Nickel Containing Patents (Class 420/16)
-
Patent number: 11136655Abstract: The present invention provides a heat-resistant alloy and a reaction tube having excellent oxidation resistance, excellent mechanical properties such as tensile ductility, and weldability. A heat-resistant alloy of the present invention comprises, in terms of % by mass, C: 0.35% to 0.7%, Si: more than 0% and 1.5% or less, Mn: more than 0% and 2.0% or less, Cr: 22.0% to 40.0%, Ni: 25.0% to 48.3%, Al: 1.5% to 4.5%, Ti: 0.01% to 0.6%, and the balance being Fe and inevitable impurities, wherein when Pa=?11.1+28.1×C+29.2×Si?0.25×Ni?45.6×Ti, and Ya=?13.75×Al+63.75, Pa<Ya.Type: GrantFiled: October 30, 2018Date of Patent: October 5, 2021Assignee: KUBOTA CORPORATIONInventors: Kunihide Hashimoto, Yohei Enjo
-
Patent number: 9200710Abstract: A floating seal comprises C, Si, Mn, Ni, Cr, Mo, V, and B with the remainder being made up of Fe and unavoidable impurities. The contents of the C, Si, Mn, Ni, Cr, Mo, V and B are C: 2.2 to 3.9 wt %, Si: 0.5 to 3.5 wt %, Mn: 0.1 to 2.0 wt %, Ni: 0.5 to 4.3 wt %, Cr: 7.5 to 25.0 wt %, Mo: 0 to 8.0 wt % (excluding 0 %), V: 0 to 6.0 wt % (excluding 0%), and B: 0.02 to 0.4 wt %. The content of Cr in the parent phase is 2.00 to 5.41 wt %. The content of graphite is 0.05 to 0.35% of the surface area. The content of carbon boride is 19 to 40% of the surface area.Type: GrantFiled: September 27, 2012Date of Patent: December 1, 2015Assignee: KOMATSU LTD.Inventor: Masato Nishioka
-
Patent number: 9194500Abstract: A floating seal material comprises C, Si, Mn, Ni, Cr, and B with the remainder being made up of Fe and unavoidable impurities. The contents of the C, Si, Mn, Ni, Cr, and B are: C: 2.2 to 3.8 wt %, Si: 0.5 to 3.5 wt %, Mn: 0.1 to 2.0 wt %, Ni: 2.0 to 5.5 wt %, Cr: 0.9 to 4.0 wt %, and B: 0.02% to 0.4 wt %. The content of Cr in the parent phase is 0.30 to 1.07 wt %. The content of graphite is 0.35 to 2.33% of the surface area. The content of carbon boride is 14 to 40% of the surface area.Type: GrantFiled: September 27, 2012Date of Patent: November 24, 2015Assignee: KOMATSU LTD.Inventor: Masato Nishioka
-
Piston for an internal combustion engine comprising a ring carrier being formed of a cast iron alloy
Patent number: 8709175Abstract: An engine component such as, for example, an engine piston or a part thereof, for instance a ring carrier or piston boss bushing, consisting of a cast iron alloy that contains zirconium as an alloy constituent in an amount by weight of at least 0.01% and up to 0.1%.Type: GrantFiled: April 17, 2008Date of Patent: April 29, 2014Assignee: Federal-Mogul Nurnberg GmbHInventors: Wojciech Kolodziej, Marck Skowron, Kazimierz Marszalik, Homi D. Jijina, Laszlo Pelsoeczy, Klaus Lades -
Publication number: 20130045127Abstract: An austenitic cast iron according to the present invention is characterized in that: it comprises: basic elements comprising C, Si, Cr, Ni, Mn and Cu; and the balance comprising Fe, inevitable impurities and/or a trace-amount modifier element, which is effective in improving characteristic, in a trace amount; and it is an austenitic cast iron being a cast iron that is structured by a base comprising an Fe alloy in which an austenite phase makes a major phase in ordinary-temperature region; wherein said basic elements fall within compositional ranges that satisfy the following conditions when the entirety of said cast iron is taken as 100% by mass (hereinafter being simply expressed as “%”): C: from 2.0 to 3.0%; Si: from 4.0 to 5.4%; Cr: from 0.8 to 2.0%; Mn: from 3.9 to 5.6%; Ni: from 17 to 22%; and Cu: from 0.9 to 1.6%.Type: ApplicationFiled: May 18, 2011Publication date: February 21, 2013Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKIInventors: Tomohei Sugiyama, Manabu Ishikawa, Mamoru Kojima, Kyoichi Kinoshita
-
Publication number: 20130039796Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.Type: ApplicationFiled: February 15, 2011Publication date: February 14, 2013Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
