Molybdenum Or Tungsten Containing Patents (Class 420/448)
  • Patent number: 8101122
    Abstract: The invention includes a turbine cover bucket of an alloy including carbon at less than approximately 0.04 weight percent, manganese at approximately 0.0-0.2 weight percent, silicon at approximately 0.0-0.25 weight percent, phosphorus at approximately 0.0-0.015 weight percent, sulfur at approximately 0.0-0.015 weight percent, chromium from approximately 20.0-23.0 weight percent, molybdenum from approximately 8.5-9.5 weight percent, niobium from approximately 3.25-4 weight percent, tantalum at approximately 0.0-0.05 weight percent, titanium from approximately 0.2-0.4 weight percent, aluminum from approximately 0.15-0.3 weight percent, iron from approximately 3.0-4.5 weight percent, and the remainder being nickel. The alloy is heat treated at 538° C. to 760° C. for up to 100 hours. A method of manufacturing the turbine bucket cover is also provided.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventor: Jeffrey Allen Hawk
  • Patent number: 8066938
    Abstract: A wrought age-hardenable nickel-chromium-cobalt based alloy suitable for use in high temperature gas turbine transition ducts possessing a combination of three specific key properties, namely resistance to strain age cracking, good thermal stability, and good creep-rupture strength contains in weight percent 17 to 22 chromium, 8 to 15 cobalt, 4.0 to 9.1 molybdenum, up to 7 tungsten, 1.39 to 1.65 aluminum, 1.50 to 2.30 titanium, up to 0.80 niobium, 0.01 to 0.2 carbon, up to 0.01 boron, up to 3 iron, up to 1.5 tantalum and less than 0.02 zirconium, with a balance of nickel and impurities. Certain alloying elements must be present in amounts according to two equations here disclosed.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Haynes International, Inc.
    Inventor: Lee M. Pike, Jr.
  • Publication number: 20110240715
    Abstract: A nickel-based alloy and welding processes and consumables that use the alloy as a weld filler metal to fabricate, weld overlay, and repair components, including components of nuclear power plant reactors that contact the hot coolant water of the reactor. The nickel-based alloy consists of, by weight, 26 to about 30% chromium, 2 to about 4% iron, 2 to about 4% manganese, 2 to about 3% niobium, 1 to about 3% molybdenum, not more than 0.6% titanium, not more than 0.03% carbon, not more than 0.05% nitrogen, not more than 0.6% aluminum, not more than 0.5% silicon, not more than 0.01% copper, not more than 0.02% phosphorus, not more than 0.01% sulfur, with the balance nickel and incidental impurities.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicants: GE-Hitachi Nuclear Energy Americas LLC, The Tokyo Electric Power Company
    Inventors: Raul Basilio Rebak, Peter Louis Andresen, Martin Mathew Morra, Suguru Oki, Hideshi Tezuka
  • Publication number: 20110206553
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 12 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Application
    Filed: May 5, 2011
    Publication date: August 25, 2011
    Applicant: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Patent number: 7985304
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 20 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 26, 2011
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Publication number: 20110165432
    Abstract: A powder metallurgical article and process are disclosed. The article is a repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a formed article including a first alloy and a material including a second alloy. The material is welded to the formed article to form the repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a substantially uniform grain structure.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Anthony NOWAK, Raymond Joseph STONITSCH, Attila SZABO
  • Publication number: 20110158844
    Abstract: This ring-shaped disk for a gas turbine includes a ring-shaped disk material consisting of a Ni-based alloy, wherein the Ni-based alloy has a composition that includes, in terms of percent by mass, Ni: 50.00 to 55.00%, Cr: 17.0 to 21.0%, Nb: 4.75 to 5.60%, Mo: 2.8 to 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, and C: 0.01 to 0.08%, with the balance being Fe and inevitable impurities, and has a microstructure in which ? phase particles are distributed in a matrix thereof, and wherein, in the microstructure, flattened ? phase particles of which maximum length directions are oriented at angles within a range of 60 to 120° with respect to a radial direction of the ring-shaped disk material are present in an amount of 60% or more of a total amount of the ? phase particles distributed in the matrix.
