Molybdenum Or Tungsten Containing Patents (Class 420/448)
-
Patent number: 7547188Abstract: A Ni-based alloy member has resistance against grain boundary fracture, fatigue strength, and oxidation resistance at temperatures near 1000° C. or higher. The Ni-based alloy member includes a non-repaired region made of a Ni-based alloy base and a region repaired by welding, which is formed on the non-repaired region and which is made of a buildup-welded layer, the buildup-welded layer being made of a Ni-based alloy containing, by weight, 15% or less of Co, 18-22% of Cr, 0.8-2.0% of Al, 5.0% or less of Ta, 0.5% or less of Mo, 0.5% or less of Ti, 13-18% of W, 0.05-0.13% of C, 0.06% or less of Zr, 0.015% or less of B, 0.4-1.2% of Mn, and 0.1-0.3% of Si, the balance of the alloy being preferably essentially made of Ni.Type: GrantFiled: February 17, 2006Date of Patent: June 16, 2009Assignee: Hitachi, Ltd.Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Katsumi Tanaka
-
Publication number: 20090123328Abstract: A wire for welding Ni-based heat resistant alloy, comprising: a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.0001 to 0.020%, C: 0.03 to 0.15%, and a balance of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.004% or less, and P: 0.010% or less, wherein the wire has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in the matrix.Type: ApplicationFiled: April 16, 2007Publication date: May 14, 2009Applicants: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries , Ltd.Inventors: Takanori Matsui, Komei Kato, Takuya Murai, Yoshitaka Uemura, Daisuke Yoshida, Ikuo Okada
-
Publication number: 20090087338Abstract: A nickel base superalloy consisting of 20 to 40 wt % cobalt, 10 to 15 wt % chromium, 3 to 6 wt % molybdenum, 0 to 5 wt % tungsten, 2.5 to 4 wt % aluminium, 3.4 to 5 wt % titanium, 1.35 to 2.5 wt % tantalum, 0 to 2 wt % niobium, 0.5 to 1 wt % hafnium, 0 to 0.1 wt % zirconium, 0.01 to 0.05 wt % carbon, 0.01 to 0.05 wt % boron, 0 to 2 wt % silicon and the balance nickel plus incidental impurities. The gamma prime phase comprises (Ni/Co)3 (Al/Ti/Ta).Type: ApplicationFiled: September 4, 2008Publication date: April 2, 2009Applicant: ROLLS-ROYCE PLCInventors: Robert J. Mitchell, Mark C. Hardy
-
Publication number: 20090074584Abstract: A Nickel-based alloy for a turbine rotor of a steam turbine contains C: 0.01 to 0.15, Cr: 18 to 28, Co: 10 to 15, Mo: 8 to 12, Al: 1.5 to 2, Ti: 0.1 to 0.6, B: 0.001 to 0.006, Ta: 0.1 to 0.7 in % by weight, and the remaining portion is composed of Ni and unavoidable impurities. The Nickel-based alloy is composed of the above-stated chemical composition range, and thereby, a mechanical strength improves while maintaining forgeability as same as a conventional steel.Type: ApplicationFiled: September 15, 2008Publication date: March 19, 2009Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Kuniyoshi Nemoto, Kiyoshi Imai, Yomei Yoshioka, Masayuki Yamada, Reki Takaku, Takeo Suga, Masafumi Fukuda, Kenichi Okuno, Akihiro Takakuwa
-
Patent number: 7498087Abstract: Vapor turbine operating with geothermal vapors containing corrosive agents such as chlorides and/or sulfides in particular. The turbine comprises a series of rotor blades made of a nickel alloy containing a quantity of nickel ranging from 55% to 59% by weight to avoid the washing of the geothermal vapors, maintaining a high useful life of the series of rotor blades and vapor turbine.Type: GrantFiled: December 20, 2005Date of Patent: March 3, 2009Assignee: Nuovo Pignone S.p.A.Inventors: Carlo Cortese, Paolo Bendinelli, Marco De Iaco, Lorenzo Cosi, Marco Anselmi
-
Patent number: 7491275Abstract: Embodiments of the present invention relate to nickel-base alloys, and in particular 718-type nickel-base alloys, having a desired microstructure that is predominantly strengthened by ??-phase precipitates and comprises an amount of at least one grain boundary precipitate. Other embodiments of the present invention relate to methods of heat treating nickel-base alloys, and in particular 718-type nickel-base alloys, to develop a desired microstructure that can impart thermally stable mechanical properties. Articles of manufacture using the nickel-base alloys and methods of heat treating nickel-base alloys according to embodiments of the present invention are also disclosed.Type: GrantFiled: October 6, 2006Date of Patent: February 17, 2009Assignee: ATI Properties, Inc.Inventors: Wei-Di Cao, Richard L. Kennedy
-