-
Patent number: 8202375Abstract: A description is given of a temperature-stable cast-iron alloy having high wear resistance at temperatures between 500 and 900° C. The alloy is characterized in that it has the following composition expressed in weight percentages: chromium: 15.0-20.0%, carbon: 1.0-2.0%, manganese: 0.8-1.2%, silicon: 1.2-1.5%, nickel: 1.5-2.5%, balance iron and unavoidable metallic and non-metallic contaminants where the non-metallic contaminants comprise nitrogen, oxygen, phosphorous and sulphur. Hereby is obtained a cast-iron alloy which has a higher wear resistance and a reduced tendency to form the undesirable sigma phase when heated to temperatures between 500 and 900° C. as compared to the known allows.Type: GrantFiled: June 12, 2007Date of Patent: June 19, 2012Assignee: FLSMIDTH A/SInventors: Asger Karlsson, Rasmus Kirkegaard Stage
-
Patent number: 8187529Abstract: A wear resistant, high chromium white iron, in an unheat-treated condition has a microstructure substantially comprising austenite and M7C3 carbides. The white iron contains at least one martensite promoter and at least one austenite stabilizer which are present at respective levels to achieve a balance between their effects whereby the white iron has a microstructure characterized by at least one of: i) being substantially free of martensite at interfaces between the austenite and M7C3 carbides; and ii) having a relatively low level of interconnectivity between carbide particles; such that the white iron is substantially crack-free. The white iron may be as-cast or comprise weld deposited hardfacing.Type: GrantFiled: October 27, 2004Date of Patent: May 29, 2012Assignee: Global Tough Alloys Pty Ltd.Inventor: Graham Leonard Fraser Powell
-
Patent number: 8012410Abstract: An iron-based high-silicon alloy contains (in weight percent) 2.6-3.5% carbon, 3.7-4.9% silicon, 0.45-1.0% niobium, up to 0.6% manganese, up to 0.02% sulfur, up to 0.02% phosphorus, up to 0.5% nickel, up to 1.0% chromium, up to 0.1% magnesium, and the balance iron and up to 0.2% of other elements. The alloy is heat resistant and is suitable for use in producing, among other things, turbochargers, center housings, back plates, exhaust manifolds, and integrated turbo manifolds that are used in the automotive and truck manufacturing industries.Type: GrantFiled: September 15, 2005Date of Patent: September 6, 2011Assignee: Grede LLCInventor: Bipin H. Shah
-
Patent number: 7922836Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.Type: GrantFiled: November 30, 2009Date of Patent: April 12, 2011Assignee: Komatsu Ltd.Inventor: Takemori Takayama
-
Patent number: 7846381Abstract: Disclosed are methods of making ferritic ductile iron castings (60-40-18) with high toughness (6 ft.lb minimum Charpy V at ?20 F and 10 ft.lb minimum Charpy V at +72 F), without adding Nickel and without annealing.Type: GrantFiled: January 29, 2008Date of Patent: December 7, 2010Assignee: Aarrowcast, Inc.Inventor: Cesar Augusto Rezende Braga
-
Publication number: 20100284849Abstract: An austenitic cast iron according to the present invention has Ni: from 7 to 15% by mass, and is characterized in that it comprises a base structure in which an austenite phase makes a major phase even in ordinary-temperature region by adjusting the respective compositions of Cr, Ni and Cu, excepting C and Si, so as to fall within predetermined ranges. In accordance with the present invention, it is possible to obtain an austenitic cast iron, which is excellent in terms of oxidation resistance and the like, inexpensively, while reducing the content of expensive Ni.Type: ApplicationFiled: August 29, 2008Publication date: November 11, 2010Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, MIE PREFECTUREInventors: Tomohei Sugiyama, Manabu Ishikawa, Hiroyuki Isomura, Mamoru Kojima, Naoki Yamamoto, Kyoichi Kinoshita, Takao Fujikawa
-
