jong Sun Kim
  • Patent number: 7435376
    Abstract: A composite of a metal matrix with one or more incorporated secondary phases is referred to as a metal matrix composite (MMC). Secondary phase refers to all the particles or fibers which have a different composition than the metal matrix, and which are incorporated therein. As incorporation phases, elements and compounds are possible which, as a result of their material characteristics, are suited for improving individual properties of the metal matrix. Besides an improvement in individual properties of the pure metal matrix as a result of the incorporated secondary phase, certain properties of the metal are also degraded, in particular by particles having a size of 1 to 50 ?m. For example, the elongation at break decreases, the strength may decrease, or the tribology may become less favorable.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: October 14, 2008
    Assignee: CeramTec AG
    Inventors: Dirk Rogowski, Ilka Lenke, Dieter Theil
  • Publication number: 20080231145
    Abstract: A quartz crystal device includes a crystal resonator element and a package including a plurality of components. The plurality of components are bonded using a metal paste sealing material containing a metallic particle having an average particle size from 0.1 to 1.0 ?m, an organic solvent, and a resin material in proportions of from 88 to 93 percent by weight from 5 to 15 percent by weight, and from 0.01 to 4.0 percent by weight, respectively, to hermetically seal the crystal resonator element in the package.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Applicant: EPSON TOYOCOM CORPORATION
    Inventors: Yoji NAGANO, Tatsuya ANZAI, Hideo TANAYA
  • Publication number: 20080187452
    Abstract: A method of forming a ceramic metal composite workpiece comprises a step of providing a forming assembly with first and second shaping surfaces that together form a chamber. The chamber is shaped substantially similar to a desired external geometry of a green body of the workpiece, and at least one of the surfaces comprises a pressing mechanism adapted to move the surface with respect to the other surface. The method also comprises placing into the chamber a malleable composite material and an insert comprising a shape substantially similar to a desired internal surface geometry of the green body. The method also comprises a step of pressing the malleable composite material to form the green body such that at least a portion of the malleable composite material flows around at least a portion of the insert to form the green body with the desired external and internal surface geometries.
    Type: Application
    Filed: April 7, 2008
    Publication date: August 7, 2008
    Inventors: David R. Hall, Gary Peterson
  • Publication number: 20080188922
    Abstract: An endoprosthesis that includes a composite having a metal matrix and a plurality of stiffening particles in the matrix. The metal of the metal matrix can include titanium, niobium, tantalum, or alloys thereof The stiffening particles can include a metal core and a thin surface layer. The thin surface layer can include oxides, carbides, nitrides, or combinations thereof.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventor: Jonathan S. Stinson
  • Patent number: 7407622
    Abstract: A method of manufacturing a fan blade (26) for a gas turbine engine by powder metallurgy comprises the steps of forming a container (52) and placing at least one metal insert (52) at a predetermined position within the container (52) and filling the container (52) with metal powder (60). The at least one metal insert (62) has a predetermined pattern of stop off material (68,70) on at least one surface of the metal insert (64,66). The container (52) is evacuated and then sealed. The container (52) is hot pressed to consolidate the metal powder (60) into a consolidated metal powder preform (72). The container (52) is removed from the consolidated metal powder preform (72). The consolidated metal powder preform (72) is heated and a fluid is supplied to the predetermined pattern of stop off material (68,70) to hot form at least a portion of the consolidated metal powder preform (72) to form the hollow metal fan blade (26).