Patent number: 7484926Abstract: A steam turbine power plant which is provided with an extra-high-pressure turbine 100, a high-pressure turbine 200, an intermediate-pressure turbine 300 and a low-pressure turbine 400, and has high-temperature steam of 650° C. or more introduced into the extra-high-pressure turbine 100, wherein the extra-high-pressure turbine 100 has an outer casing cooling unit which cools an outer casing 111, and a turbine rotor 112, an inner casing 110 and a nozzle box 115 of the extra-high-pressure turbine 100 are formed of an Ni base heat-resisting alloy, and the outer casing 111 is formed of a ferrite-based alloy.Type: GrantFiled: March 15, 2006Date of Patent: February 3, 2009Assignee: Kabushiki Kaisha ToshibaInventors: Takeo Suga, Ryuichi Ishii, Takeo Takahashi, Masafumi Fukuda
-
Patent number: 7481970Abstract: A low cost, economical and less resource-consuming heat resistant alloy for use as material of engine valve is disclosed, while the alloy has excellent mechanical properties at high temperature and excellent toughness after heated for a long time that conventional heat resistant alloys have not had. The alloy consists essentially of, in mass percent, C of 0.01 to 0.15%, Si of 0.01 to 0.8%, Mn of 0.01 to 0.8, Cr of 14 to 17%, Mo of more than 3.0% but equal to or less than 5.0%, Al of 1.6 to 2.5%, Ti of 1.5 to 3.0%, Nb or Nb+Ta of 0.5 to 2.0%, Ni of 50 to 60%, B of 0.001 to 0.015%, at least one of Mg of 0.001 to 0.015% and Ca of 0.001 to 0.015%, and the balance being Fe, wherein value A defined by 0.293[Ni]?0.513[Cr]?1.814[Mo] is 2.0 to 5.8, value B defined by [Al]/([Al]+[Ti]+[Nb]+[Ta]) is 0.45 to 0.65, and value C defined by [Al]+[Ti]+[Nb]+[Ta] is 6.2 to 7.6, wherein brackets mean atomic % of each element in the alloy.Type: GrantFiled: May 23, 2005Date of Patent: January 27, 2009Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.Inventors: Akihiro Toji, Toshihiro Uehara, Katsuhiko Tominaga, Shoichi Nakaya, Katsuaki Sato
-
Publication number: 20080317622Abstract: The invention relates to the field of superalloys coated in a thermal barrier. On a monocrystalline superalloy having the following composition by weight: 3.5% to 7.5% Cr, 0 to 1.5% Mo, 1.5% to 5.5% Re, 2.5% to 5.5% Ru, 3.5% to 8.5% W, 5% to 6.5% Al, 0 to 2.5% Ti, 4.5% to 9% Ta, 0.08% to 0.12% Hf, 0.08% to 0.12% Si, the balance to 100% being constituted by Ni and any impurities, a stabilized zirconia is deposited directly, the zirconia being stabilized with at least one oxide of an element selected from the group constituted by rare earths, or with a combination of a tantalum oxide and at least one rare earth oxide, or with a combination of a niobium oxide and at least one rare earth oxide.Type: ApplicationFiled: March 24, 2008Publication date: December 25, 2008Applicant: SNECMAInventors: Florent Didier Andre Bourlier, Kristell Le Biavant
-
Publication number: 20080302449Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.Type: ApplicationFiled: August 4, 2008Publication date: December 11, 2008Inventors: Tomohisa ARAI, Takashi Rokutanda, Tadaharu Kido
-
Publication number: 20080260571Abstract: A nickel-based superalloy that forms a chromia scale in an oxidizing environment is disclosed. The alloy provides good oxidation resistance at temperatures below 900° C. in a dry or moist atmosphere. The superalloy is well-suited for components of gas or steam turbine engines including blades and vanes.Type: ApplicationFiled: April 19, 2007Publication date: October 23, 2008Inventors: Douglas J. Arrell, Allister W. James
-
Publication number: 20080253923Abstract: A nickel-based superalloy that forms a chromia scale in an oxidizing environment is disclosed. The alloy provides good oxidation resistance at temperatures below 900° C. in a dry or moist atmosphere. The superalloy is suited for components of gas or steam turbine engines including blades and vanes.Type: ApplicationFiled: April 10, 2007Publication date: October 16, 2008Inventors: Douglas J. Arrell, Allister W. James
-
Publication number: 20080240972Abstract: A low-density nickel-base superalloy includes the following elements (percent by weight): 7-13% Chromium, 0-16% Cobalt, 2-5% Titanium, 4.5-7% Aluminium, 0-5% Tantalum, 0-2% Hafnium, 0-3% Tungsten, 0-2% Vanadium, 0-5% Molybdenum, 0.06-0.12% Carbon, 0.01-0.03% Boron, 0.005-0.02% Zirconium, nickel and residual impurities use and to the process for obtaining it. The superalloy has advantageous uses and is obtained by processing.Type: ApplicationFiled: November 30, 2007Publication date: October 2, 2008Applicant: INDUSTRIA DE TURBO PROPULSORES, S.A.Inventors: Inaki Madariaga Rodriguez, Inigo Hernandez Aguirre, Amaia Subinas Rapp, Koldo Estolaza Zamora
-
Publication number: 20080206089Abstract: The present application relates to an alloy for use at high temperature. The invention is characterized in that the alloy consists principally of Ni, Cr and Fe and in that the alloy has a principal composition such that the levels of the elements Fe, Si, C, Nb and Mo lie within the following intervals, given in percentage by weight: Fe 5-13 Si 1-3 C <0.1 Nb <0.2 Mo <1.0 and in that Ni comprises the balance, while its level does not exceed 69% and in that the level of Cr is greater than Cr=15% and in that it is less than the lower of the two values Cr=5*Si?2.5*Fe +42.Type: ApplicationFiled: June 16, 2006Publication date: August 28, 2008Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventor: Rikard Norling
