Six Percent Or More Total Group Iv, V Or Vi Transition Metals Containing Patents (Class 420/10)
-
Patent number: 9993858Abstract: A roll for hot-rolling includes a body, wherein at least a part of an envelope surface of the body is made of a high speed steel that with reference to its chemical composition consists of the following elements, in weight %: 1-3 Carbon (C), 3-6 Chromium (Cr), 4.5-7 Molybdenum (Mo), 6-15 Tungsten (W), 3-14 Vanadium (V), 0-10 Cobalt (Co), 0-3 Niobium (Nb), 0-0.5 Nitrogen (N), 0.4-1 Yttrium (Y), eventualy distributed in the powder, and remainder iron (Fe) and unavoidable impurities, wherein contents of molybdenum (Mo) and tungsten (W) satisfy the formula Mo+0.5W=2.0-10.0 weight %.Type: GrantFiled: September 19, 2012Date of Patent: June 12, 2018Assignee: SANDVIK INTELLECTUAL PROPERTY ABInventors: Menderes Kayhan, Jan-Erik Karlsson, Stephen Hewitt
-
Publication number: 20150023623Abstract: A bearing component formed from a steel composition and providing carbon, silicon, manganese, chromium, cobalt, vanadium, and at least one of the following elements sulphur, phosphorous, molybdenum, aluminium, arsenic, tin, antimony, and the balance iron, together with impurities.Type: ApplicationFiled: October 26, 2012Publication date: January 22, 2015Inventors: John Beswick, Mohamed Sherif
-
Publication number: 20150013518Abstract: The invention relates to a tool (1) and a method for producing a tool (1) for the machining of metal sheets, in particular, for the trimming or forming thereof by means of deep drawing. The method comprises the provision of a metallic basic body (2), onto which a welding material (9) is welded at least in regions. According to the invention, the welding material (9) is composed of an alloy in % by mass of: carbon (C) 1.5-1.8% vanadium (V) 7.5-9.0% chromium (Cr) 4.5-6.0% molybdenum (Mo) 1.0-2.5% nickel (Ni) lower than (<)0.5% manganese (Mn) lower than (<)1.0% silicon (Si) lower than (<)1.0% as well as a remainder of iron (Fe) and melt-induced impurities.Type: ApplicationFiled: July 15, 2014Publication date: January 15, 2015Inventors: Torsten Hallfeldt, Raymund Eugen Pflitsch, Angelo Pintus, Frank Schreiber, Alfons Fischer
-
Publication number: 20140318516Abstract: A cylinder liner for an internal combustion engine may include a cast iron alloy having a pearlitic structure with at least 70% of graphitization with spheroidal graphite morphology. The cast iron alloy may include at least 2.8% to 4.0% in weight of carbon; 1.8% to 3.5% in weight of silicon; 0.2% to 1.0% in weight of manganese; a maximum of 0.5% in weight of phosphorus; a maximum of 0.05% in weight of sulfur; a maximum of 0.5% in weight of vanadium; a maximum of 0.5% in weight of molybdenum; 0.2% to 1.5% in weight of nickel; a maximum of 0.3% in weight of tin; 0.005% to 0.06% in weight of magnesium.Type: ApplicationFiled: August 17, 2012Publication date: October 30, 2014Applicants: Mahle Intermational GmbH, Mahle - Metal Leve S/AInventor: Soares J. Edmo
-
Patent number: 8632641Abstract: The present invention encloses a kind of the high-alloy cold work die steel wherein the steel in wt % consisting of: C 1.0˜2.5, Si?1.3, Mn?1.5, Cr 6.0˜15.0, V?2.5, B 0.01˜0.4, and the balance is Fe with unavoidable impurities. The hardness and toughness of the die steel of the present invention are the same as Cr12MoV or Cr12Mo1V1, and even exceed them. And, the steel does not contain Mo with high price, the cost is lower than Cr12MoV or Cr12Mo1V1 accordingly, and the die steel of the present invention has a longer usage life, which is specially applied to make cold work moulds with high accuracy and long use life.Type: GrantFiled: September 21, 2009Date of Patent: January 21, 2014Assignee: Ningbo Hopesun New Material Co., Ltd.Inventor: Kaihua Hu
-
Publication number: 20130266820Abstract: A work piece for use in abrasive environments with hardbanding is provided. The work piece has at least a protective layer deposited onto at least a portion to be protected. The deposited layer exhibits a hardness of at least 50 Rc, a wear rate of less than 0.5 grams of mass loss as measured according to ASTM G65-04, Procedure A, a wear rate on a contacting secondary body comprising carbon steel of less than 0.005 grams as measured according to modified ASTM G77 wear test. The deposited alloy forms an iron matrix comprising embedded hard particles in an amount of less than 15 vol. %. The embedded hard particles have an average particle size of ranging from 100 nm to 5 ?m. In one embodiment, the deposition is via welding.Type: ApplicationFiled: April 5, 2012Publication date: October 10, 2013Applicant: c/o Chevron CorporationInventors: Grzegorz Jan Kusinski, Justin Lee Cheney, John Hamilton Madok