    Type: Application
    Filed: May 8, 2009
    Publication date: June 30, 2011
    Inventors: Jun Ohsone, Akira Mitsuhashi, Takanori Matsui, Yuji Ishiwari
  • Publication number: 20110142713
    Abstract: Disclosed is a welding material for a Ni-based alloy, comprising components expressed as follows: C?0.05 mass %; 8 mass %?Cr?25 mass %; Fe?4.0 mass %; W?15 mass %; 5 mass %?Mo+½(W+Re)?20 mass %; Co?20 mass %; 0.01 mass %?Al<2.0 mass %; 0.01 mass %?Ti<2.0 mass %; Al+½Ti?3.0 mass %; Nb+½Ta?1.5 mass %; B?0.007 mass %; Zr?0.04 mass %; 0.01 mass %?Si?0.5 mass %; Mn?1.0 mass %; P?0.010 mass %; S?0.002 mass %; O?0.005 mass %; and Ni and unavoidable impurities which constitute the balance.
    Type: Application
    Filed: June 29, 2009
    Publication date: June 16, 2011
    Inventors: Kenji Kawasaki, Ryuichi Yamamoto, Yoshikuni Kadoya, Shin Nishimoto, Seiichi Kawaguchi
  • Publication number: 20110120597
    Abstract: Low rhenium nickel base superalloy compositions and articles formed from the superalloy composition are provided. The nickel base superalloy composition includes in percentages by weight: about 5-8 Cr; about 6.5-9 Co; about 1.3-2.5 Mo; about 4.8-6.8 W; about 6.0-7.0 Ta; if present, up to about 0.5 Ti; about 6.0-6.4 Al; about 1-2.3 Re; if present, up to about 0.6 Hf; if present, up to about 0-1.5 C; if present, up to about 0.015 B; the balance being nickel and incidental impurities. Exemplary compositions are characterized by an Re ratio defined as the weight % of Re relative to the total of the weight % of W and the wt % of Mo, of less than about 0.3. Exemplary articles include airfoils for gas turbine engine blades or vanes, nozzles, shrouds, and splash plates.
    Type: Application
    Filed: December 26, 2007
    Publication date: May 26, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Patent number: 7922969
    Abstract: The corrosion-resistant nickel-base alloy combines thermal stability with corrosion resistance and mechanical strength. The alloy contains balanced proportions of nickel, molybdenum, chromium, and iron with an effective amount of yttrium to stabilize grain boundaries against unwanted reactions, which might degrade corrosion resistance, and an effective amount of boron to maintain an acceptable level of ductility. The alloy may contain minor amounts of additives or impurities, such as silicon, manganese, and aluminum. The alloy may contain between about 25-45% molybdenum, 2-6% chromium, 2-4% iron, 0.01-0.03% boron, 0.005-0.015% yttrium, and up to a maximum of 1% manganese, silicon, and aluminum, respectively, by weight, the balance being nickel. It is preferred that the combined ratio of molybdenum, chromium, and iron to nickel be in the range of about 25% to 45%.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: April 12, 2011
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Hani M. Tawancy
  • Publication number: 20110076180
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep and oxidation resistance substantially equivalent to or better than rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110076179
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.8 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 4 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 6% rhenium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, optionally, from about 0.15 to about 0.7% hafnium, from 0 to about 0.5% titanium, from 0 to about 4% molybdenum, from 0 to about 0.005% boron, from 0 to about 0.06% carbon, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: March 24, 2009
    Publication date: March 31, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Publication number: 20110076182
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep resistance substantially equivalent to rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110076181
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit oxidation resistance better than or comparable to rhenium-bearing single-crystal alloys, and creep rupture life comparable to rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, Jr., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110062220
    Abstract: A nickel-base composition is disclosed that includes: about 15 to about 20 wt % Co; about 10 to about 19 wt % Cr; about 2.5 to about 3.4 wt % Al; less than about 0.5 wt % Ta; less than about 1.0 wt % Mo; less than about 0.06 wt % Zr; less than about 0.04 wt % B; about 1.1 to about 1.5 wt % Nb; about 3.0 to about 3.9 wt % Ti; about 3 to about 5 wt. % W; about 0.03 to about 0.07 wt. % C; and balance Ni; wherein aluminum, titanium, niobium, and tantalum are present within the alloy in a combined amount of 9 to 14 atomic percent.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang Feng, Michael Douglas Arnett, Daniel Anthony Nowak
  • Publication number: 20110058954
    Abstract: A nickel base alloy is provided which includes the following components by weight: Co: 2.75 to 3.25% Cr: 11.5 to 12.5% Mo: 2.75 to 3.25% Al: 3.75 to 4.25% Ti: 4.1 to 4.9% Ta: 1.75 to 2.25% C: 0.006 to 0.04% B: ?0.01% Zr: ?0.01% Hf: ?1.25% Nb: ?1.25% balance Ni.