Patent number: 7824605Abstract: An as-cast carbidic ductile iron is provided, having a pearlitic matrix with 5-50% by volume carbides and high wear resistance properties. The as-cast carbidic ductile iron is produced without an austempering heat treatment step. The as-cast carbidic ductile iron preferably includes a carbide stabilizing element and a spheroidizing agent.Type: GrantFiled: December 15, 2006Date of Patent: November 2, 2010Assignee: Dexter Foundry, Inc.Inventors: Jeffrey Paul Lemke, Robert Edward Eppich
-
Publication number: 20100172784Abstract: The present invention provides tough cast iron and cast iron semi-finished products excellent in workability without heat treatment requiring massive heat energy and long time and a method of production enabling these to be efficiently produced, that is, cast iron of ingredients of white cast iron where particles of spheroidal graphite or flattened graphite are dispersed, cast iron where the ingredients of the white cast iron satisfy, by wt %, (% C)?4.3?(% Si)÷3 and C?1.7% and where the particles of spheroidal graphite are dispersed at a density of 50 particles/mm2 or more, or cast iron where the particles of flattened graphite have a width of 0.4 mm or less and a length of 50 mm or less.Type: ApplicationFiled: December 23, 2009Publication date: July 8, 2010Applicant: Nippon Steel CorporationInventors: Hideaki Yamamura, Wataru Ohashi
-
Publication number: 20100080727Abstract: A wear resistant, high chromium white iron, in an unheat-treated condition has a microstructure substantially comprising austenite and M7C3 carbides. The white iron contains at least one martensite promoter and at least one austenite stabiliser which are present at respective levels to achieve a balance between their effects whereby the white iron has a microstructure characterised by at least one of: i) being substantially free of martensite at interfaces between the austenite and M7C3 carbides; and ii) having a relatively low level of interconnectivity between carbide particles; such that the white iron is substantially crack-free. The white iron may be as-cast or comprise weld deposited hardfacing.Type: ApplicationFiled: October 27, 2004Publication date: April 1, 2010Inventor: Graham Leonard Fraser Powell
-
Publication number: 20090191085Abstract: Disclosed are methods of making ferritic ductile iron castings (60-40-18) with high toughness (6 ft.lb minimum Charpy V at ?20 F and 10 ft.lb minimum Charpy V at +72 F), without adding Nickel and without annealing.Type: ApplicationFiled: January 29, 2008Publication date: July 30, 2009Inventor: Cesar Augusto Rezende Braga
-
Publication number: 20080260568Abstract: An iron-based high-silicon alloy contains (in weight percent) 2.6-3.5% carbon, 3.7-4.9% silicon, 0.45-1.0% niobium, up to 0.6% manganese, up to 0.02% sulfur, up to 0.02% phosphorus, up to 0.5% nickel, up to 1.0% chromium, up to 0.1% magnesium, and the balance iron and up to 0.2% of other elements. The alloy is heat resistant and is suitable for use in producing, among other things, turbochargers, center housings, back plates, exhaust manifolds, and integrated turbo manifolds that are used in the automotive and truck manufacturing industries.Type: ApplicationFiled: September 15, 2005Publication date: October 23, 2008Inventor: Bipin H. Shah
-
Publication number: 20080175741Abstract: A floating sealing ring formed from a seal material composed of C, Si, Mn, Ni, Cr and the rest composed of Fe and inevitable impurities, wherein contents of said C, Si, Mn, Ni and Cr with respect to the entire cast iron material are C: 2.9 to 3.8 wt %, Si: 1.0 to 2.5 wt %, Mn: 0 to 0.8 wt % (note that 0 is not included), Ni: 3.5 to 5.0 wt %, and Cr: 2.6 to 5.5 wt %.Type: ApplicationFiled: March 19, 2008Publication date: July 24, 2008Applicant: Eagle Industry co., Ltd.Inventors: Ken Okada, Yoshihiro Mura, Haruhiro Osada, Naoki Hayakawa, Osamu Moriya, Asahiko Ishiyama
-