-
Publication number: 20130094900Abstract: Disclosed is a hardfacing alloy deriving its usefulness from carbides and borides of molybdenum and niobium. The alloy does not rely on chromium as an alloying agent. The hardfacing alloy is capable of being applied to a number of industrial substrates in a crack-free manner, and once applied convert the substrate to a wear- and abrasion-resistant material having an extended service life, even when subjected to harsh wear conditions.Type: ApplicationFiled: October 17, 2011Publication date: April 18, 2013Applicant: DEVASCO INTERNATIONAL INC.Inventors: Grant R. FOLKMANN, Keith E. MOLINE
-
Publication number: 20130037179Abstract: A casting of a white cast iron alloy and a method of producing the casting are disclosed. A white cast alloy is also disclosed. The casting has a solution treated microstructure that comprises a ferrous matrix of retained austenite and chromium carbides dispersed in the matrix, with the carbides comprising 15 to 60% volume fraction of the alloy. The matrix composition comprises: manganese: 8 to 20 wt %; carbon: 0.8 to 1.5 wt %; chromium: 5 to 15 wt %; and iron: balance (including incidental impurities).Type: ApplicationFiled: February 1, 2011Publication date: February 14, 2013Applicant: WEIR MINERALS AUSTRALIA LTDInventor: Kevin Dolman
-
Publication number: 20130039796Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.Type: ApplicationFiled: February 15, 2011Publication date: February 14, 2013Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
-
Publication number: 20120196149Abstract: The present disclosure relates to an alloy, for hardbanding and/or hard overlay applications, which is abrasion resistant to the order of siliceous earth particles and weldable in crack free state on industrial products. The alloy is a carbon chrome based alloy comprising titanium and vanadium carbides and thus has an extremely low coefficient of friction, high abrasion resistance as welded without working. In tool joints and stabilizers, the alloy achieves an optimum balance between tool joint and stabilizer wear resistance and induced casing wear. The alloy is also self-shielded and therefore does not require external shielding gas.Type: ApplicationFiled: January 27, 2012Publication date: August 2, 2012Inventor: Robin William Sinclair FIFIELD
-
Publication number: 20120160363Abstract: Provided are high manganese containing ferrous based components and their use in oil, gas and/or petrochemical applications. In one form, the components include 5 to 40 wt % manganese, 0.01 to 3.0 wt % carbon and the balance iron. The components may optionally include one or more alloying elements chosen from chromium, nickel, cobalt, molybdenum, niobium, copper, titanium, vanadium, nitrogen, boron and combinations thereof.Type: ApplicationFiled: December 21, 2011Publication date: June 28, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Hyun Woo Jin, Raghavan Ayer, Douglas Paul Fairchild, Mario L. Macia
-
Patent number: 8097095Abstract: A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: GrantFiled: January 5, 2004Date of Patent: January 17, 2012Assignee: Battelle Energy Alliance, LLCInventor: Daniel J. Branagan
-
Publication number: 20110002806Abstract: The present invention encloses a kind of the high-alloy cold work die steel wherein the steel in wt % consisting of: C 1.0˜2.5, Si?1.3, Mn?1.5, Cr 6.0˜15.0, V?2.5, B 0.01˜0.4, and the balance is Fe with unavoidable impurities. The hardness and toughness of the die steel of the present invention are the same as Cr12MoV or Cr12Mo1V1, and even exceed them. And, the steel does not contain Mo with high price, the cost is lower than Cr12MoV or Cr12Mo1V1 accordingly, and the die steel of the present invention has a longer usage life, which is specially applied to make cold work moulds with high accuracy and long use life.Type: ApplicationFiled: September 21, 2009Publication date: January 6, 2011Applicant: NINGBO HOPESUN NEW MATERIAL CO., LTD.Inventor: Kaihua Hu
-
Publication number: 20100284849Abstract: An austenitic cast iron according to the present invention has Ni: from 7 to 15% by mass, and is characterized in that it comprises a base structure in which an austenite phase makes a major phase even in ordinary-temperature region by adjusting the respective compositions of Cr, Ni and Cu, excepting C and Si, so as to fall within predetermined ranges. In accordance with the present invention, it is possible to obtain an austenitic cast iron, which is excellent in terms of oxidation resistance and the like, inexpensively, while reducing the content of expensive Ni.Type: ApplicationFiled: August 29, 2008Publication date: November 11, 2010Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, MIE PREFECTUREInventors: Tomohei Sugiyama, Manabu Ishikawa, Hiroyuki Isomura, Mamoru Kojima, Naoki Yamamoto, Kyoichi Kinoshita, Takao Fujikawa