    Type: Application
    Filed: February 27, 2009
    Publication date: March 10, 2011
    Inventor: Magnus Hasselqvist
  • Publication number: 20110058977
    Abstract: A Ni based cast alloy consisting essentially of C: 0.01 to 0.2% by weight, Si: 0.5 to 4.0% by weight, Cr: 14 to 22% by weight, Mo+W: 4.0 to 10% by weight, B: 0.001 to 0.02% by weight, Co: up to 10% by weight, Al: up to 0.5% by weight, Ti: up to 0.5% by weight, Nb: up to 5.0% by weight, Fe: up to 10% by weight, the balance being Ni and incidental impurities, wherein a ?? phase precipitates in a matrix phase thereof.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 10, 2011
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20110052443
    Abstract: Nickel based alloys are provided comprising from about 7.0 weight percent (wt %) to about 12.0 wt % chromium, from about 0.1 wt % to about 5 wt % molybdenum, from about 0.2 wt % to about 4.5 wt % titanium, from about 4 wt % to about 6 wt % aluminum, from about 3 wt % to about 4.9 wt % cobalt, from about 6.0 wt % to about 9.0 wt % tungsten, from about 4.0 wt % to about 6.5 wt % tantalum, from about 0.05 wt % to about 0.6 wt % hafnium, up to about 1.0 wt % niobium, up to about 0.02 wt % boron, and up to about 0.1 wt % carbon, with the remainder being nickel and incidental impurities. The alloys may be cast, directionally solidified and heat treated to provide articles having a gamma prime fraction of greater than about 50%.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Timothy Hanlon, Richard DiDomizio, Michael Francis Henry, Akane Suzuki, Arthur Samuel Peck, Stephen Joseph Balsone
  • Patent number: 7887748
    Abstract: The invention relates to a method for repairing components that consist of superalloys, in particular for repairing components that consist of a superalloy with an aligned microstructure in such a way that the repaired site likewise has an aligned microstructure. The method comprises the following steps: a solder material is applied to the repair site; the repair site with the applied solder material is heated until the latter melts; and the melted solder material is left to solidify. The solder material is an alloy with the same alloy components as the component alloy. At least the fraction of one alloy component in the solder material composition is modified in relation to the fraction of that alloy component in the component alloy composition, in such a way that the melting temperature of the solder material is reduced in relation to the melting temperature of the component alloy.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: February 15, 2011
    Assignees: Siemens Aktiengesellschaft, MTU Aero Engines GmbH
    Inventor: Andreas Volek
  • Publication number: 20110011500
    Abstract: A Ni—Fe—Cr—Mo alloy containing a small amount of Cu and correlated percentages of Nb, Ti and Al to develop a unique microstructure to produce 145 ksi minimum yield strength. The unique microstructure is obtained by special annealing and age hardening conditions, by virtue of which the alloy has an attractive combination of yield strength, impact strength, ductility, corrosion resistance, thermal stability and formability, and is especially suited for corrosive oil well applications that contain gaseous mixtures of carbon dioxide and hydrogen sulfide. The alloy comprises in weight percent the following: 0-15% Fe, 18-24% Cr, 3-9% Mo, 0.05 3.0% Cu, 3.6-6.5% Nb, 0.5-2.2% Ti, 0.05-1.0% Al, 0.005-0.040% C, balance Ni plus incidental impurities and a ratio of Nb/(Al+Ti) in the range of 2.5-7.5. To facilitate formability, the composition range of the alloy is balanced to be Laves phase free.