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 5, 2008
    Assignee: Rolls-Royce plc
    Inventors: Wayne E Voice, Junfa Mei
  • Patent number: 7407082
    Abstract: The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Mn and mixtures thereof, Q is carbonitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 5, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Patent number: 7393595
    Abstract: A composite element comprises:(a) a metal or metal alloy component having an elastic modulus that decreases with increasing temperature in a temperature range; and (b) sufficient amount of a shape memory alloy component having an elastic modulus that shows an increase in elastic modulus with increasing temperature in the said temperature range, such that the elastic modulus of the composite element does not fall substantially as the temperature is increased across the said temperature range. An article comprising such a composite element is suitable for use in high temperature applications, including motor vehicle components.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: July 1, 2008
    Assignee: Qinetiq Limited
    Inventors: Lakshman Chandrasekaran, Alan J Shakesheff
  • Patent number: 7384252
    Abstract: A 3-D solid model of a tire vulcanizing mold is constructed on CAD, lamination models the optimum value of the pitch of which is determined in consideration of molding accuracy and processing time are created by dividing this model in a predetermined lamination direction, slice data for each layer corresponding to the lamination pitch of each segment are created, a sector mold of the tire vulcanizing mold is manufactured by a powder sintering method based on the slice data, and the density of a sintered body is controlled by adjusting the output of a laser beam or the exposure time of the laser beam applied to the powders to provide a density distribution on the plane and in the depth direction of a mold element for each layer so as to obtain a tire vulcanizing mold having a hybrid structure.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: June 10, 2008
    Assignee: Kabushiki Kaisha Bridgestone
    Inventors: Gyoei Iwamoto, Takehiro Kata
  • Publication number: 20080120889
    Abstract: Gun barrels made from advanced materials have the potential to provide a significant increase in barrel life as well as a reduction in weight (for advanced ceramic materials) for small caliber systems. The potential use of advanced materials as gun barrels is severely limited due to the difficulty in introducing the rifling pattern on the inner diameter. Most projectiles coming out of the guns are spin stabilized (for aerodynamic flight stability). This spin is imparted by a rifling pattern (lands and grooves) in the inner surface of the gun barrel. The processing of gun barrels made from advanced materials with internal rifling pattern poses a tremendous processing challenge to the materials community. The rifling lands and grooves and desired twist rate coupled with the difficulty of machining some of the advanced materials (ceramics, cermets, hardmetals, etc.) makes the economic manufacturing of such gun barrels extremely difficult.
    Type: Application
    Filed: July 3, 2006
    Publication date: May 29, 2008
    Inventors: Animesh Bose, Robert J. Dowding, Jeffrey J. Swab
  • Patent number: 7347968
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: March 25, 2008
    Assignee: Advanced Materials Technology Pte. Ltd.
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Publication number: 20080038140
    Abstract: The present invention relates to fullerene, nanotube, or nanofiber filled metals and polymers. This invention stems from a cross-disciplinary combination of electromagnetic and acoustic processing and property enhancement of materials through fullerene or nanofiber additives. Containerless processing (CP) in the form of electromagnetic field enduced and/or acoustic mixing leads to controlled dispersion of fullerenes, nanotubes, or nanofibers in various matrices. The invention provides methods of mixing that highly disperse and align the fullerenes, nanotubes, or nanofibers within the matrices of metals and polymers. The invention provides new compositions of matter and multifunctional materials based on processing, composition, and degree of in situ processing.
    Type: Application
    Filed: February 1, 2001
    Publication date: February 14, 2008
    Inventors: Enrique V Barrera, Yildiz Bayazitoglu
  • Patent number: 7323136
    Abstract: The present invention relates to fullerene, nanotube, or nanofiber filled metals and polymers. This invention stems from a cross-disciplinary combination of electromagnetic and acoustic processing and property enhancement of materials through fullerene or nanofiber additives. Containerless processing (CP) in the form of electromagnetic field enduced and/or acoustic mixing leads to controlled dispersion of fullerenes, nanotubes, or nanofibers in various matrices. The invention provides methods of mixing that highly disperse and align the fullerenes, nanotubes, or nanofibers within the matrices of metals and polymers. The invention provides new compositions of matter and multifunctional materials based on processing, composition, and degree of in situ processing.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: January 29, 2008
    Assignee: William Marsh Rice University
    Inventors: Enrique V. Barrera, Yildiz Bayazitoglu
  • Patent number: 7303724