-
Patent number: 7794650Abstract: A graphite-containing, heat-resistant cast iron for exhaust equipment members used at temperatures exceeding 800° C., comprising 3.5-5.6% of Si and 1.2-15% of W on a weight basis, and having intermediate layers, in which W and Si are concentrated, in the boundaries of graphite particles and a matrix. An exhaust equipment member formed by this heat-resistant cast iron has an AC1 transformation point is 840° C. or higher when measured from 30° C. at a temperature-elevating speed of 3° C./minute, and a thermal cracking life of 780 cycles or more in a thermal fatigue test, in which heating and cooling are conducted under the conditions of an upper-limit temperature of 840° C., a temperature amplitude of 690° C. and a constraint ratio of 0.25.Type: GrantFiled: November 9, 2004Date of Patent: September 14, 2010Assignee: Hitachi Metals, Ltd.Inventors: Yoshio Igarashi, Seiichi Endo, Masahiro Miyake, Tsunehiro Kawata
-
Publication number: 20100189588Abstract: To provide a high-performance, inexpensive low C-high Si-high Cr—B—Nb type iron-based corrosion-resistant and wear-resistant alloy that is extremely superior in corrosion resistance and wear resistance to 304 stainless steel, high-chromium cast iron and high carbon-high chromium cast-iron-type materials, has a high corrosion-resistant property that would never be obtained from a high carbon-high chromium carbide precipitation-type iron-based wear-resistant alloy and at the same time, a wear-resistant property that is superior to these metals, and further hardly causes brittle peeling that is inherent to high Si—containing steel. This alloy contains, all percentages by weight, C: 0.5 to 2.5% by weight, Si: 2.5 to 4.5%, Mn: 0 to 10% or less, Cr: 15% to 31%, Ni: 0 to 16%, Cu: 7% or less, Mo: 10% or less, B: 0.5% to 3.5%, and 0?Nb+V?8%, and in this structure, within a range of 15% Cr?Cr<27%, (Si×B)?2014/Cr2+0.083Cr+1.05 is satisfied, within a range of 27%?Cr?31%, 1.25%?(Si×B) 6.Type: ApplicationFiled: August 9, 2006Publication date: July 29, 2010Applicant: ING Shoji Co., Ltd.Inventors: Hajime Kawatsu, Akira Shinnya
-
Publication number: 20100108199Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.Type: ApplicationFiled: December 30, 2009Publication date: May 6, 2010Inventor: Takemori Takayama
-
Publication number: 20100111747Abstract: The present disclosure relates to a glass forming alloy. The glass forming alloy may include 43.0 atomic percent to 68.0 atomic percent iron, 10.0 atomic percent to 19.0 atomic percent boron, 13.0 atomic percent to 17.0 atomic percent nickel, 2.5 atomic percent to 21.0 atomic percent cobalt, optionally 0.1 atomic percent to 6.0 atomic percent carbon, and optionally 0.3 atomic percent to 3.5 atomic percent silicon. Furthermore, the glass forming alloy includes between 5% to 95% by volume one or more spinodal glass matrix microconstituents which include one or more semi-crystalline or crystalline phases at a length scale less than 50 nm in a glass matrix. In addition, the glass forming alloy is capable of blunting shear bands through localized deformation induced changes under tension.Type: ApplicationFiled: November 4, 2009Publication date: May 6, 2010Applicant: The NanoSteel Company, Inc.Inventors: Daniel James BRANAGAN, Brian E. MEACHAM, Jikou ZHOU, Alla V. SERGUEEVA
-
Publication number: 20100102910Abstract: The invention relates to an austenitic iron-nickel-chromium-copper alloy, the composition of which comprises in % by weight: 24%?Ni?36% Cr?0.02% Cu?0.1% Cu+Co?15% 0.01?Mn?6% 0.02?Si?2% 0?Al+Ti?3% 0?C?2% 0?V+W?6% 0?Nb+Zr?0.5% 0?Mo?8 Sn?1 0?B?0.006% 0?S+Se+Sb?0.008% 0?Ca+Mg?0.020% the balance being iron and impurities resulting from the smelting, the percentage nickel, chromium, copper and cobalt contents being such that the alloy furthermore satisfies the following conditions: Co<Cu Co<4% if Cr>7.5% Eq1>28% with Eq1=Ni+1.2Cr+(Cu/5) Cr<7.5% if Ni>32.5%, and the manganese content furthermore meeting the following conditions: if ? ? Eq ? ? 3 ? 205 , Mn ? Ni - 27.5 + Cu - Cr if ? ? 180.5 ? Eq ? ? 3 ? 205 , Mn ? 4 ? % if ? ? Eq ? ? 3 ? 180.5 , Mn ? 2 ? % with ? ? Eq ? ? 3 = 6 ? ? Ni - 2.Type: ApplicationFiled: March 26, 2008Publication date: April 29, 2010Applicant: Arcelormittal-Stainless & Nickel AlloysInventors: Thierry Waeckerle, Olena Danylova
-
Publication number: 20100074791Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.Type: ApplicationFiled: November 30, 2009Publication date: March 25, 2010Inventor: Takemori Takayama