    Type: Application
    Filed: November 18, 2008
    Publication date: January 20, 2011
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventor: Sarwan Kumar Mannan
  • Publication number: 20100329876
    Abstract: Gamma prime nickel-base superalloy and components formed therefrom. The alloy contains, by weight, 11.3 to 13.3% cobalt, 12.4 to 15.2% chromium, 2.1 to 2.7% aluminum, 3.6 to 5.8% titanium, 3.5 to 4.5% tungsten, 3.1 to 3.8% molybdenum, 0.0 to 1.2% niobium, 0.0 to 2.3% tantalum, 0.0 to 0.5% hafnium, 0.040 to 0.100% carbon, 0.010 to 0.046% boron, 0.030 to 0.080% zirconium, the balance nickel and impurities, wherein the Nb+Ta content is 0.0-3.5%.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kenneth Rees Bain, David Paul Mourer
  • Publication number: 20100310412
    Abstract: Austentic heat-resistant nickel-base alloy comprising (in % by mass) 0.03-0.1% of C, 28-32% of Cr, 0.01-<0.5% of Mn, 0.01-<0.3% of Si, 0.01-<1.0% of Mo, 2.5-3.2% of Ti, 0.01-<0.5% of Nb, 0.01-<0.5% of Cu, 0.05-<2.0% of Fe, 0.7-1.0% of Al, 0.001-<0.03% of Mg, 0.01-<1.0% of Co, 0.01-0.10% of Hf, 0.01-0.10% of Zr, 0.002-0.02% of B, 0.001-0.01% of N, max. 0.01% of 5, max. 0.005% of Pb, max. 0.0005% of Bi, max. 0.01% of Ag, balance Ni and minor components due to the production method, where the sum of Ti +Al is from 3.3 to 4.3%, the sum of C+(10×B) is from 0.05 to 0.2%, the sum of Hf+Zr is from 0.05 to 0.15%, the Ti/Al ratio is >3 and Zr/Hf is 0.1 to 0.5.
    Type: Application
    Filed: November 25, 2008
    Publication date: December 9, 2010
    Inventors: Jutta Kloewer, Bernd De Boer, Dietmar Schlager
  • Publication number: 20100303665
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 16.0 to 30.0% cobalt, 11.5 to 15.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 1.5 to 6.0% titanium, up to 5.0% tungsten, 1.0 to 7.0% molybdenum, up to 3.5% niobium, up to 1.0% hafnium, 0.02 to 0.20% carbon, 0.01 to 0.05% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.5 to 2.0.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kenneth Rees Bain, David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Laurent Cretegny, Andrew Ezekiel Wessman
  • Publication number: 20100303666
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 18.0 to 30.0% cobalt, 11.4 to 16.0% chromium, up to 6.0% tantalum, 2.5 to 3.5% aluminum, 2.5 to 4.0% titanium, 5.5 to 7.5% molybdenum, up to 2.0% niobium, up to 2.0% hafnium, 0.04 to 0.20% carbon, 0.01 to 0.05% boron, 0.03 to 0.09% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.71 to 1.60.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: General Electric Company
    Inventors: Kenneth Rees Bain, David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Laurent Cretegny, Andrew Ezekiel Wessman
  • Publication number: 20100284850
    Abstract: The invention includes a turbine cover bucket of an alloy including carbon at less than approximately 0.04 weight percent, manganese at approximately 0.0-0.2 weight percent, silicon at approximately 0.0-0.25 weight percent, phosphorus at approximately 0.0-0.015 weight percent, sulfur at approximately 0.0-0.015 weight percent, chromium from approximately 20.0-23.0 weight percent, molybdenum from approximately 8.5-9.5 weight percent, niobium from approximately 3.25-4 weight percent, tantalum at approximately 0.0-0.05 weight percent, titanium from approximately 0.2-0.4 weight percent, aluminum from approximately 0.15-0.3 weight percent, iron from approximately 3.0-4.5 weight percent, and the remainder being nickel. The alloy is heat treated at 538° C. to 760° C. for up to 100 hours. A method of manufacturing the turbine bucket cover is also provided.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Jeffrey Allen Hawk
  • Publication number: 20100254822
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.5 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 3 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 4% molybdenum, from 0 to about 6% rhenium, from 0 to less than about 0.001% niobium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, from 0 to about 0.06% carbon, optionally, from 0 to about 0.5% titanium, from 0 to about 0.005% boron, from about 0.15 to about 0.7% hafnium, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: September 30, 2009
    Publication date: October 7, 2010
    Inventors: Brian Thomas Hazel, Kevin Swayne O'Hara, Laura Jill Carroll
  • Patent number: 7799271