    Abstract: A composite material and method of making the same are disclosed. An example method for fabricating a composite material forms a core layer between opposing outer layers. The core layer includes a mixture of at least one metallic powder and at least one expanding agent. The example method removes moisture and gasses from the core layer by applying a first vacuum pressure to at least the core layer. The example method compresses the core layer to bond the core layer to the outer layers while a second vacuum pressure is applied to at least one of the outer layers. The resulting composite material has a compacted core layer that is substantially free from moisture and imbedded gasses. Additionally, the outer layers are substantially free from perforations enabling the escape of gas and moisture during foaming of the core layer. The composite material may be reshaped to form semi-finished products which, in turn, may be heated to foam the core material to form finished products.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 4, 2007
    Assignee: alm GmbH Gewerbepark Eschberger Weg
    Inventors: Dirk Schwingel, Michael Theobald
  • Patent number: 7300623
    Abstract: A contact material which provides improved wear resistance as well as reduced adhesion utilizing the features of an intermetallic compound having an ordered phase, with the intention of (i) improving the seizure resistance and/or wear resistance of an implement bearing which slides under low-speed, high-surface-pressure conditions and is susceptible to lubricant starvation; (ii) preventing abnormal noises; and (iii) achieving prolonged greasing intervals. The contact material contains 10% by volume or more a metallic alloy phase having such a composition range that causes an order-disorder transition. The metallic alloy phase is a Fe base alloy phase containing one or more elements selected from the group consisting of Al, Si, Co and Ni.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 27, 2007
    Assignee: Komatsu Ltd
    Inventors: Takemori Takayama, Yoshikiyo Tanaka, Tetsuo Onishi
  • Patent number: 7287719
    Abstract: A wire/fiber ring having two layers applied in four clock positions. Each layer includes a first material strand having a first diameter and a second material strand having a second diameter different from the first diameter. A second or any subsequent layer is disposed such that there is unambiguous nesting between strands in adjacent layers. After the array is built-up, wire is over-wrapped around the array to hold it in place during subsequent consolidation steps, which take place after the built-up array is sealed in an air-tight container and evacuated. After heating and application of pressure a wire/fiber array having a void content of about 12% and a fiber content of between about 0% to 70% and preferably between about 30% and 45% can be achieved.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: October 30, 2007
    Assignee: Sequa Corporation
    Inventors: William Hanusiak, Lisa Hanusiak, Steven Spear, Charles Rowe, Jeffery Parnell
  • Patent number: 7273581
    Abstract: The present invention relates to an improved process for in-situ preparation of alumina-(Ti,Zr) borides composite. The present invention particularly relates to fast and in-situ process for synthesis and consolidation of Al2O3—Zr/Ti B2 composites of approximate-95% density with controlled grain-growth in the range of less than or the order of 5 micrometer or less grain size using a dynamic Self propagating high temperature synthesis (SHS) process.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: September 25, 2007
    Assignee: Council of Scientific and Industrial Research
    Inventors: Suman Kumari Mishra, Vladimir Andreevich Shcherbakov
  • Patent number: 7261855
    Abstract: Method for manufacturing complex shape parts including parts with cavities from powder materials by Hot Isostatic Pressing (HIP) with controlled pressure inside the HIP tooling and multi-layer inserts including hollow inserts. Controlled pressure inside the HIP tooling is provided by injecting the HIP gas media into the cavities of the hollow inserts.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 28, 2007
    Inventors: Igor Troitski, Roman Haykin, Eugene Kratt, Evgeny Khomiakov, Dmitry Seliverstov, Victor Samarov
  • Patent number: 7235211
    Abstract: A rotary cone bit, having a functionally-engineered surface of this invention, comprises a bit body having at least one leg extending therefrom, and a cone that is rotatably disposed on the leg. The cone typically comprises a plurality of cutting elements that project outwardly therefrom. The cutting elements comprises a cermet material selected from the group consisting of refractory metal carbides, nitrides, borides, carbonitrides and mixtures thereof. A functionally-engineered material is disposed over a surface portion of at least one of the cutting elements to form a wear resistant surface thereon. The wear resistant surface has a hardness that is different than that of the underlying cutting element. The wear resistant surface is provided by forming a conformable material mixture by combining one or more powders selected from the group consisting of cermets, carbides, borides, nitrides, carbonitrides, refractory metals, Co, Fe, Ni, and combinations thereof, with an applying agent.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: June 26, 2007
    Assignee: Smith International, Inc.