-
Patent number: 7611590Abstract: This invention related to a high carbon and high molybdenum/tungsten martenisitic type iron base alloy with excellent hot hardness and wear resistance for making valve seat insert. The alloy comprises of 2.05-3.60 wt % carbon, 0.1-3.0 wt % silicon, 0-2.0 wt % manganese, 3.0-10.0 wt % chromium, 11.0-25.0 wt % molybdenum and tungsten, 0.1-6.5 wt % nickel, 0-8.0 wt % vanadium, 0-6.0 wt % niobium, 0-8.0 wt % cobalt, and the balance being iron with impurities.Type: GrantFiled: June 23, 2005Date of Patent: November 3, 2009Assignee: Alloy Technology Solutions, Inc.Inventor: Xuecheng Liang
-
Publication number: 20090180917Abstract: A high strength alloy comprises: silicon with a weight percentage of 0.1 wt %˜0.5 wt %; manganese with a weight percentage of 0.3 wt %˜1.2 wt %; carbon with a weight percentage of 2.0 wt %˜3.0 wt %; phosphorous and sulfur with weight percentages of 0.01 wt %˜0.05 wt %, respectively; chromium with a weight percentage of 5.0 wt %˜7.0 wt %; molybdenum with a weight percentage of 3.0 wt %˜4.0 wt %; tungsten with a weight percentage of 1.0˜2.0; niobium with a weight percentage of 0.5 wt %˜1.7 wt %; vanadium with a weight percentage of 5.8 wt %˜7.8 wt %; nitrogen with a weight percentage of 0.04 wt %˜0.Type: ApplicationFiled: June 21, 2007Publication date: July 16, 2009Inventor: Chih-Ching Hsieh
-
Patent number: 7517416Abstract: Iron based amorphous steel alloy having a high Manganese content and being non-ferromagnetic at ambient temperature. The bulk-solidifying ferrous-based amorphous alloys are multicomponent systems that contain about 50 atomic percent iron as the major component. The remaining composition combines suitable mixtures of metalloids (Group b elements) and other elements selected mainly from manganese, chromium, and refractory metals. Various classes of non-ferromagnetic ferrous-based bulk amorphous metal alloys are obtained. One class is a high-manganese class that contains manganese and boron as the principal alloying components. Another class is a high manganese-high molybdenum class that contains manganese, molybdenum, and carbon as the principal alloying components. These bulk-solidifying amorphous alloys can be obtained in various forms and shape for various applications and utlizations. The good processability of these alloys can be attributed to the high reduced glass temperature Trg (e.g., about 0.6 to 0.Type: GrantFiled: June 2, 2006Date of Patent: April 14, 2009Assignee: University of Virginia Patent FoundationInventors: S. Joseph Poon, Gary J. Shiflet, Vijayabarathi Ponnambalam
-
Publication number: 20080267808Abstract: The invention relates to a high alloy iron that has an austenitic structure and a spherical graphite configuration and comprises the following components in percent by weight: carbon<2.0%, silicon 2.0-6.0%, nickel 29-36%, chrome 1.0-2.5%, niobium 0.1-1.0% and molybdenum 0.1-2.5%. The invention also relates to the use of the cast iron material for structural components that are subject to high thermal stress, especially for exhaust manifolds and turbocharger housings of internal combustion engines of the individual or integrated type of construction. The invention finally relates to a structural component that is subject to high thermal stress, especially the exhaust system of an engine consisting of the aforementioned cast iron material.Type: ApplicationFiled: February 7, 2006Publication date: October 30, 2008Inventors: Horst Keil, Dietmar Hahn
-
Publication number: 20080152531Abstract: Cast irons are provided which have no intentional addition of molybdenum (Mo) and which have compositions with additional silicon that provide certain advantages, such as lower cost, higher use temperatures, and increased tensile strength, over conventional Mo-bearing cast irons. In the cast irons, Mo is absent or present only as an impurity element.Type: ApplicationFiled: December 21, 2006Publication date: June 26, 2008Inventors: Ramesh Chimanlal Shah, Vinod K. Sikka, Govindarajan Muralidharan
-
Patent number: 7081151Abstract: It is possible to generate a desirable form (soft, pliable) of sulfide inclusions in magnesium-treated case irons. Thermodynamically, MnS and MoS2 are not stable in the presence of magnesium. However, by adding magnesium to a cast iron melt containing manganese sulfide/molybdenium sulfide as late as possible, and preferably when the molten cast iron has been dispensed into the mould, such sulfide inclusions may be preserved in magnesium-treated cast iron. Alternatively, said cast iron can also be formed by adding said sulfides directly to the iron after the magnesium reaction has taken place and an in situ equillibrium has been established between magnesium, oxygen and sulfur. Another option is to begin with a sulfur content in excess of the stoichiometric amount required to combine with the added magnesium, thus ensuring an amount of left-over sulfur to promote the formation of the desired sulfide inclusion.Type: GrantFiled: December 15, 2000Date of Patent: July 25, 2006Assignee: SinterCast ABInventors: Wolfgang Troschel, Ralf Toller