Publication number: 20080152531Abstract: Cast irons are provided which have no intentional addition of molybdenum (Mo) and which have compositions with additional silicon that provide certain advantages, such as lower cost, higher use temperatures, and increased tensile strength, over conventional Mo-bearing cast irons. In the cast irons, Mo is absent or present only as an impurity element.Type: ApplicationFiled: December 21, 2006Publication date: June 26, 2008Inventors: Ramesh Chimanlal Shah, Vinod K. Sikka, Govindarajan Muralidharan
-
Patent number: 6764554Abstract: Refining elements for refining discs for disc refiners for the manufacture of mechanical pulp are disclosed, having improved wear resistance by utilizing alloys with precipitated carbides. An improved service life is obtained with a refining disk having the following analysis in % by weight: 2.96 C, 0.77 Si, 0.82 Mn, 24.2 Cr, 5.16 v, 0.04 Ni, 0.03 Mo, and the reminder Fe and impurities. After casting, the refining segments are hardened and annealed and assume a hardness of 57-63 HRC.Type: GrantFiled: September 10, 2002Date of Patent: July 20, 2004Assignee: Valmet Fibertech ABInventor: Jan-Åke Gavén
-
Patent number: 6511554Abstract: The present invention relates to stainless spheroidal carbide cast iron material is such: comprises iron (Fe) as its main component, C 0.6˜4.0% and V 4˜15% as its necessary components, P 0.01˜0.15%, S 0.01˜0.05% Al 0.05˜1.0%, and Mg 0.01˜0.2% as gas (hydrogen) bubble assistants, and Si 0.2˜4.5%, Cr 13˜30%, Mn 0.2˜3.0%, and Ni and/or Co 4˜15% as anticorrosion matrix formers, and according to the case of necessary, alloy elements 0.1˜1.Type: GrantFiled: July 5, 2001Date of Patent: January 28, 2003Inventors: Yutaka Kawano, Shigenori Nishiuchi, Satoru Yamamoto, Seisuke Sugahara, Toshiyuki Kikuchi
-
Patent number: 5858127Abstract: A metal alloy, structures made from the same, and methods of making the same, especially brake drums containing at least about 50% by weight of a ferritic matrix, up to 50% by weight of pearlitic iron, graphite including at least 10% by weight of nodular graphite, compacted graphite and no more than 20% by weight of flake graphite, and less than about 2.10% by weight of silicon.Type: GrantFiled: June 12, 1997Date of Patent: January 12, 1999Assignee: Gunite CorporationInventors: William E. Ott, Reginal A. Pete, Laxmi C. Tandon
-
Patent number: 5215604Abstract: A wear segment for use in a concrete pipe making machine is provided which has increased wear resistance as contrasted to wear segments currently in use. The segment has a Rockwell C hardness of about 68 in the heat treated condition and has very improved wear to a considerable degree over prior art segments which have had a typical Rc hardness of about 58.Type: GrantFiled: August 1, 1990Date of Patent: June 1, 1993Assignee: International Pipe Machinery CorporationInventor: Gerald R. Crawford
-
Patent number: 5201583Abstract: A temperature history indicator for a boiler tube or other thing can take the form of a clip fixed around the tube or thing. The indicator is made of a ferrite-containing duplex stainless steel non-structural piece of alloy having at least about 63 weight % of iron, 23-27% chromium, 5-11% nickel, and the balance comprising other components no one of which exceeds 2.0%. Preferably, the balance of the alloy includes any one or more of 0.005-0.009% carbon, 0.3-0.8% silicon, 1.0-2.0% manganese, 0.002-0.006% phosphorous, 0.003-0.007% sulphur, 0-0.02% molybdenum, and 0-0.02% copper. The thing is associated beforehand with the alloy in such a way as to irreversibly alter its magnetic properties and after exposure to temperature, the time and/or temperature are deduced by the loss in magnetic permeability.Type: GrantFiled: March 16, 1992Date of Patent: April 13, 1993Assignee: British Technology Group LimitedInventors: Joseph K. L. Lai, Brian J. Duggan
-