    Inventors: Anthony Griffo, Zhigang Fang, Robert Denton
  • Patent number: 7118063
    Abstract: A wire/fiber ring having two layers applied in four clock positions. Each layer includes a first material strand having a first diameter and a second material strand having a second diameter different from the first diameter. A second or any subsequent layer is disposed such that there is unambiguous nesting between strands in adjacent layers. After the array is built-up, wire is over-wrapped around the array to hold it in place during subsequent consolidation steps, which take place after the built-up array is sealed in an air-tight container and evacuated. After heating and application of pressure a wire/fiber array having a void content of about 12% and a fiber content of between about 0% to 70% and preferably between about 30% and 45% can be achieved.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: October 10, 2006
    Assignee: Sequa Corporation
    Inventors: William Hanusiak, Lisa Hanusiak, Steven Spear, Charles Rowe, Jeffery Parnell
  • Patent number: 7112301
    Abstract: Forming a hollow structure having an internal coating includes the steps of placing a core shaped to form the internal surface of the structure in a mould, filling the mould with a material powder, hot isostatically pressing the powder about the mould to consolidate the powder, and removing the core from the hollow structure formed, wherein a coating is applied to the core prior to placement in the mould, which coating bonds to the hollow structure formed, during the hot isostatic pressing, to form the internal coating.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: September 26, 2006
    Assignee: Rolls-Royce plc
    Inventors: George Thorne, Robert Charles Tonks, Wayne Eric Voice
  • Patent number: 7074247
    Abstract: There is provided a method of making a composite abrasive compact which comprises an abrasive compact bonded to a substrate. The abrasive compact will generally be a diamond compact and the substrate will generally be a cemented carbide substrate. The composite abrasive compact is made under known conditions of elevated temperature and pressure suitable for producing abrasive compacts. The method is characterised by the mass of abrasive particles from which the abrasive compact is made. This mass has three regions which are: (i) an inner region, adjacent the surface of the substrate on which the mass is provided, containing particles having at least four different average particle sizes; (ii) an outer region containing particles having at least three different average particle sizes; and (iii) an intermediate region between the first and second regions.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: July 11, 2006
    Inventors: Klaus Tank, Moosa Mahomed Adia, Roy Derrick Achilles, Paul Machael Daniel
  • Patent number: 6984270
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: January 10, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa
  • Patent number: 6977060
    Abstract: A method for making a material system includes the steps of: providing a chamber, placing hollow geometric shapes in the chamber, closing the chamber, evacuating air from the chamber, feeding a binder for the shapes into the evacuated chamber to impregnate the geometric shapes, drying the binder permeated geometric shapes, and heating the hollow shapes and binder to provide a unitary, sintered material system.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: December 20, 2005
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Gary Brian Merrill, Jay Edgar Lane
  • Patent number: 6974656
    Abstract: The present invention relates to a paste composition, including a bonding agent charged with a metallic powder, to be used in a prototyping procedure, a procedure for obtaining metallic products from said composition, and a metallic product obtained from said procedure. The composition is characterized by the fact that it includes: a bonding agent comprised of at least one photopolymerizable resin, with a viscosity of less than 4000 mPa.s, measured at 25° C., a photoinitiator, in a concentration greater than 0.2% by mass with respect to the mass of the resin, and a metallic powder in a volumetric concentration greater than 40% with respect to the composition, with said composition having a minimum reactivity on the order of 5 mm3/s per watt of lighting power.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: December 13, 2005
    Assignee: 3D Systems, Inc.
    Inventor: Catherine Hinczewski
  • Patent number: 6939508
    Abstract: A method for manufacturing a net-shaped bimetallic part that includes the steps of: providing a tool that defines a cavity and a tooling surface; depositing a layer of an environmental metal material onto the tooling surface; filling the cavity in the tool with a powdered metal material; and simultaneously heating the tool and subjecting the tool to a pressurized gas to consolidate the powdered metal material and diffusion bond the environmental metal material to the consolidated powdered metal material to form a bimetallic part.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: September 6, 2005
    Assignee: The Boeing Company
    Inventors: Clifford C. Bampton, Victor Samarov
  • Patent number: 6939505
    Abstract: Channeled articles having very small diameter channels spaced very closely can be made by packing elongated cores in a fixture, clamping them, and then introducing matrix material around the cores. The matrix material is formed into a unitary body and solidified. The cores are pulled out, leaving open channels where they had been. Some core and matrix combinations will permit the cores to be pulled out. Others require a core release coating to be applied to the cores. The cores can be metal or ceramic or polymer, and the matrix can be metal or ceramic or polymer. The cores can be solid, or hollow. Rather than pulling the cores out, if they are polymer, they can be burned out. The matrix can be formed by liquid state, solid state, or hybrid liquid/solid state techniques. A related technique uses hollow cores, which are not pulled out, but which remain in the body after unification. For such tube-walled articles, the matrix can be formed similarly. Rather than insuring core release, core retention is required.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: September 6, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher S. Musso, Thomas W. Eagar
  • Patent number: 6933056
    Abstract: An exhaust manifold (10) of the present invention comprises a liner (12) that includes inner surface (14) defining manifold passages and an outer surface (16). The exhaust manifold (10) includes a shell (18) of a homogeneous and continuous material disposed over the outer surface (16) of the liner (12). The shell (18) and liner (12) of the exhaust manifold (10) include first (60) and second (72) composition formed from ferrous and non-ferrous metal powders (62), ceramic powder (64), and a binder (74) added thereto to form the manifold (10). The invention discloses a method of making the exhaust manifold (80). Accordingly, the exhaust manifold (10) of the subject invention has a reduced weight and dissipates heat energy contained in the exhaust thereby increasing the efficiency of the catalytic converter (42).