-
Patent number: 7416618Abstract: A Ni—Fe—Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb-7.75 C)/(Al+Ti)=0.5-9 in order to obtain the desired high strength by the formation of ?? and ?? phases. The alloy has a minimum of 1% by weight ?? phase dispersed in its matrix for strength purposes and a total weight percent of ??+?? phases being between 10 and 30.Type: GrantFiled: November 7, 2005Date of Patent: August 26, 2008Assignee: Huntington Alloys CorporationInventors: Sarwan K. Mannan, Brett Clark Puckett
-
Publication number: 20080166258Abstract: A heat-resistant alloy spring is made of a Ni-based alloy material comprising in weight %: not more than 0.1% C; not more than 1.0% Si; not more than 1.50% Mn; 13.0 to 25.0% Cr; 1.5 to 7.0% Mo; 0.5 to 4.0% Ti; 0.1 to 3.0 % Al; {at least one optional element selected from the group consisting of 0.15 to 2.50% w, 0.001 to 0.020% B, 0.01 to 0.3% Zr, 0.30 to 6.00% Nb, 5.0 to 18.0% Co, and 0.03 to 2.00% Cu}; the balance being essentially Ni; and incidental impurities. The Ni-based alloy material is provided in its crystal structure with gamma prime phase [Ni3(Al, Ti)] or gamma prime phase [Ni3(Al, Ti, Nb)]. The gamma prime phase has an average grain diameter (d) of not less than 25 nanometers, and a hardness-diameter ratio (Hv/d) of a Vickers hardness Hv of a position at a depth of one-fourth of the entire thickness or the wire diameter from a surface of the Ni-based alloy material toward its center and the average grain diameter d(nanometer) is 5 to 25.Type: ApplicationFiled: September 24, 2007Publication date: July 10, 2008Applicants: Nippon Seisen Co., Ltd., Chuo Spring Co., Ltd.Inventors: Yoshinori Tanimoto, Naoyuki Kawahata, Shoji Ichikawa, Hiroyuki Shiga
-
Publication number: 20080121629Abstract: A Ni—Cr—Fe alloy in the form of a weld deposit, a welding electrode and flux and a method of welding utilizing the Ni—Cr—Fe alloy. The alloy comprises in % by weight: 27-31 Cr, 6-11 Fe, 0.01-0.04 C, 1.5-4 Mn, 1-3 Nb, up to 3 Ta, 1-3 (Nb+Ta), 0.01-0.50 Ti, 0.0003-0.02 Zr, 0.0005-0.004 B, <0.50 Si, 0.50 max Al, <0.50 Cu, <1.0 W, <1.0 Mo, <0.12 Co, <0.015 S, <0.015 P, 0.01 max Mg, balance Ni plus incidental additions and impurities. The welding method includes welding using a short arc wherein the distance from the electrode tip to the weld deposit is maintained at less than 0.125 inch.Type: ApplicationFiled: January 25, 2006Publication date: May 29, 2008Applicant: HUNTINGTON ALLOYS CORPORATIONInventor: Samuel D. Kiser
-
Publication number: 20080008618Abstract: A Ni-base superalloy of the present invention essentially includes, by weight %, Co: 9 to 11%, Cr: 9 to 12%, Mo: up to 1%, W: 6 to 9%, Al: 4 to 5%, Ti: 4 to 5%, Nb: up to 1%, Ta: up to 3%, Hf: 0.5 to 2.5%, Re: up to 3%, C: 0.05 to 0.15%, B: 0.005 to 0.015%, Zr: up to 0.05%, and the balance of Ni and inevitable impurities. This alloy, as a component material of an industrial gas turbine, has an excellent resistance to corrosion at high temperatures to deal with low-quality fuel and a resistance to oxidation at high temperatures and high-temperature strength to deal with improvement in thermal efficiency due to high-temperature demands and can ensure a high yield at a casting process.Type: ApplicationFiled: December 21, 2004Publication date: January 10, 2008Applicants: Kawasaki Jukogyo Kabushiki Kaisha, Independent Administrative Institution National Institute for Materials ScienceInventors: Masahiro Sato, Tsuyoshi Takenaka, Seiya Nitta, Toshiharu Kobayashi, Yutaka Koizumi, Hiroshi Harada
-
Publication number: 20070292304Abstract: Nickel base alloys for use in applications for highly corrosive and abrasive environments. The alloys contain a large volume fraction of metallic carbide particles that provide wear and abrasion resistance. The alloys are produced by induction melting and gas atomization to form alloy powder particles. The particles are consolidated by hot isostatic pressing to form a solid article.Type: ApplicationFiled: May 23, 2007Publication date: December 20, 2007Inventor: Andrzej L. Wojcieszynski
-
Patent number: 7306682Abstract: An object of this invention is to provide a single-crystal nickel-based superalloy having high creep rupture strength at high temperatures and excel at corrosion resistance and oxidation resistance at high temperatures. Single-crystal nickel-based superalloys with high temperature strength, hot corrosion resistance and oxidation resistance comprising by weight, 3.0 to 7.0% Cr, 9.5 to 15.0% Co, 4.5 to 8.0% W, 3.3 to 6.0% Re, 4.0 to 8.0% Ta, 0.8 to 2.0% Ti, 4.5 to 6.5% Al, 0.01 to 0.2% Hf, less than 0.5% Mo, 0.01% or less C, 0.005% or less B, 0.01% or less Zr, 0.005% or less O, 0.005% or less N, and balance substantially Ni.Type: GrantFiled: August 10, 2004Date of Patent: December 11, 2007Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc., Masahiko Morinaga, Yoshinori MurataInventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