    Abstract: Nickel base alloys for use in applications for highly corrosive and abrasive environments. The alloys contain a large volume fraction of metallic carbide particles that provide wear and abrasion resistance. The alloys are produced by induction melting and gas atomization to form alloy powder particles. The particles are consolidated by hot isostatic pressing to form a solid article.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 21, 2010
    Assignee: Compaction & Research Acquisition LLC
    Inventor: Andrzej L. Wojcieszynski
  • Patent number: 7789288
    Abstract: A process and braze paste suitable for filling and closing voids in relatively thin wall sections of high temperature components, such as an impingement plate of a combustor of a gas turbine engine. The process entails applying at least a first braze paste to the crack to form a braze paste patch comprising powders of first and second alloys and an organic binder. The first alloy has a higher melting temperature than the second alloy, and the powders of the first and second alloys are present in the braze paste patch at a weight ratio of about 30:70 to about 70:30 weight percent. The braze paste patch is then heated to burn off the binder and melt at least the powder of the second alloy to form a brazement within the crack that contains particles of the first alloy dispersed in a matrix formed by the second alloy.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: September 7, 2010
    Assignee: General Electric Company
    Inventors: Jere A. Johnson, Timothy Channel
  • Publication number: 20100196191
    Abstract: Nickel-base superalloys are provided. In an embodiment, a nickel-base superalloy includes a concentration of large radius elements disposed in the gamma phase of the nickel-base superalloy in a range of from about 3.6 to about 6.7, by atomic percent and a concentration of large radius elements disposed in the gamma prime phase of the nickel-base superalloy in a range of from about 4.2 to about 7.0, by atomic percent. The nickel-base superalloy has a density of about 9.0 grams per centimeter3 or less.
    Type: Application
    Filed: February 5, 2009
    Publication date: August 5, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Tom STRANGMAN
  • Publication number: 20100166594
    Abstract: An austenitic heat resistant alloy, which comprises, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Application
    Filed: December 24, 2009
    Publication date: July 1, 2010
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Publication number: 20100158682
    Abstract: A Ni-based alloy for a casting part of a steam turbine having excellent high temperature strength, castability and weldability includes, in percentage by mass, 0.01 to 0.15 of C, 18 to 28 of Cr, 10 to 15 of Co, 8 to 12 of Mo, 1.5 to 2 of Al, 0.1 to 3 of Ti, 0.001 to 0.006 of B, 0.1 to 0.7 of Ta, and the balance of Ni plus unavoidable impurities.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 24, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniyoshi NEMOTO, Kiyoshi Imai, Yomei Yoshioka, Masayuki Yamada, Shigekazu Miyashita, Takeo Suga, Takeo Takahashi, Kazutaka Ikeda
  • Patent number: 7740724
    Abstract: A method for preventing the formation of cellular gamma prime in nickel-based superalloys comprises the steps of: casting a nickel-based superalloy into a desired article; subjecting the cast article to hot isostatic pressing at a temperature in excess of 2000° F. at a pressure greater than 15,000 psi to close internal pores in the cast article; and avoiding any formation of the cellular gamma prime in the cast article.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: June 22, 2010
    Assignee: United Technologies Corporation
    Inventor: Reade R. Clemens
  • Publication number: 20100136368
    Abstract: A nickel, chromium, iron alloy and method for use in producing weld deposits and weldments formed therefrom. The alloy comprises, in weight percent, about 28.5 to 31.0% chromium; about 0 to 16% iron, preferably 7.0 to 10.5% iron, less than about 1.0% manganese, preferably 0.05 to 0.35% manganese; about 2.1 to 4.0% niobium plus tantalum, preferably 2.1 to 3.5% niobium plus tantalum, and more preferably 2.2 to 2.8% niobium plus tantalum; 0 to 7.0% molybdenum, preferably 1.0 to 6.5%, and more preferably 3.0 to 5.0% molybdenum; less than 0.50% silicon, preferably 0.05 to 0.30% silicon; 0.01 to 0.35% titanium; 0 to 0.25% aluminum; less than 1.0% copper; less than 1.0% tungsten; less than 0.5% cobalt; less than about 0.10% zirconium; less than about 0.01% sulfur; less than 0.01% boron, preferably less than 0.0015% boron, and more preferably less than 0.001% boron; less than 0.03% carbon; less than about 0.02% phosphorous; 0.002 to 0.015% magnesium plus calcium; and balance nickel and incidental impurities.
