Lead Containing Patents (Class 420/474)
-
Publication number: 20130192709Abstract: Copper alloys exhibiting enhanced oxidation resistance are provided by adding an amount of sulfur that is effective to enhance oxidative resistance. Such sulfur addition can be achieved by combining elemental forms of copper and sulfur and heating the mixture to form a molten alloy, or by forming a sulfur-rich pre-mix that is added to a base alloy composition. Forming a pre-mix provides improved homogeneity and distribution of the sulfur predominantly in the form of a metal sulfide.Type: ApplicationFiled: March 14, 2013Publication date: August 1, 2013Applicant: NIBCO INC.Inventor: NIBCO INC.
-
Patent number: 7736448Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.Type: GrantFiled: October 16, 2003Date of Patent: June 15, 2010Assignee: Institute of Metal Research Chinese Academy of SciencesInventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
-
Publication number: 20040159375Abstract: A copper-based alloy excellent in dezincing resistance comprises, in percentage by weight, Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Bi: 0.5-3%, and Pb: not more than 0.2%, where the ratio of Si/Sn expressed in weight percentage is in the range of 0.05-1 and apparent zinc content as defined by the following formula is in the range of more than 39-50 wt. %, and the balance of unavoidable impurities: Apparent Zn content=[(Zn %+2.0×Sn %+10.0×Si %)/(Cu %+Zn %+2.0×Sn %+10.0×Si %)]×100. Despite the fact that contains no added environment-unfriendly Pb, the alloy exhibits enhanced cuttability, together with excellent forgeability, dezincing resistance and hot forgeability.Type: ApplicationFiled: October 29, 2003Publication date: August 19, 2004Inventor: Yoshinori Yamagishi
-
Patent number: 6303235Abstract: There is provided a copper-based sliding alloy excellent in wear resistance and anti-seizure property. A phase of 2 to 30 wt. % lead is dispersed in the copper alloy. This lead phase contains 0.1 to 6 vol. % hard particles such as SiC, SiO2, Si3N4, Al2O3, TiC, WC and TiN having an average particle size of 5 to 25 &mgr;m. Because hard particles are included in the lead phase, wear resistance is excellent and anti-seizure property is improved. The lead phase, which is soft, serves as a cushion and the attack on a mating member by hard particles is reduced. Further, the falling-off of lead is minimized because the lead phase also includes the hard particles.Type: GrantFiled: April 1, 1999Date of Patent: October 16, 2001Assignees: Daido Metal Company Ltd., Kayaba Kogyo Kabushiki KaishaInventors: Naohisa Kawakami, Tsukimitsu Higuchi, Yoshiaki Sato, Takayuki Shibayama, Keizo Mizuno, Kenji Yamanouchi
-
Publication number: 20010019779Abstract: Disclosed is a copper alloy sliding material having a metal structure wherein intermetallic compounds exist adjacently to Pb-phase islands and/or Bi-phase islands. Because intermetallic compounds exist between the matrix and the Pb phase and/or the Bi phase, the material can have improved anti-seizure property, since, under load or due to wear, the surface of the material has recessions at the soft Pb and/or Bi phase and the matrix with respect to the intermetallic compounds.Type: ApplicationFiled: December 28, 2000Publication date: September 6, 2001Inventors: Kenji Sakai, Naohisa Kawakami, Satoru Kurimoto, Koichi Yamamoto, Takayuki Shibayama
-
Patent number: 6197433Abstract: A rolled copper foil for flexible printed circuits contains not more than 10 ppm by weight of oxygen and has a softening-temperature rise index T defined as T=0.60[Bi]+0.55[Pb]+0.60[Sb]+0.64 [Se]+1.36[S]+0.32[As]+0.09[Fe]+0.02[Ni]+0.76[Te]+0.48[Sn]+0.16[Ag]+1.24[P] (each symbol in the brackets representing the concentration in ppm by weight of the element) in the range of 4 to 34. The concentrations of the elements are in the ranges of[Bi]<5, [Pb]<10, [Sb]<5, [Se]<5, [S]<15, [As]<5, [Fe]<20, [Ni]<20, [Te]<5, [Sn]<20, [Ag]<50, and [P]<15 (each symbol in the brackets representing the concentration in ppm by weight of the element).Type: GrantFiled: January 12, 2000Date of Patent: March 6, 2001Assignee: Nippon Mining & Metals Co., Ltd.Inventor: Takaaki Hatano
-