-
Publication number: 20070221298Abstract: The present invention provides a Ni-based super alloy including, by mass %, C: 0.01 to 0.15%; Si: 1% or less; Mn: 1% or less; P: 0.02% or less; S: 0.01% or less; Co: less than 0.10%; Cr: 16 to 22%; Mo: 4 to 10%; W: 5% or less; Al: 1.2 to 2.5%; Ti: 2.4 to 4%; B: 0.001 to 0.05%; Zr: 0.01 to 0.5%; Fe: 1% or less; and a balance of Ni and inevitable impurities.Type: ApplicationFiled: March 20, 2007Publication date: September 27, 2007Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHAInventors: Seiji Kurata, Shigeki Ueta, Tetsuya Shimizu
-
Patent number: 7261783Abstract: A nickel-base superalloy article for use in turbines has increased creep resistance and lower density. The superalloy article includes, as measured in % by weight, 6.0-12.0% Mo, 5.5-6.5% Al, 3.0-7.0% Ta, 0-15% Co, 2.0-6.0% Cr, 1.0-4.0% Re, 0-1.5% W, 0-1.5% Ru, 0-2.0%-Ti, 0-3.0% Nb, 0-0.2% Hf, 0-0.02% Y, 0.001-0.005% B, 0.01-0.04% C, and a remainder including nickel plus impurities.Type: GrantFiled: September 22, 2004Date of Patent: August 28, 2007Assignee: The United States of America as Represented by the Administrator of NASAInventors: Rebecca A. MacKay, Timothy P. Gabb, James L Smialek, Michael V. Nathal
-
Patent number: 7220326Abstract: A family of castable and weldable nickel-base alloys that exhibit a desirable balance of strength and resistance to corrosion and oxidation suitable for gas turbine engine applications. A first alloy consists essentially of, by weight, 1 8% to 20% cobalt, 22.2% to 22.8% chromium, 1.8% to 2.2% tungsten, greater than 1.5% to 2.3% aluminum, 1.6% to 2.4% titanium, where the sum of aluminum and titanium is 2.8% to 4.4%, 0.7% to 0.9% columbium, 0.9% to 1.9% tantalum, 0.003% to 0.009% boron, 0.002% to 0.02% zirconium, 0.05% to 0.10% carbon, with the balance essentially nickel and incidental impurities. A second alloy consists essentially of, by weight, 5% to 8% cobalt, 22.2% to 22.8% chromium, 1.8% to 2.2% tungsten, 1.2% to 2.3% aluminum, 1.6% to 2.4% titanium, where the sum of aluminum and titanium is 2.8% to 4.4%, 0.7% to 0.9% columbium, 0.9% to 1.9% tantalum, 0.003% to 0.009% boron, 0.002% to 0.02% zirconium, 0.05% to 0.10% carbon, with the balance essentially nickel and incidental impurities.Type: GrantFiled: September 26, 2002Date of Patent: May 22, 2007Assignee: General Electric CompanyInventors: Cyril Gerard Beck, John Herbert Wood, Stephen Daniel Graham, Warren Tan King
-
Patent number: 7169241Abstract: A Ni-based alloy hardened with the ?? phase, which is able to exhibit not only superior strength at high temperatures, but also excellent hot corrosion resistance and oxidation resistance at high temperatures in spite of containing no Re or reducing the amount of Re. The Ni-based superalloy contains, by weight, C: 0.01 to 0.5%, B: 0.01 to 0.04%, Hf: 0.1 to 2.5%, Co: 0.8 to 15%, Ta: more than 0% but less than 8.5%, Cr: 1.5 to 16%, Mo: more than 0% but less than 1.0%, W: 5 to 14%, Ti: 0.1 to 4.75%, Al: 2.5 to 7%, Nb: more than 0% but less than 4%, V: 0 to less than 1.0%, Zr: 0 to less than 0.1%, Re: 0 to less than 9%, at least one of platinum group elements: 0 to less than 0.5% in total, at least one of rare earth elements: 0 to less than 0.1% in total, and the rest being Ni except for unavoidable impurities.Type: GrantFiled: March 19, 2004Date of Patent: January 30, 2007Assignee: Hitachi, Ltd.Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Tsuyoshi Takano, Hiroyuki Doi
-
Patent number: 7165325Abstract: A welding material composition, which is a nickel based super alloy having ?? phase and chromium carbides precipitated. The composition comprising 18 to 25% by weight of Co, 15 to 20% by weight of Cr, 1.5 to 5.5% by weight of Al, 5 to 14% by weight of W, 0.05 to 0.15% by weight of C, 0 to 0.02% by weight of B, 0 to 1% by weight of at least one of Ta, Nb, Ti, Mo, Re and Fe, 0 to 0.5% by weight of at least one of V, Zr, rare earth elements and Y, 0 to 1% by weight of Mn, 0 to 0.5% by weight of Si, and the balance being Ni.Type: GrantFiled: August 7, 2003Date of Patent: January 23, 2007Assignee: Hitachi, Ltd.Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Hideaki Ishii
-