    Type: Application
    Filed: July 19, 2007
    Publication date: June 3, 2010
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Samuel D. Kiser, Brian A. Baker, David E. Waskey
  • Publication number: 20100135847
    Abstract: A nickel-containing alloy is disclosed. The alloy contains about 1.5 to about 4.5 weight percent aluminum; about 1.5 to about 4.5 weight percent titanium; about 0.8 to about 3 weight percent niobium; about 14 to about 28 weight percent chromium; up to about 0.2 weight percent zirconium; about 10 to about 23 weight percent cobalt; about 1 to about 3 weight percent tungsten; about 0.05 to about 0.2 weight percent carbon, about 0.002 to about 0.012 weight percent boron; and about 40 to about 70 weight percent nickel. The atomic ratio of aluminum to titanium is at least about 0.5. The alloy is also substantially free of tantalum. Related processes and articles are also disclosed.
    Type: Application
    Filed: October 21, 2009
    Publication date: June 3, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Liang Jiang, Ji-Cheng Zhao, Ganjiang Feng
  • Publication number: 20100092301
    Abstract: A component for a high-temperature steam turbine which operates at temperatures above 600° C., especially above 700° C., is formed of a nickel-based alloy. The negative influence of oxidation of the component which is induced by the superheated steam is prevented by the alloy which is used, having the following composition (in % by weight): C: ?0.2 Si: ?1.0 Mn: ?1.0 Cr: 22.0-25.0 Co: 15.0-25.0 Mo: ?3.0 Nb: ?2.0 Al: 1.0-3.0 Ti: 2.0-4.0 Fe: ?2.0 Zr: ?0.2 B: ??0.05 Ni: remainder.
    Type: Application
    Filed: October 27, 2008
    Publication date: April 15, 2010
    Inventor: Richard Brendon Scarlin
  • Publication number: 20100080729
    Abstract: A nickel-based alloy suitable for casting gas turbine components having a lower density and basic heat treating process while achieving improved strength is disclosed. Multiple embodiments of the alloy are disclosed capable of providing both directionally-solidified and equiaxed castings. Also disclosed is a method of making a cast and heat treated article utilizing the improved nickel-base alloy.
    Type: Application
    Filed: July 25, 2006
    Publication date: April 1, 2010
    Applicant: Power Systems Manufacturing, LLC
    Inventors: Charles Biondo, J. Page Strohl, Jeffery W. Samuelson, Gerhard E. Fuchs, Stanley T. Wlodek, Ramona T. Wlodek
  • Publication number: 20100080730
    Abstract: A Ni-based superalloy contains 13.1 to 16.0 percent by mass of Cr, 1.0 to 6.8 percent by mass of Co, 3.0 to 3.4 percent by mass of Al, 4.6 to 5.6 percent by mass of Ti, 2.0 to 4.4 percent by mass of Ta, 3.5 to 4.9 percent by mass of W, 0.1 to 0.9 percent by mass of Mo, 0.3 to 1.4 percent by mass of Nb, 0.05 to 0.20 percent by mass of C, and 0.01 to 0.03 percent by mass of B with the remainder being nickel and inevitable impurities. The superalloy excels in corrosion resistance, oxidation resistance, has high strength, and is used in parts of a gas turbine to be used at high temperature. The resulting gas turbine excels in durability.
    Type: Application
    Filed: August 19, 2009
    Publication date: April 1, 2010
    Inventor: Akira YOSHINARI
  • Publication number: 20100047110
    Abstract: A Ni-base superalloy of the present invention essentially includes, by weight %, Co: 9 to 11%, Cr: 9 to 12%, Mo: up to 1%, W: 6 to 9%, Al: 4 to 5%, Ti: 4 to 5%, Nb: up to 1%, Ta: up to 3%, Hf: 0.5 to 2.5%, Re: up to 3%, C: 0.05 to 0.15%, B: 0.005 to 0.015%, Zr: up to 0.05%, and the balance of Ni and inevitable impurities. This alloy, as a component material of an industrial gas turbine, has an excellent resistance to corrosion at high temperatures to deal with low-quality fuel and a resistance to oxidation at high temperatures and high-temperature strength to deal with improvement in thermal efficiency due to high-temperature demands and can ensure a high yield at a casting process.