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: August 23, 2005
    Assignee: Mathson Industries
    Inventor: Boney A. Mathew
  • Patent number: 6916355
    Abstract: A composite material 5 in which a dispersing material 7 is dispersed in a matrix 6 is provided. The composite material 5 is producible by steps of filling said mixed material in a space forming region to be defined by at least two container elements when said at least two container elements are integrated into one body, and then infiltrating said aluminum (Al) being molten due to heat generated by said self-combustion reaction into pores inside said mixed material through at least one hole formed in an upper part of a reaction container formed by combining said at least two container elements in which said mixed material is filled in said space forming region in a state being fixed to a predetermined shape, thereby an aluminide intermetallic compound is formed by self-combustion reaction between said metal powder and said aluminum (Al), and a dispersing material is dispersed into said matrix.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: July 12, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Masahiro Kida, Takahiro Ishikawa, Masayuki Shinkai, Takatoshi Ikematsu
  • Patent number: 6899777
    Abstract: A process for continuous composite coextrusion comprising: (a) forming first a material-laden composition comprising a thermoplastic polymer and at least about 40 volume % of a ceramic or metallic particulate in a manner such that the composition has a substantially cylindrical geometry and thus can be used as a substantially cylindrical feed rod; (b) forming a hole down the symmetrical axis of the feed rod; (c) inserting the start of a continuous spool of ceramic fiber, metal fiber or carbon fiber through the hole in the feed rod; (d) extruding the feed rod and spool simultaneously to form a continuous filament consisting of a green matrix material completely surrounding a dense fiber reinforcement and said filament having an average diameter that is less than the average diameter of the feed rod; and (e) depositing the continuous filament into a desired architecture which preferably is determined from specific loading conditions of the desired object and CAD design of the object to provide a green fiber rei
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Advanced Ceramics Research, Inc.
    Inventors: K. Ranji Vaidyanathan, Joseph Walish, Mark Fox, John W. Gillespie, Jr., Shridhar Yarlagadda, Michael R. Effinger, Anthony C. Mulligan, Mark J. Rigali
  • Patent number: 6872356
    Abstract: The residual stresses that are experienced in polycrystalline diamond cutters, which lead to cutter failure, can be effectively modified by selectively thinning the carbide substrate subsequent to high temperature, high pressure (sinter) processing, by selectively varying the material constituents of the carbide substrate, by subjecting the PDC cutter to an annealing process during sintering, by subjecting the formed PDC cutter to a post-process stress relief anneal, or a combination of those means.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: March 29, 2005
    Assignee: Baker Hughes Incorporated
    Inventors: Trent N. Butcher, Ralph M. Horton, Stephen R. Jurewicz, Danny E. Scott, Redd H. Smith
  • Patent number: 6858177
    Abstract: The present invention provides a method for fabricating a metal matrix composite having high specific strength and stable performance and capable of fabricating at low cost, the method comprising heating a preform of metal matrix with reinforcing fiber to the temperature, which is below the high temperature region, of low temperature region or medium temperature region of the plastic deformation temperature of the metal matrix in a pressure vessel having an initial processing pressure and keeping for a predetermined time for a preparative treatment before the step of hot-isostatic-pressing the preform by keeping at a high temperature region capable of HIP treatment and of diffusing welding temperature of the metal matrix in a pressure vessel; for instance, in case metal matrix is titan or titan alloy, the preparative treatment is conducted at a preparative treatment temperature of about 300° C. to 700° C. and at a pressure in the pressure vessel of about 30 to 100 kg/cm2.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: February 22, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Akira Kono, Takeshi Yamada
  • Patent number: 6856051
    Abstract: A composite powder metal disk for a rotor assembly in a circumferential type interior permanent magnet machine. The disk includes an inner ring of magnetically conducting powder metal compacted and sintered to a high density. The disk further includes an outer ring of permanent magnets separated by magnetically non-conducting powder metal compacted and sintered to a high density. The permanent magnets additionally are radially embedded by magnetically conducting powder metal compacted and sintered to a high density with optional intermediate non-conducting powder metal bridges extending radially from the permanent magnets to the outer surface of the disk. A rotor assembly is also provided having a plurality of the composite powder metal disks mounted axially along a shaft with their magnetic configurations aligned. A method for making the composite powder metal disks is further provided including filling a die with the powder metals, compacting the powders, and sintering the compacted powders.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: February 15, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Frederick B. Reiter, Jr., James L. Lobsinger, Tom L. Stuart, Frank A. Wilder
  • Patent number: 6852273
    Abstract: (a) The metal matrix composite is suitable for the manufacture of flat or shaped titanium aluminide, zirconium aluminide, or niobium aluminide articles and layered metal composites having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and airfoils, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The composite material consists of a metal (e.g., Ti, Zr, or Nb-based alloy) matrix at least partially intercalated with a three-dimensional skeletal metal aluminide structure, whereby ductility of the matrix metal is higher than that of the metal aluminide skeleton. The method for manufacturing includes the following steps: (a) providing an aluminum skeleton structure having open porosity of 50-95 vol.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: February 8, 2005
    Assignee: ADMA Products, Inc.