Patent number: 7160400Abstract: A low thermal expansion Ni-base superalloy contains, by weight % (hereinafter the same as long as not particularly defined) C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5 to 20%; at least one of Mo, W and Re of Mo+½(W+Re) of 17 (exclusive) to 25%; Al: 0.2 to 2%; Ti: 0.5 to 4.5%; Fe of 10% or less; at least one of B: 0.02% and Zr: 0.2% or less; a remainder of Ni and inevitable impurities; wherein the atomic % of Al+Ti is 2.5 to 7.0.Type: GrantFiled: September 27, 2002Date of Patent: January 9, 2007Assignees: Daido Tokushuko Kabushiki Kaisha, Mitsubishi Heavy Industries, Ltd.Inventors: Ryotaro Magoshi, Hisataka Kawai, Yoshikuni Kadoya, Ryuichi Yamamoto, Toshiharu Noda, Susumu Isobe, Michio Okabe
-
Patent number: 7115175Abstract: The present invention relates to an improved single crystal nickel base superalloy and a process for making same. The single crystal nickel base superalloy has a composition comprising 3 to 12 wt % chromium, up to 3 wt % molybdenum, 3 to 10 wt % tungsten, up to 5 wt % rhenium, 6 to 12 wt % tantalum, 4 to 7 wt % aluminum, up to 15 wt % cobalt, up to 0.05 wt % carbon, up to 0.02 wt % boron, up to 0.1 wt % zirconium, up to 0.8 wt % hafnium, up to 2.0 wt % niobium, up to 1.0 wt % vanadium, up to 0.7 wt % titanium, up to 10 wt % of at least one element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, and mixtures thereof, and the balance essentially nickel. The single crystal nickel base superalloy has a microstructure which is pore-free and eutectic ?–?? free and which has a gamma prime morphology with a bimodal ?? distribution.Type: GrantFiled: July 19, 2004Date of Patent: October 3, 2006Assignee: United Technologies CorporationInventors: Daniel P. DeLuca, Charles M. Biondo
-
Patent number: 7017793Abstract: In accordance with the present invention, a process for repairing metal workpieces, such as turbine engine components, is provided. The process comprises the steps of forming a braze paste containing a first nickel base alloy material containing boron and chromium and a second nickel base alloy material containing chromium and cobalt, applying the brazing paste to an area of the metal workpiece containing at least one crack, and subjecting the workpiece and the brazing paste to a brazing cycle by heating the brazing paste and the workpiece, preferably to a temperature in the range of from 2000 to 2200 degrees Fahrenheit. During the brazing cycle, the brazing paste flows into and fills the at least one crack and thus repairs the metal workpiece.Type: GrantFiled: June 26, 2003Date of Patent: March 28, 2006Assignee: United Technologies CorporationInventor: Monika D. Kinstler
-
Patent number: 7014723Abstract: Castable and weldable nickel-base alloys that exhibit a desirable balance of strength and resistance to corrosion and oxidation suitable for gas turbine engine applications. The alloy contains, by weight, about 10% to about 25% cobalt, about 20% to about 28% chromium, about 1% to about 3% tungsten, about 1.6% to about 3.8% aluminum, about 0.4% to about 1.5% titanium, where the sum of aluminum and titanium is about 1.8% to about 5.0%, about 0.5% to about 1.5% columbium, 0.5% to about 1.5% tantalum, about 0.001% to about 0.025% boron, about 0.05% maximum zirconium, about 0.02% to about 0.15% carbon, with the balance essentially nickel and incidental impurities. The alloy may more preferably contain about 2.8% to about 3.8% aluminum where the sum of aluminum and titanium is about 3.0% to about 5.0%, or about 1.6% to about 2.8% aluminum, where the sum of aluminum and titanium is about 1.8% to about 4.3%.Type: GrantFiled: September 26, 2002Date of Patent: March 21, 2006Assignee: General Electric CompanyInventors: Cyril Gerard Beck, John Herbert Wood, Stephen Daniel Graham
-
Patent number: 7011721Abstract: A nickel-base superalloy that is useful for making single crystal castings exhibiting outstanding stress-rupture properties, creep-rupture properties, and an increased tolerance for grain defects contains, in percentages by weight, from about 4.7% to about 4.9% chromium, (Cr), from about 9% to about 10% cobalt (Co), from about 0.6% to about 0.8% molybdenum (Mo), from about 8.4% to about 8.8% tungsten (W), from about 4.3% to about 4.8% tantalum (Ta), from about 0.6% to about 0.8% titanium (Ti), from about 5.6% to about 5.8% aluminum (Al), from about 2.8% to about 3.1% rhenium (Re), from about 1.1% to about 1.5% hafnium (Hf), from about 0.06% to about 0.08% carbon (C), from about 0.012% to about 0.020% boron (B), from about 0.004% to about 0.010% zirconium (Zr), the balance being nickel and incidental impurities.Type: GrantFiled: July 12, 2002Date of Patent: March 14, 2006Assignee: Cannon-Muskegon CorporationInventors: Kenneth Harris, Jacqueline B. Wahl
-