-
Patent number: 6916444Abstract: This invention related to a novel iron base alloy using residual austenite to improve wear resistance for valve seat insert material for internal combustion engines. The residual austenite is stable even after heat treatment and liquid nitrogen chilling. The alloy comprises of 2.0-4.0 wt % carbon, 1.0-3.0 wt % silicon, 0-4.0 wt % manganese, 3.0-9.0 wt % chromium, 5.0-15.0 wt % molybdenum, 3.0-15.0 wt % nickel, 0-6.0 wt % vanadium, 0-4.0 wt % niobium, 0-6.0 wt % cobalt, and the balance being iron with impurities.Type: GrantFiled: February 12, 2002Date of Patent: July 12, 2005Assignee: Alloy Technology Solutions, Inc.Inventor: Xuecheng Liang
-
Patent number: 6908589Abstract: The purpose of the present invention is to provide high manganese cast iron containing spheroidal vanadium carbide and method for making which is nonmagnetic as well as superior mechanical properties such as wear-resistance and toughness, and further does not require a water toughing heat treatment which has been needed when nonmagnetic high manganese steel (high manganese cast steel) is obtained by crystallized spheroidal vanadium in austenite matrix, and the high manganese cast iron containing spheroidal vanadium carbide is comprised of C 1.5˜4.0 weight %, V 6˜15 weight %, Si 0.2˜4.0 weight %, Mn 10˜18 weight %, Mg 0.01˜0.1 weight %, remaining iron (Fe) and inevitable impurities, spheroidal vanadium carbide is crystallized within a structure.Type: GrantFiled: June 13, 2003Date of Patent: June 21, 2005Assignees: Osaka Prefecture, Kabushiki Kaisha Sankyogokin Chuzoasho, Okamoto Co., Ltd.Inventors: Tadashi Kitudo, Mamoru Takemura, Mituaki Matumuro, Hideto Matumoto, Takao Horie, Kazumichi Shimizu
-
Publication number: 20040151612Abstract: The purpose of the present invention is to provide high manganese cast iron containing spheroidal vanadium carbide and method for making thereof which is nonmagnetic as well as superior mechanical properties such as wear-resistance and toughness, and further does not require a water toughing heat treatment which has been needed when nonmagnetic high manganese steel (high manganese cast steel) is obtained by crystallized spheroidal vanadium in austenite matrix, and the high manganese cast iron containing spheroidal vanadium carbide is comprised of C 1.5˜4.0 weight %, V 6˜15 weight %, Si 0.2˜4.0 weight %, Mn 10˜18 weight %, Mg 0.01˜0.1 weight %, remaining iron (Fe) and inevitable impurities, spheroidal vanadium carbide is crystallized within a structure.Type: ApplicationFiled: June 13, 2003Publication date: August 5, 2004Applicants: Osaka Prefecture, Kabushiki Kaisha Sankyogokin Chuzosho, OKAMOTO CO. LTDInventors: Tadashi Kitudo, Mamoru Takemura, Mituaki Matumuro, Hideto Matumoto, Takao Horie, Kazumichi Shimizu
-
Publication number: 20040103959Abstract: The invention concerns an article of a steel which is characterized in that it consists of an alloy which contains in weight-%: 1.2-2.0 C, 0.1-1.5 Si, 0.1-2.0 Mn, max. 0.2 N, max. 0.25 S, 4-8 Cr, 0.5-3.5 (Mo+W/2), 5-8 V, max. 1.0 Nb, balance essentially only iron and unavoidable impurities, and that the steel has a micro-structure obtainable by a manufacturing of the steel which comprises spray forming of an ingot, the micro-structure of which contains 8-15 vol-% carbides of essentially only MC-type where M substantially consists of vanadium, of which carbides at least 80 vol-% have a substantially rounded shape and a size in the longest extension of the carbides amounting to 1-20 &mgr;m.Type: ApplicationFiled: September 29, 2003Publication date: June 3, 2004Inventors: Odd Sandberg, Lennart Jonson
-
Publication number: 20040033154Abstract: A unique austenitic iron base alloy for wear and corrosion resistant applications, characterized by its excellent sulfuric acid corrosion resistance and good sliding wear resistance, is useful for valve seat insert applications when corrosion resistance is required. The alloy comprises 0.7-2.4 wt % carbon, 1.5-4 wt % silicon, 3-9 wt % chromium, less than 6 wt % manganese, 5-20 wt % molybdenum and tungsten combined, with the tungsten comprising not more than ⅓ of the total, 0-4 wt % niobium and vanadium combined, 0-1.5 wt % titanium, 0.01-0.5 wt % aluminum, 12-25 wt % nickel, 0-3 wt % copper, and at least 45 wt % iron.Type: ApplicationFiled: August 12, 2003Publication date: February 19, 2004Applicant: Winsert Technologies, Inc.Inventors: Xuecheng Liang, Gary R. Strong