    Inventors: Eugene Ivanov, Vladimir S. Moxson
  • Patent number: 6843823
    Abstract: A braze preform and a method for making the braze preform are disclosed. The braze preform includes a filler metal that has been sintered to produce a liquid phase of at least a portion of the filler metal.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 18, 2005
    Assignee: Caterpillar Inc.
    Inventor: William L. Kovacich
  • Patent number: 6838046
    Abstract: Improved drying, binder evaporation, and sintering processes which may be used in conjunction with specialized sintering tools to provide for the geometrically stable sintering of large, complex, metal injection molded preform parts or flowbodies. The improved process includes a three-stage drying process, a single stage binder evaporation process, and a two-stage sintering process.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: January 4, 2005
    Assignee: Honeywell International Inc.
    Inventors: Jyh-Woei J. Lu, Kenneth J. Bartone, Donald M. Olson, Dwayne M. Benson, John N. Tervo
  • Patent number: 6835349
    Abstract: A boron containing ceramic-aluminum metal composite is formed by mixing a boron containing ceramic with a metal powder comprised of aluminum or alloy thereof, shaping the mixture into a porous preform, contacting the preform with an infiltrating metal comprised of aluminum or alloy thereof that melts at a lower temperature than the metal powder and heating to a temperature sufficient to melt the infiltrating metal, but insufficient to melt the metal powder, such that the infiltrating metal infiltrates the porous preform to form the composite. The composite that is formed may be used for vehicular parts.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: December 28, 2004
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Uday V. Deshmukh, Nicholas M. Shinkel, Tim L. Allen
  • Patent number: 6830724
    Abstract: A method of producing a ceramic matrix composite is provided, which production method reduces metal residual percentage within matrix with little energy consumption, without requiring special external heating means and special equipment while it is industrially simple and at a low price. It is a method of producing a ceramic matrix composite having the steps of filling mixed powder obtained by mixing metal powder and boron nitride powder into a predetermined container to form a green compact having a porous structure, and infiltrating the above described green compact with molten Al to form a composite material containing metal boride and having aluminum nitride as a matrix. The green compact is formed by compressing the mixed powder whose mixing ratio of metal powder to boron nitride powder is 1:1.8 to 1:2.2 (molar ratio) so that porosity of the green compact is 34 to 42%.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: December 14, 2004
    Assignees: NGK Insulators, Ltd.
    Inventors: Makoto Kobashi, Naoyuki Kanetake, Takahiro Ishikawa, Masahiro Kida
  • Patent number: 6814926
    Abstract: A powder blend for use in laser sintering and a method for forming tough, strong, wear-resistant, corrosion-resistant infiltrated metal products are provided. The powder blend comprises a steel alloy, a polymeric binder and a high melting temperature fine particulate which are blended together, then applied layer by layer to a working surface in a laser sintering system, exposed a layer at a time to fuse together the powder until a green part of high strength is formed, and then the green part is infiltrated with a metal infiltrant in a non-reducing gas atmosphere at an effective temperature for an effective period of time. The preferred steel is a mild steel alloy.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: November 9, 2004
    Assignee: 3D Systems Inc.
    Inventors: Brad Geving, Kris Alan Schmidt, Kenneth J. Newell