Patent number: 6197432Abstract: A sliding material which is used for bearings, washers and other parts of automobiles, industrial machines, agricultural machines and the like, possesses an excellent abrasion resistance, and is useful under sever boundary lubricating conditions. The sliding material comprises a back plate (5) of a steel plate and a sinter bearing layer integrally provided on one surface of the back plate (5). A powder (2) of a hard material is dispersed in an amount of 0.5 to 20% by weight in a matrix (4) of the sinter bearing layer. The matrix (4) comprises 1 to 30% by weight of Pb and 1 to 15% by weight of Sn with the balance consisting of Cu. The powder (2) of a hard material comprises 7.5 to 9.5% by weight of Cr, 27 to 30% by weight of Mo, and 2.0 to 3.0% by weight of Si with the balance consisting of Co.Type: GrantFiled: December 29, 1998Date of Patent: March 6, 2001Assignee: NDC Company, Ltd.Inventors: Masahito Fujita, Yasushi Saitou
-
Patent number: 6103188Abstract: We provide a new copper microalloy with high-conductivity, excellent heat resistance and high strain strength, which can be obtained by conventional continuous or semi-continuous casting, which essentially consists of at least one element selected from the following list:______________________________________ 5-800 mg/Kg Pb (lead) 10-100 mg/Kg Sb (antimony) 5-1000 mg/Kg Ag (silver) 5-700 mg/Kg Sn (tin) 1-25 mg/Kg Cd (cadmium) 1-30 mg/Kg Bi (bismuth) 20-500 mg/Kg Zn (zinc) 10-400 mg/Kg Fe (iron) 15-500 mg/Kg Ni (nickel) 1-15 mg/Kg S (sulfur) ______________________________________in all cases, with 20-500 mg/Kg O (oxygen). The alloy is suitable for all the applications that require an electrical conductivity similar to that of pure copper, but with a better heat resistance, better mechanical properties and lower standard deviation values in strain strength.Type: GrantFiled: March 4, 1999Date of Patent: August 15, 2000Assignee: La Farga Lacambra, S.A.Inventors: Jose Oriol Guixa Arderiu, Miquel Garcia Zamora, Ferran Espiell Alvarez, Miquel Angel Fernandez Lopez, Araceli Esparducer Broco, Merce Segarra Rubik, Josep M.sup.a Chimenos Ribera
-
Patent number: 6025081Abstract: The copper-based sliding material has improved seizure resistance, even if it is free of Pb, and enables thinning of the overlay. The copper alloy provided consists of from 0.1 to 2% of Ag, from 1 to 10% of Sn, and the balance consisting of Cu and unavoidable impurities and, further said Ag and Sn do not essentially form the secondary phases but are in complete or essentially solid-solution state in the Cu matrix.Type: GrantFiled: January 8, 1998Date of Patent: February 15, 2000Assignee: Taiho Kogyo Co., Ltd.Inventors: Haruyuki Ohshiro, Takashi Tomikawa, Katsuyuki Hashizume, Soji Kamiya
-
Patent number: 5885467Abstract: A process for enriching a liquid with oxygen which includes the steps of: introducing a liquid and oxygen into a liquid and oxygen mixer and mixing the liquid with oxygen therein; introducing the liquid into a sealed enriching vessel containing a plurality of plates or trays, and flowing it gradually downwardly; subjecting the interior of the vessel to an oxygen pressure sufficient to enrich the liquid with oxygen; conducting the introduced liquid in a substantially flowing contact with the oxygen, whereby the liquid is enriched with oxygen; and recovering all of the oxygen-enriched liquid.Type: GrantFiled: November 24, 1997Date of Patent: March 23, 1999Assignee: Life International Products, Inc.Inventors: Zoltai Maria nee Zelenak, Laszlo Berzsenyi, Frank Abramoff
-
Patent number: 5665480Abstract: A copper-lead alloy bearing having a high corrosion resistance, especially a high corrosion resistance to sulfur, comprising a back metal and a copper-lead-based bearing alloy bonded thereto. The copper-lead-based bearing alloy consists of more than 10 but not more than 20% Ni, 0.5 to 8% Sn, 8 to 30% Pb, not less an 0.005 but not more than 0.2% P, and the balance of Cu and incidental impurities.Type: GrantFiled: March 12, 1996Date of Patent: September 9, 1997Assignee: Daido Metal Company Ltd.Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi
-
Patent number: 5653827Abstract: Reduced-lead yellow brass alloys are disclosed. The alloys comprise copper; zinc; an amount of bismuth effective to enhance castability of the alloys; and an amount of selenium effective to increase machinability of the alloy. Preferably, the alloys further include an amount of antimony effective to inhibit dezincification of the alloys. In a particularly preferred embodiment, an alloy according to the present invention comprises zinc; copper in an amount ranging from about 62.5% to about 64.0% by weight; tin in an amount ranging from about 0.2% to about 0.4% by weight; iron in an amount ranging from about 0.1% to about 0.3% by weight; nickel in an amount ranging from about 0.15% to about 0.25% by weight; aluminum in an amount ranging from about 0.3% to about 0.6% by weight; bismuth in an amount ranging from about 0.8% to about 1.0% by weight; antimony in an amount ranging from about 0.02% to about 0.04% by weight; and selenium in an amount ranging from about 0.05% to about 0.25% by weight.Type: GrantFiled: June 6, 1995Date of Patent: August 5, 1997Assignee: Starline Mfg. Co., Inc.Inventors: Keith D. Kramer, Thomas R. Hoesly, Frederick F. Treul