    Type: Application
    Filed: September 8, 2009
    Publication date: February 25, 2010
    Applicants: Kawasaki Jukogyo Kabushiki Kaisha, Independent Administrative Institution National Institute for Materials Science
    Inventors: Masahiro Sato, Tsuyoshi Takenaka, Seiya Nitta, Toshiharu Kobayashi, Yutaka Koizumi, Hiroshi Harada
  • Publication number: 20100043924
    Abstract: A method for locally heat-treating a gas turbine engine superalloy article to improve resistance to strain-induced fatigue of the article is disclosed. The method comprises providing a gas turbine engine superalloy article having a gamma prime solvus temperature; and locally over aging only a selected portion of the article to locally improve fatigue resistance at the selected portion of the article, wherein the local over age cycle includes heating at about 843° C. for about 3 to 4 hours.
    Type: Application
    Filed: December 18, 2008
    Publication date: February 25, 2010
    Inventor: Jon Raymond Groh
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Publication number: 20100034692
    Abstract: An alloy composition and method by which the incidence of freckling can be reduced in castings produced with properties similar to the René N5 nickel-base superalloy. The casting has a unidirectional crystal structure and a composition consisting of, by weight, 6% to 8% chromium, 6% to 9% cobalt, 0% to 2% molybdenum, 4% to 6% tungsten, 6.4% to 6.9% tantalum, 0% to 2% titanium, 5% to 7% aluminum, 2.7% to 3.0% rhenium, 0.3% to 0.7% haffiium, 0.04% to 0.08% carbon, 0.002% to 0.006% boron, 0% to 0.075% yttrium, 0.002% to 0.004% zirconium, the balance being nickel and incidental impurities.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Applicant: General Electric Company
    Inventors: Ganjiang Feng, Shyh-Chin Huang, Jian Zheng
  • Publication number: 20100028197
    Abstract: The invention provides nickel-based alloys that are useful in the preparation of articles for applications requiring high mechanical and physical properties, such as high strength and high heat stability, while simultaneously reducing the cost of preparation of the alloys. The invention further provides articles, such as turbine wheels, prepared using the inventive alloys.
    Type: Application
    Filed: September 21, 2006
    Publication date: February 4, 2010
    Inventor: Mark Heazle
  • Publication number: 20100008790
    Abstract: A composition of matter comprises, in combination, in weight percent: a largest content of nickel; at least 16.0 percent cobalt; and at least 3.0 percent tantalum. The composition may be used in power metallurgical processes to form turbine engine turbine disks.
    Type: Application
    Filed: March 30, 2005
    Publication date: January 14, 2010
    Inventor: Paul L. Reynolds
  • Publication number: 20090321405
    Abstract: A nickel (Ni), chromium (Cr), cobalt (Co), iron (Fe), molybdenum (Mo), manganese (Mn), aluminum (Al), titanium (Ti), niobium (Nb), silicon (Si) welding alloy, articles made therefrom for use in producing weldments and methods for producing these weldments. The welding alloy contains in % by weight about: 23.5 to 25.5% Cr, 15 to 22% Co, up to 3% Fe, up to 1% Mo, up to 1% Mn, 1.1 to 2.0% Al, 0.8 to 1.8% Ti, 0.8 to 2.2% Nb, 0.05 to 0.28% Si, up to 0.3% Ta, up to 0.3% W, 0.005 to 0.08% C, 0.001 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, up to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 31, 2009
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
  • Publication number: 20090317288
    Abstract: A Ni-base superalloy having a chemical composition comprising Al: 4.5-7.0 wt %, Ta+Nb+Ti: 0.1-4.0 wt %, with Ta being less than 4.0 wt %, Mo: 1.0-8.0 wt %, W: 0.0-10.0 wt %, Re: 2.0-8.0 wt %, Hf: 0.0-1.0 wt %, Cr: 2.0-10.0 wt %, Co: 0.0-15.0 wt %, Ru: 0.0-5.0 wt %, and the balance being Ni and unavoidable impurities, and a method for producing the same are disclosed. The Ni-base superalloy has excellent creep property at high temperature and is suitable for use as a member at high temperature under high stress.