Patent number: 7005015Abstract: A high-temperature component made of a nickel super-alloy has the following composition in wt %: 11–13% of Cr, 3–5% of W, 0.5–2.5% of Mo, 3–5% of Al, 3–5% of Ti, 3–7% of Ta, 1–5% of Re and a remainder formed of nickel. A corresponding component which is also provided is formed of an alloy having a composition essentially similar to that mentioned above, but with the rhenium proportion replaced with 0.1–5 wt % of ruthenium.Type: GrantFiled: January 29, 2002Date of Patent: February 28, 2006Assignee: Seimens AktiengesellschaftInventors: Ralf Bürgel, Winfried Esser, Jörn Grossmann, Wolfgang Hermann, Hael Mughrabi, Jürgen Preuhs, Florian Pyczak, Alfred Scholz, Robert Singer, Andreas Volek
-
Patent number: 6997994Abstract: A solution treatment is firstly performed for a non-heat-treated Ni based alloy having a composition equivalent to that of Inconel 718 (registered trademark). Subsequently, a primary aging treatment is applied by holding the Ni based alloy at 610 to 660° C. for 5 to 10 hours. After that, a secondary aging treatment is performed by holding the Ni based alloy at 710 to 760° C. for 5 to 10 hours. There are 700 or more precipitates per ?m2, in which each precipitate has a longer diameter of not less than 0.5 nm, in a metal microstructure of the Ni based alloy. Some of the precipitates are large precipitates having average diameters of 25 nm to 1 ?m. There are 10 or more large precipitates per ?m2. A forging die is produced with the Ni based alloy.Type: GrantFiled: September 17, 2002Date of Patent: February 14, 2006Assignee: Honda Giken Kogyo Kabushiki KaishaInventor: Koji Sudo
-
Patent number: 6974508Abstract: A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0–4.0 Al, 0.02–0.04 B, 0.02–0.05 C, 12.0–14.0 Cr, 19.0–22.0 Co, 2.0–3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta, 3.0–4.0 Ti, 4.1 to 5.0 W, 0.03–0.06 Zr, and balance essentially Ni aid incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures.Type: GrantFiled: October 29, 2002Date of Patent: December 13, 2005Assignee: The United States of America as represented by the United States National Aeronautics and Space AdministrationInventors: Timothy P. Gabb, John Gayda, Ignacy Telesman, Pete T. Kantzos
-
Patent number: 6968991Abstract: A diffusion bond mixture paint and method for repairing a single-crystal superalloy article that minimizes the amount of braze alloy applied to the article. The amount of boron and eutectic brittle borides of the wide gap brazing processes is minimized, resulting in a more robust repair. The braze paint includes an alloy powder mixture, a binder, and a carrier to thin the paint.Type: GrantFiled: July 3, 2002Date of Patent: November 29, 2005Assignee: Honeywell International, Inc.Inventors: Federico Renteria, William F Hehmann
-
Patent number: 6969431Abstract: A nickel based superalloy composition comprising 16.0 to 20.0 weight % Co, 9.5 to 11.5 weight % Cr, 1.8 to 3.0 weight % Mo, 4.3 to 6.0 weight % W, 3.0 to 4.2 weight % Al, 3.0 to 4.4 weight % Ti, 1.0 to 2.0 weight % Ta, 0.5 to 1.5 weight % Nb, 0.01 to 0.05 weight % C, 0.01 to 0.04 weight % B, and 0.04 to 0.15 weight % Zr, balance Ni.Type: GrantFiled: August 29, 2003Date of Patent: November 29, 2005Assignee: Honeywell International, Inc.Inventors: Andrew F. Hieber, Howard F. Merrick
-
Patent number: 6936116Abstract: A nickel-based alloy for producing, by casting, components which have solidified in single crystal form, contains rhenium and tungsten, as well as aluminium, chromium and cobalt. The rhenium content is at least 2.3% by weight, and the weight ratio of the tungsten content to the rhenium content is at least 1.1 to at most 1.6.Type: GrantFiled: January 10, 2002Date of Patent: August 30, 2005Assignee: MTU Aero Engines GmbHInventors: Uwe Glatzel, Thomas Mack, Silke Woellmer, Jürgen Wortmann
-
Patent number: 6926778Abstract: An austenitic stainless steel suited for ultra supercritical boilers, which consists of C: 0.03-0.12%, Si: 0.1-1%, Mn: 0.1-2%, Cr: not less than 20% but less than 28%, Ni: more than 35% but not more than 50%, W: 4-10%, Ti: 0.01-0.3%, Nb: 0.01-1%, sol. Al: 0.0005-0.04%, B: 0.0005-0.01%, and the balance Fe and impurities; and also characterized by the impurities whose contents are restricted to P: not more than 0.04%, S: not more than 0.010%, Mo: less than 0.5%, N: less than 0.02%, and O (oxygen): not more than 0.005%. Heat resistant pressurized parts excellent in thermal fatigue properties and structural stability at high temperatures, which have a coarse grain whose grain size number is 6 or less, and whose mixed grain ratio is 10% or less.Type: GrantFiled: April 16, 2003Date of Patent: August 9, 2005Assignee: Sumitomo Metal Industries, Ltd.Inventors: Atsuro Iseda, Hiroyuki Semba
-