-
Publication number: 20030102056Abstract: It is possible to generate a desirable form (soft, pliable) of sulfide inclusions in magnesium-treated case irons. Thermodynamically, MnS and MoS2 are not stable in the presence of magnesium. However, by adding magnesium to a cast iron melt containing manganese sulfide/molybdenium sulfide as late as possible, and preferably when the molten cast iron has been dispensed into the mould, such sulfide inclusions may be preserved in magnesium-treated cast iron. Alternatively, said cast iron can also be formed by adding said sulfides directly to the iron after the magnesium reaction has taken place and an in situ equillibrium has been established between magnesium, oxygen and sulfur. Another option is to begin with a sulfur content in excess of the stoichiometric amount required to combine with the added magnesium, thus ensuring an amount of left-over sulfur to promote the formation of the desired sulfide inclusion.Type: ApplicationFiled: October 15, 2002Publication date: June 5, 2003Inventors: Wolfgang Troschel, Ralf Toller
-
Publication number: 20030095886Abstract: A high-speed steel article, particularly a cutting tool, produced by powder metallurgy and its production, the steel having a high degree of purity corresponding to a K0 value of no higher than 3 according to DIN 50 602 and being of a particular composition which comprises the elements C, Si, Mn, Cr, W, Mo,V, Co, S and N. Also provided is a process for the high-speed machining of metal parts without lubricants.Type: ApplicationFiled: March 13, 2002Publication date: May 22, 2003Applicant: BOHLER EDELSTAHL GmbHInventors: Igrid Maili, Roland Rabitsch, Werner Liebfahrt
-
Publication number: 20030066577Abstract: A free-cutting tool steel is provided containing Fe and C in an amount of 0.1 to 2.5 wt %, Ti and or Zr where WTi+0.52WZr constitutes 0.03 to 3.5 wt %, and WTi represents Ti content and WZr represents Zr content, at least any one of S, Se and Te where WS+0.4WSe+0.25WTe constitutes 0.01 to 1.0 wt %, and (WTi+0.52WZr)/(WS+0.4WSe+0.25WTe) constitutes 1 to 4, and WS represents S content, WSe represents Se content and WTe represents Te content; and dispersed therein a texture thereof from 0.1 to 10% in terms of area ratio in a section of a machinability improving compound phase of a metallic element component of Ti and/or Zr as major components, and a binding component for the metallic element component containing C and any one of S, Se and Te.Type: ApplicationFiled: February 28, 2002Publication date: April 10, 2003Applicant: Kiyohito Ishida, Dokuritsu Gyousei Houjin Sangyo Gijutsu Sougo, Kenkyusho, Katsunari OikawaInventors: Kiyohito Ishida, Katsunari Oikawa, Toshimitsu Fujii, Yukinori Matsuda, Kozo Ozaki, Seiji Kurata, Takayuki Shimizu
-
Publication number: 20030068248Abstract: The invention relates to a cold work steel alloy for the powder metallurgical manufacture of parts, in particular tools with improved functional quality. In order to simultaneously set the important property features of bend fracture strength, impact bending work and wear resistance at a high level, it is essentially provided according to the invention to use an alloy containing in percent by weight 1 C 2.05 to 2.65 Cr 6.10 to 9.80 W 0.50 to 2.40 Mo 2.15 to 4.70 V 7.05 to 9.0 Nb 0.25 to 2.45 N 0.04 to 0.Type: ApplicationFiled: April 9, 2002Publication date: April 10, 2003Applicant: Bohler Edelstahl GmbHInventors: Werner Liebfahrt, Roland Rabitsch
-
Publication number: 20030051781Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.Type: ApplicationFiled: June 13, 2002Publication date: March 20, 2003Inventor: Daniel J. Branagan
-
Patent number: 6482354Abstract: A tool steel alloy having a unique combination of hardness and toughness is disclosed. The alloy contains, in weight percent, about: wt. % C 1.85-2.30, Mn 0.15-1.0, Si 0.15-1.0, P 0.030 max., S 0-0.30, Cr 3.7-5.0, Ni+Cu 0.75 max., Mo 1.0 max., Co 6-12, W 12.0-13.5, V 4.5-7.5. The balance is essentially iron and usual impurities. The elements C, Cr, Mo, W, and V are balanced in this alloy such that −0.05≦&Dgr;C≦−0.42 where &Dgr;C=((0.033W)+(0.063Mo)+(0.06Cr)+(0.2V))−C. A powder metallurgy tool steel article made from consolidated alloy powder having the aforesaid weight percent composition provides a Rockwell C hardness of at least about 69.5 when heat treated.Type: GrantFiled: July 26, 2001Date of Patent: November 19, 2002Assignee: CRS Holdings, Inc.Inventors: David E. Wert, Gregory J. Del Corso, Harrison A. Garner, Jr.