    Type: Application
    Filed: March 16, 2007
    Publication date: December 24, 2009
    Inventors: Tadaharu Yokokawa, Yutaka Koizumi, Hiroshi Harada, Toshiharu Kobayashi
  • Publication number: 20090257908
    Abstract: A high temperature, high strength Ni—Co—Cr alloy possessing essentially fissure-free weldability for long-life service at 538° C. to 816° C. contains in % by weight about: 23.5 to 25.5% Cr, 15-22% Co, 1.1 to 2.0% Al, 1.0 to 1.8 % Ti, 0.95 to 2.2% Nb, less than 1.0% Mo, less than 1.0% Mn, less than 0.3% Si, less than 3% Fe, less than 0.3% Ta, less than 0.3% W, 0.005 to 0.08% C, 0.01 to 0.3% Zr, 0.0008 to 0.006% B, up to 0.05% rare earth metals, 0.005% to 0.025% Mg plus optional Ca and the balance Ni including trace additions and impurities. The strength and stability is assured at 760° C. when the Al/Ti ratio is constrained to between 0.95 and 1.25. Further, the sum of Al+Ti is constrained to between 2.25 and 3.0. The upper limits for Nb and Si are defined by the relationship: (% Nb+0.95)+3.32(% Si)<3.16.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 15, 2009
    Applicant: HUNTINGTON ALLOYS CORPORATION
    Inventors: Brian A. Baker, Gaylord D. Smith, Ronald D. Gollihue
  • Patent number: 7597843
    Abstract: Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance, which consist essentially of chromium in an amount of 3 to 7% by weight, cobalt in an amount of 3 to 15% by weight, tungsten in an amount of 4.5 to 8% by weight, rhenium in an amount of 3.3 to 6% by weight, tantalum in an amount of 4 to 8% by weight, titanium in an amount of 0.8 to 2% by weight, aluminum in an amount of 4.5 to 6.5% by weight, ruthenium in an amount of 0.1 to 6%, hafnium in an amount of 0.01 to 0.2% by weight, molybdenum in an amount of less than 0.5% by weight, carbon in an amount 0.06% by weight or less, boron in an amount of 0.01% by weight or less, zirconium in an amount of 0.01% by weight or less, oxygen in an amount of 0.005% by weight or less, nitrogen in an amount of 0.005% by weight or less and inevitable impurities and the balance being nickel.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: October 6, 2009
    Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20090214379
    Abstract: Disclosed is a single crystal alloy consisting essentially of, by weight, 0.06-0.09% carbon, 0.016-0.035% B, 0.2-0.4% Hf, 0-0.02% Zr, 6.5-8.5% Cr, 0.4-1.0% Mo, 5.5-9.5% W, 1.2-3.1% Re, 8-10% Ta, 0.3-1.0% Nb, 0-0.4% Ti, 4.7-5.4% Al, 0.5-5.0% Co, 0.1-5% Fe, and the balance of Ni and unavoidable impurities. The alloy is free from solidification cracks during casting a large-sized blade of gas turbines, has grain boundary strength sufficient for assuring the reliability during operation, and further has excellent oxidation resistance to a high combustion gas temperature while having excellent high-temperature strength comparable to that of a conventional single crystal alloy.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 27, 2009
    Inventors: Akira Yoshinari, Hideki Tamaki
  • Publication number: 20090185944
    Abstract: Single crystal superalloy compositions and components made from such compositions are provided. One composition consists essentially of, in weight percent, from about 4 to about 7 percent chromium; from about 8 to about 12 percent cobalt; from about 1 to about 2.5 percent molybdenum; from about 3 to about 6 percent tungsten; from about 2 to about 4 percent rhenium; from about 5 to about 7 percent aluminum; from about 0 to about 1.5 percent titanium; from about 6 to about 10 percent tantalum; from about 0.08 to about 1.2 percent hafnium; no more than about 0.0002 percent sulfur; no more than about 0.007 percent zirconium; and the balance nickel.
    Type: Application
    Filed: January 21, 2008
    Publication date: July 23, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventor: Yiping Hu
  • Patent number: H2245
    Abstract: A precipitation hardenable nickel base alloy that provides a novel combination of elevated temperature strength, ductility, and reduced notch sensitivity at temperatures up to about 1300° F. is described. The alloy contains, in weight percent, about Carbon 0.10 max. Manganese 0.35 max. Silicon 0.2-0.7 Phosphorus 0.03 max. Sulfur 0.015 max. Chromium 12-20 Molybdenum 4 max. Tungsten 6 max. Cobalt 5-12 Iron 14 max. Titanium 0.4-1.4 Aluminum 0.6-2.6 Niobium 3-7 Boron 0.003-0.015 the balance being nickel and usual impurities. An article made from the alloy and a method of making the alloy are also disclosed.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: August 3, 2010
    Assignee: CRS Holdings, Inc.
    Inventors: Karl A. Heck, Richard B. Frank