Patent number: 6921442Abstract: The present invention relates to a Ni base alloy having sufficient strength at high temperatures and high corrosion resistance at high temperatures in a high-temperature composite corrosive environment in which chlorination or sulfidation occurs simultaneously with high-temperature oxidation, without excessive cooling or surface protection. According to the present invention, a Ni base alloy having high-temperature strength and corrosion resistance includes Cr in a range of from 25 to 40 weight %, Al in a range of from 1.5 to 2.5 weight %, C in a range of from 0.1 to 0.5 weight %, W of 15 weight % or less, Mn of 2.0 weight % or less, Si in a range of from 0.3 to 6 weight %, Fe of 5% or less, and Ni of rest except inevitable impurities. When strength at high temperatures is allowed to be small, W is in a range of from 0 to 8%, and Si is in a range of from 0.3 to 1% or from 1 to 6%. In order to enhance strength at high temperatures, W is in a range of from 8 to 15, and Si is in a range of from 0.Type: GrantFiled: October 24, 2001Date of Patent: July 26, 2005Assignees: Ebara Corporation, Daido Tokushuko Kabushiki KaishaInventors: Manabu Noguchi, Kei Matsuoka, Hiroshi Yakuwa, Akira Uchino, Hideyuki Sakamoto, Michio Okabe, Yoshiyuki Sawada, Shigeki Ueta
-
Patent number: 6919042Abstract: The present invention relates to a metallic coating to be deposited on gas turbine engine components. The metallic coating comprises up to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.1 to 1.0 wt % yttrium, up to 0.6 wt % hafnium, up to 0.3 wt % silicon, 3.0 to 10 wt % tantalum, up to 9.0 wt % tungsten, 1.0 to 6.0 wt % rhenium, up to 10 wt % molybdenum, and the balance nickel.Type: GrantFiled: May 7, 2002Date of Patent: July 19, 2005Assignee: United Technologies CorporationInventors: Russell Albert Beers, Allan A. Noetzel, Abdus Khan
-
Patent number: 6905559Abstract: A composition of matter is about 1 to about 3 percent rhenium, from about 6 to about 9 percent aluminum, from 0 to about 0.5 percent titanium, from about 4 to about 6 percent tantalum, from about 12.5 to about 15 percent chromium, from about 3 to about 10 percent cobalt, from about 2 to about 5 percent tungsten, from 0 to about 0.2 percent hafnium, from 0 to about 1 percent silicon, from 0 to about 0.25 percent molybdenum, from 0 to about 0.25 percent niobium, balance nickel and minor elements. The composition is preferably made into a substantially single crystal article, such as a component of a gas turbine engine.Type: GrantFiled: December 6, 2002Date of Patent: June 14, 2005Assignee: General Electric CompanyInventors: Kevin Swayne O'Hara, William Scott Walston, Charles Gitahi Mukira, Melvin Robert Jackson
-
Patent number: 6902633Abstract: A nickel-base alloy consists of, by weight, about 15.0 to about 17.0% chromium, about 7.0 to about 10.0% cobalt, about 1.0 to about 2.5% molybdenum, about 2.0 to about 3.2% tungsten, about 0.6 to about 2.5% columbium, less than 1.5% tantalum, about 3.0 to about 3.9% aluminum, about 3.0 to about 3.9% titanium, about 0.005 to about 0.060% zirconium, about 0.005 to about 0.030% boron, about 0.07 to about 0.15% carbon, the balance nickel and impurities. Preferably, columbium is present in an amount greater than tantalum. Tantalum can be essentially absent from the alloy, i.e., only at impurity levels.Type: GrantFiled: May 9, 2003Date of Patent: June 7, 2005Assignee: General Electric CompanyInventors: Warren Tan King, John Herbert Wood, Gangjigang Feng
-
Patent number: 6890370Abstract: A nickel base super alloy composition wherein the ratio of molybdenum to tungsten or to the sum of tungsten and rhenium, Mo W ? ? ? o ? ? ? r , Mo W + Re Is in the range of about 0.25 to about 0.5 weight percent.Type: GrantFiled: July 30, 2002Date of Patent: May 10, 2005Assignee: Honeywell International Inc.Inventors: Howard Merrick, Raymond C. Benn, Prabir R. Bhowal
-
Patent number: 6866727Abstract: A nickel based superalloy composition comprising about 16.5 to about 20.5 weight % Co, about 9.5 to about 12.5 weight % Cr, about 1.8 to about 3.2 weight % Mo, about 4.25 to about 6.0 weight % W, about 3.0 to about 4.2 weight % Al, about 3.0 to about 4.4 weight % Ti, about 1.0 to about 2.0 weight % Ta, about 0.6 to about 1.8 weight % Nb, about 0.01 to about 0.08 weight % C, about 0.01 to about 0.06 weight % B, and about 0.04 to about 0.15 weight % Zr, balance Ni.Type: GrantFiled: December 19, 2003Date of Patent: March 15, 2005Assignee: Honeywell International, Inc.Inventors: Andrew F. Hieber, Howard F. Merrick
-
Patent number: 6860948Abstract: A nickel-chromium-molybdenum alloy capable of being age hardened for improved strength while maintaining high corrosion resistance contains in weight percent 19.5 to 22 chromium, 15 to 17.5 molybdenum, up to 3 iron, up to 1.5 manganese, up to 0.5 aluminum, up to 0.02 carbon, up to 0.015 boron, up to 0.5 silicon, up to 1.5 tungsten and up to 0.5 of each of hafnium, tantalum and zirconium, with a balance of nickel and impurities. Certain alloying elements must be present in amounts according to an equation here disclosed.Type: GrantFiled: September 5, 2003Date of Patent: March 1, 2005Assignee: Haynes International, Inc.Inventor: Lee M. Pike, Jr.