-
Patent number: 6348109Abstract: A steel material which is manufactured in a non-powder metallurgical way, comprising production of ingots or castings from a melt, consists of an alloy having the following chemical composition in weight-% Carbon: 2.0-4.3%, Silicon: 0.1-2.0%, Manganese: 0.1-2.0%, Chromium: 5.6-8.5%, Nickel: max. 1.0%, Molybdenum: 1.7-3%, wherein Mo completely or partly can be replaced by double the amount of W, Niobium: max. 2.0%, Vanadium: 6.5-15%, wherein V partly can be replaced by double amount of Nb up to max. 2% Nb, Nitrogen: max. 0.3%, wherein the contents of on the one hand carbon and nitrogen and on the other hand vanadium and any possibly existing niobium shall be balanced relative to each other, such that the contents of the said elements shall lie within the area of A, B″, E, F, B′, B, C, D, A in the co-ordinate system in FIG. 2, where V+2Nb, C+N co-ordinates for said points are A: (9,3.1), B″: (9,2.85), E: (15,4.3), F: (15,3.75), B′: (9,2.65), B: (9,2.5), C: (6.5,2.0), D: (6.5,2.Type: GrantFiled: September 19, 2000Date of Patent: February 19, 2002Assignee: Uddeholm Tooling AktiebolagInventor: Odd Sandberg
-
Patent number: 6248292Abstract: An overlaying alloy containing no Cr or a reduced amount of Cr, in which an effective amount of Mo oxide is formed even in a weak oxidizing atmosphere such as a combustion atmosphere of diesel engines and engines using CNG, LPG or other gases as a fuel to provide an improved non-damaging property and wear resistance. An overlaying alloy comprising 20-70 wt % Mo, 0.5-3 wt % C, 5-40 wt % Ni, and the balance being Fe and unavoidable impurities, which contains no Cr to facilitate formation of Mo oxide and is advantageously applied to the parts on which an oxide coating is not easily formed such as the engine parts subject to a lower temperature combustion atmosphere. An overlaying alloy comprising 20-60 wt % Mo, 0.2-3 wt % C, 5-40 wt % Ni, 0.1-10 wt % Cr, and the balance of Fe and unavoidable impurities, which contains a small amount of Cr to control formation of Mo oxide and is advantageously applied to the parts on which an oxide coating is relatively easily formed.Type: GrantFiled: February 24, 1999Date of Patent: June 19, 2001Assignee: Toyota Jidosha Kabushiki KaishaInventors: Kimihiko Ando, Akio Yasuda, Akira Manabe, Eiji Ito
-
Patent number: 6057045Abstract: A powder-metallurgy produced high-speed steel article having a combination of high hardness and wear resistance, particularly at elevated temperatures. This combination of properties is achieved by the combination of W, Mo, V, and Co. The article is particularly suitable for use in the manufacture of gear cutting tools, such as hobs, and surface coatings.Type: GrantFiled: October 14, 1997Date of Patent: May 2, 2000Assignee: Crucible Materials CorporationInventors: Andrzej L. Wojcieszynski, William Stasko
-
Patent number: 5969277Abstract: A steel obtained via the metallurgy of a high purity pre-alloyed, agglomerated and densified powder, the steel has the following weight composition: Manganese <1%, silicon <1%, chromium 4.50-6.45%, molybdenum 4-6%, vanadium 6.10-6.5%, tungsten 18.20-18.70%, sulfur <0.0020%, phosphorus .ltoreq.0.030%, oxygen .ltoreq.100 ppm, cobalt 5-7%, nitrogen 0.050-0.080%, .ltoreq.aluminum 0.020%, carbon 1.80-1.95%, balance iron and the impurities which are characteristic of producing steel. The steel has for the most part a dispersion of vanadium MC type carbides.Type: GrantFiled: April 1, 1998Date of Patent: October 19, 1999Assignee: Thyssen France SAInventors: Jacques Adrien, Remi Bertrand
-
Patent number: 5853504Abstract: A lapping surface plate consisting of an Fe-base material containing 0.8 to 3.5 wt % of C, 1 to 7 wt % of Si, 5 to 15 wt % of Ni, and 1 wt % or less of Mn, the balance substantially being Fe, further containing 0.1 wt % or less of at least one element selected from the group consisting of Mg, Ca, and Ce, and having a graphite structure and a hardness of 250 Hv or more.Type: GrantFiled: August 28, 1997Date of Patent: December 29, 1998Assignee: Kabushiki Kaisha ToshibaInventor: Takanobu Nishimura
-
Patent number: 5777828Abstract: A magnetically soft thin-film is prepared either to be of a composition wherein Fe is used as a principal component, and 0.5 to 20 atomic % of Al, 2 to 25 atomic % of at least one of Zr, Hf, Nb, Ta, Mo and W, 0.05 to 5 atomic % of at lease one of Ag and Cu, 0.5 to 25 atomic % of C and 0.2 to 8 atomic % of O are added as additional elements to the principal component, or to be of a composition wherein 0.1 to 5 atomic % of at least one of rare earth elements such as Ce, Sm and Dy is added further to the above-stated composition. These compositions enable the magnetically soft thin-film to have excellent properties as desired for a magnetic head.Type: GrantFiled: April 4, 1996Date of Patent: July 7, 1998Assignee: Canon Kabushiki KaishaInventors: Makoto Kameyama, Masaaki Matsushima, Michio Yanagi
-
Patent number: 5651842Abstract: Disclosed is a high-speed steel member and manufacturing method thereof. The member has Nb content of 0(incl.) to 2.0 (excl.) % in the hard state after hardening and tempering and in its micro-structure, contains either or both of M.sub.6 C and M.sub.2 C type carbides representing a rate of 0 to 2% to the total area, and the remainder substantially consisting of MC type carbide. The difference of crystallization temperatures is 30.degree. C. or more between MC type carbide and M.sub.6 C or M.sub.2 C type eutectic carbide. The high-speed steel member exhibits a high toughness and a small anisotropy of the mechanical property namely, a hardness of HRC 60 or more and a Charpy impact value ratio between the longitudinal direction and the direction perpendicular thereto in a forged material is 0.7 or more and are quite useful for plastic working.Type: GrantFiled: February 12, 1996Date of Patent: July 29, 1997Assignee: Hitachi Metals, Ltd.Inventors: Hideki Nakamura, Junichi Nishida, Norimasa Uchida