Patent number: 5096304Abstract: A temperature history indicator for a boiler tube or other thing can take the form of a clip fixed around the tube or thing. The indicator is made of a ferrite-containing duplex stainless steel non-structural piece of alloy having approximately 63 weight % of iron, 23-27% chromium, 5-11% nickel, and the balance comprising other components no one of which exceeds 2.0%. Preferably, the balance of the alloy includes any one or more of 0.005-0.009% carbon, 0.3-0.8% silicon, 1.0-2.0% manganese, 0.002-0.006% phosphorous, 0.003-0.007% sulphur, 0-0.002% molybdenum, and 0.006% phosphorous, 0.003-0.007% sulphur, 0-0.02% molybdenum, and 0-0.02% copper. The thing is associated beforehand with the alloy in such a way as to irreversibly alter its magnetic properties and after exposure to temperature, the time and/or temperature are deduced by the loss in magnetic permeability.Type: GrantFiled: August 15, 1990Date of Patent: March 17, 1992Assignee: National Research Development CorporationInventors: Joseph K. L. Lai, Brian J. Duggan
-
Patent number: 4889687Abstract: Nodular cast iron having favorable mechanical properties, in particular a high impact strength at low temperatures, comprising: from 3.0 to 4.0% of carbon; from 1.5 to 2.3% of silicon; less than 0.3% of manganese; not more than 0.03% of phosphorus; less than 0.10% of chromium; from 0.02 to 0.06% of magnesium; and from 0.0015 to 0.0150 weight % of bismuth with the balance consisting of iron and inevitable impurities and the CE (carbon equivalent) value being from 3.9 to 4.6%. This material is characterized by a low silicon content. Adding from 0.5 to 2.0% of nickel thereto improves its tensile strength and yield strength. Preferably, from 0.005 to 0.03% of bismuth is added to this nodular cast iron in molten state so as to produce more than 300 graphite nodules per mm.sup.2. The remaining bismuth content is preferably from 0.0015 to 0.015%, more preferably from 0.0015 to 0.004%.Type: GrantFiled: March 9, 1988Date of Patent: December 26, 1989Assignees: Hitachi Metals, Ltd., Honda Giken Kogyo K.K.Inventors: Yasuoki Ishihara, Fumio Obato, Jun Sakai, Takeshi Natsume
-
Patent number: 4861395Abstract: Austenitic cast iron has excellent corrosion resisting properties and has been preferentially used in machines or machine parts intended for handling corrosive fluids such as seawater. Cases, however, have been reported of machines or machine parts made of austenitic cast iron failing after they had been put to prolonged service at relatively low temperatures. The present inventors have located stress corrosion cracking at the cause of this failure.In accordance with the present invention, methods of using salt water resisting machines or machine parts made of austenitic cast iron that has graphite in the form of spheroids or nodules and which comprises by weight %: C.ltoreq.3.0, Si=1.0-3.0, Mn.ltoreq.1.5, P.ltoreq.0.08, Ni>24-28%, Cr.ltoreq.5.5 and the balance being Fe to minimize stress corrosion are provided.Type: GrantFiled: June 17, 1985Date of Patent: August 29, 1989Assignee: Ebara CorporationInventors: Matsuho Miyasaka, Katsuhiro Ichikawa, Katsumi Sasaki, Syotaro Mizobuchi, Naoaki Ogure
-
Patent number: 4791033Abstract: In a fuel cell system employing an internally reforming fuel cell and a gas transfer device for recycling hydrogen gas in the fuel cell exhaust back to the fuel cell, the supply fuel is passed through the transfer device so as to allow controllable transfer of water with the transferred hydrogen, thereby providing a stream automatically containing water necessary for the steam reforming reaction in the fuel cell.Type: GrantFiled: March 28, 1988Date of Patent: December 13, 1988Assignee: Energy Research CorporationInventor: Pinakin Patel
-
Patent number: RE32925Abstract: Novel metal alloy compositions which are obtained in the amorphous state and are superior to such previously known alloys based on the same metals are provided; these new compositions are easily quenched to the amorphous state and possess desirable physical properties. Also disclosed is a novel article of manufacture in the form of wire of these novel amorphous metal alloys and of other compositions of the same type.Type: GrantFiled: October 23, 1986Date of Patent: May 18, 1989Assignee: Allied-Signal Inc.Inventors: Ho-Sou Chen, Donald E. Polk