-
Publication number: 20040229072Abstract: Nickel base superalloy consisting essentially of, in weight %, about 3% to about 12% Cr, up to about 15% Co, up to about 3% Mo, about 3% to about 10% W, up to about 6% Re, about 5% to about 7% Al, up to about 2% Ti, up to about 1% Fe, up to about 2% Nb, about 3% to about 12% Ta, up to about 0.07% C, about 0.030% to about 0.80% Hf, up to about 0.10% Zr, up to about 0.02% B, up to about 0.050% of an element selected from the group consisting of Y and Lanthanide series elements, and balance Ni and incidental impurities with a S concentration preferably of 2 ppm by weight or less. The nickel base superalloy pursuant to the invention possesses improved high temperature oxidation resistance. The nickel base superalloy as a substrate can be coated with an outwardly grown diffusion aluminide bondcoat followed by deposition of a ceramic thermal barrier coating (TBC) on the bondcoat.Type: ApplicationFiled: December 11, 2003Publication date: November 18, 2004Inventor: Kenneth S. Murphy
-
Patent number: 6818077Abstract: A nickel-based superalloy containing 12.0 to 16.0% by weight of Cr, 4.0 to 9.0% by weight of Co, 3.4 to 4.6% by weight of Al, 0.5 to 1.6% by weight of Nb, 0.05 to 0.16% by weight of C, 0.005 to 0.025% by weight of B, and at least one of Ti, Ta and Mo. Amounts of Ti, Ta and Mo are ones calculated by the equations (1) and (2), wherein TiEq is 4.0 to 6.0 and MoEq is 5.0 to 8.0. TiEq=Ti % by weight+0.5153×Nb % by weight+0.2647×Ta % by weight (1) MoEq−Mo % by weight+0.5217×W % by weight+0.5303×Ta % by weight+1.Type: GrantFiled: May 6, 2003Date of Patent: November 16, 2004Assignee: Hitachi, Ltd.Inventors: Akira Yoshinari, Hideki Tamaki, Hiroyuki Doi
-
Publication number: 20040223868Abstract: A nickel-base alloy consists of, by weight, about 15.0 to about 17.0% chromium, about 7.0 to about 10.0% cobalt, about 1.0 to about 2.5% molybdenum, about 2.0 to about 3.2% tungsten, about 0.6 to about 2.5% columbium, less than 1.5% tantalum, about 3.0 to about 3.9% aluminum, about 3.0 to about 3.9% titanium, about 0.005 to about 0.060% zirconium, about 0.005 to about 0.030% boron, about 0.07 to about 0.15% carbon, the balance nickel and impurities. Preferably, columbium is present in an amount greater than tantalum. Tantalum can be essentially absent from the alloy, i.e., only at impurity levels.Type: ApplicationFiled: May 9, 2003Publication date: November 11, 2004Applicant: GENERAL ELECTRIC COMPANYInventors: Warren Tan King, John Herbert Wood, Ganjiang Feng
-
Publication number: 20040213693Abstract: A single crystal nickel base superalloy consists essentially of, in weight %, about 6.4% to about 6.8% Cr, about 9.3% to about 10.0% Co, above 6.7% to about 8.5% Ta, about 5.45% to about 5.75% Al, about 6.2% to about 6.6% W, about 0.5% to about 0.7% Mo, about 0.8% to about 1.2% Ti, about 2.8% to about 3.2% Re, up to about 0.12% Hf, about 0.01% to about 0.08% by weight C, up to about 0.10% B, and balance Ni and incidental impurities. The superalloy provides improved alloy cleanliness and castability while providing improved high temperature mechanical properties such as stress rupture life.Type: ApplicationFiled: April 28, 2003Publication date: October 28, 2004Inventors: John Corrigan, Michael G. Launsbach, John R. Mihalisin
-
Publication number: 20040200549Abstract: Corrosion and oxidation resistant, high strength, directionally solidified superalloy alloys and articles are described. The articles have a nominal composition in weight percent of about 12.1% Cr, 9% Co, 1.9% Mo, 3.8% W, 5% Ta, 3.6% Al, 4.1% Ti, 0.013% B, 0.1 % C, up to about 0.01 Zr, balance essentially nickel. The resultant articles have good hot corrosion resistance, oxidation resistance and creep properties. The articles are preferably cast as equiaxed articles such as gas turbine engine components.Type: ApplicationFiled: December 10, 2002Publication date: October 14, 2004Inventors: Alan D. Cetel, Dilip M. Shah
-
Patent number: RE40501Abstract: An article, such as a turbine engine component, formed from a nickel-base superalloy, the nickel-base superalloy containing a ?? tetragonal phase and comprising aluminum, titanium, tantalum, niobium, chromium, molybdenum, and the balance nickel, wherein the article has a time dependent crack propagation resistance of at least about 20 hours to failure at about 1100° F. in the presence of steam. The invention also includes a nickel-base superalloy for forming such and article and methods of forming the article and making the nickel-base superalloy.Type: GrantFiled: March 10, 2005Date of Patent: September 16, 2008Assignee: General Electric CompanyInventors: Michael Francis Henry, Elena Rozier, Samuel Vinod Thamboo, Sarwan Kumar Mannan, John Joseph deBarbadillo, II