-
Patent number: 5306568Abstract: A high Young's modulus material comprises carbon steel or alloying steel and contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2. Furthermore, a surface-coated tool member comprises a substrate comprised of carbon steel or alloying steel and a hard coating layer having a Young's modulus of not less than 24,000 kgf/mm.sup.2 in which the substrate contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2.Type: GrantFiled: April 24, 1992Date of Patent: April 26, 1994Assignee: Daido Tokushuko Kabushiki KaishaInventors: Yukinori Matsuda, Kozo Ozaki, Koichi Sudo
-
Patent number: 5292382Abstract: An improved thermal sprayable molybdenum-iron alloy powder useful for forming wear and abrasion resistant coatings having high thermal conductivity and preferably good corrosion resistance. The preferred embodiment of the alloy powder includes two distinct substantially uniformly dispersed solid solution phases of molybdenum, including a first low molybdenum concentration matrix phase and a second higher molybdenum concentration phase for forming improved dual phase molybdenum coatings. The preferred alloy powder composition includes 15-60% by weight molybdenum, 20-60% by weight iron and the preferred corrosion resistant alloy includes 3-35% by weight nickel plus chromium. A more preferred composition includes by weight 25-50% molybdenum, 4-10% chromium, 10-18% nickel and 1-3% carbon, plus silicon as required to promote fluidity and atomization. The most preferred composition comprises by weight 25-40% molybdenum, 4 to 8% chromium, 12 to 18% nickel, 1-2.5% carbon, 2-3% silicon, 0.2-1% boron and 25-50% iron.Type: GrantFiled: September 5, 1991Date of Patent: March 8, 1994Assignee: Sulzer Plasma TechnikInventor: Frank N. Longo
-
Patent number: 5104464Abstract: A soft magnetic alloy film has a composition formula expressed by Fex Mz Cw. M is at least one metallic element selected from a group consisting of Ti, Zr, Hf, Nb, Ta, Mo or W, or a mixture of these metallic elements. The composition ratio of x, z and w satisfies the relation expressed by 50 atomic %.ltoreq.x.ltoreq.96 atomic %, 2 atomic %.ltoreq.z.ltoreq.30 atomic %, 0.5 atomic %.ltoreq.w.ltoreq.25 atomic %, and x+z+w=100. The metallic structure of the soft magnetic alloy film basically consists of crystal grains having an average grain size of 0.08 .mu.m or below. The metallic structure contains the crystal phase of carbide of the element M.Type: GrantFiled: February 1, 1990Date of Patent: April 14, 1992Assignee: Alps Electric Co., Ltd.Inventor: Naoya Hasegawa
-
Patent number: 5021085Abstract: The invention relates to high speed tool steels produced by powder metallurgy; to parts subject to heavy wear which are fabricated from such steel; and to a method of such fabrication. According to the invention, the part subject to heavy wear contains Nb in the amount of 2-15 wt. % and V in the amount of 1-4 wt. %, and further contains metal carbides in the amount of 10-30 vol. %; and that the lower limit of the carbon content is given by the formulaC.sub.min =0.45+0.1(%Nb)+0.20(%V),and the upper limit of the carbon content is given by the formulaC.sub.max =1.0+0.15(%Nb)+0.24(%V).In manufacturing the steel the melt of the alloying components is subjected to atomization in an overheated state (substantially above the liquidus temperature), to produce a powder.Type: GrantFiled: February 7, 1990Date of Patent: June 4, 1991Assignee: Boehler Ges m.b.H.Inventors: Sadi Karagoz, Bruno Hribernik, Johann Stamberger, Josef Puber, Franz Jeglitsch, Hellmut Fischmeister, Franz Matzer, Claus-Dieter Locker, Elfriede Kudielka, Heimo Jager
-
Patent number: 4880461Abstract: A super hard high-speed tool steel having a composition satisfying the condition of 0.ltoreq.C-Ceq.ltoreq.0.6 (where Ceq=0.06Cr+0.033 W+0.063 Mo+0.2 V within the range of 1.7.ltoreq.C.ltoreq.4.1%, the composition containing 3 to 10% of Cr, 1 to 20% of W, 1 to 15% of Mo (where 18.ltoreq.W+2Mo.ltoreq.40), 1 to 15% of V, not greater than 15% of Co, not greater than 2% of Si, not greater than 1% of Mn, and the balance substantially Fe and inevitable impurities, the steel further containing in uniformly dispersed state 2 to 12% in total of one, two or more selected from a group consisting of nitrides, carbides and carbonitrides of Ti, V, Zr, Nb, Hf and Ta in the composition. This tool steel exhibits a distinguished hardness of HRC 71 or higher, as well as toughness.Type: GrantFiled: December 21, 1987Date of Patent: November 14, 1989Assignee: Hitachi Metals, Ltd.Inventor: Norimasa Uchida
-
Patent number: 4638847Abstract: This invention relates to cast iron and more particularly to the improvement in the toughness and abrasive resistance of white cast iron along with a significant increase in tensile strength. More specifically, the present invention relates to a new white cast iron composition and a process for producing such cast iron having improved toughness, ductility and tensile strength while retaining desirable abrasive resistance through modification of the carbide morphology.Type: GrantFiled: October 22, 1984Date of Patent: January 27, 1987Assignee: GIW Industries, Inc.Inventor: Wallace Day