-
Patent number: 5346668Abstract: A Cu-based wear-resistant alloy of a sliding material consists essentially of, by weight, 10-35% Zn, 2-20% Pb, 1-10% Ni, 0.1-1% B and, as required, 0.5-10% of Sn. The alloy can be used under severe conditions of use at elevated speed and temperature with reduced risk of seizure and corrosion. The alloy can be produced by mixing Pb powder and Ni--B alloy powder with Cu--Zn powder or Cu--Zn--Sn alloy powder, or mixing Ni--B alloy powder with Cu--Zn--Pb alloy powder or Cu--Zn--Sn--Pb alloy powder. The alloy can be compacted and sintered to form a sliding member or a composite sliding member is obtained by sintering and integrating the alloy on a steel backing plate optionally having a surface plated with copper.Type: GrantFiled: March 30, 1993Date of Patent: September 13, 1994Assignee: Daido Metal Company Ltd.Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Kenji Sakai
-
Patent number: 5286444Abstract: Copper bearing alloy comprises more than 4% by weight and up to 35% by weight of Bi, 0.2 to less than 1.5% by weight of Pb and the rest of Cu. This considerably improves the erosion resistance while maintaining the excellent seizure resistance and fatigue strength.Type: GrantFiled: June 18, 1992Date of Patent: February 15, 1994Assignee: Taiho Kogyo Co., Ltd.Inventors: Takashi Tomikawa, Yoshio Kumada
-
Patent number: 5077005Abstract: There is provided a high-conductivity copper alloy with excellent workability and heat resistance, characterized by the alloy consists essentially of, by weight, at least one element selected from the group consisting of______________________________________ 10-100 ppm In (indium), 10-1000 ppm Ag (silver), 10-300 ppm Cd (cadmium), 10-50 ppm Sn (tin), 10-50 ppm Sb (antimony), 3-30 ppm Pb (lead), 3-30 ppm Bi (bismuth), 3-30 ppm Zr (zirconium), 3-50 ppm Ti (titanium) and 3-30 ppm Hf (hafnium), ______________________________________and the balance copper. S (sulfur) and O (oxygen) as unavoidable impurities are controlled to amounts of less than 3 ppm S, and less than 5 ppm O, respectively. Other unavoidable impurities are controlled to less than 3 ppm in total amount. The alloy is very suitable for applications such as forming magnet wires and other very thin wires, lead wires for electronic components, lead members for tape automated bonding (TAB) and the like, and members for printed-circuit boards.Type: GrantFiled: February 27, 1990Date of Patent: December 31, 1991Assignee: Nippon Mining Co., Ltd.Inventor: Masanori Kato
-
Patent number: 4818628Abstract: A process for making a composite bearing material comprising a steel backed, prealloyed, lead-bronze sintered powder metal matrix whereby the first sinter step includes induction heating the prealloyed powder and steel backing to above 650.degree. C. and thereafter sintering the same at temperatures of about 850.degree. C. in a second sintering furnace. A composite bearing material made by the same process and comprising a lead particle size averaging less than about 8 microns and having no lead islands larger than about 44 microns.Type: GrantFiled: August 31, 1987Date of Patent: April 4, 1989Assignee: Federal-Mogul CorporationInventors: Robert G. Alexander, George C. Pratt
-
Patent number: 4551395Abstract: A bearing material comprising copper and bismuth. Preferably there is from 12% to 18% by weight of bismuth and for some purposes there may be up to 35%. Depending upon special requirements, the bearing material may also have varying amounts of silver, antimony, zinc, phosphorous and nickel. Copper usually constitutes at least 50% by weight of the material.Type: GrantFiled: September 7, 1984Date of Patent: November 5, 1985Assignee: D.A.B. Industries, Inc.Inventor: Kenneth Lloyd
-
Patent number: 4537743Abstract: The disclosed electrode composition for a vacuum switch comprises copper, as a principal ingredient, a low melting point metal such as Bi, Pb, In, Li, Sn or any of their alloys, in a content not exceeding 20% by weight, a first additional metal such as Te, Sb, La, Mg or any of their alloys and a refractory metal such as Cr, Fe, Co, Ni, Ti, W or any of their alloys in a content less than 40% by weight.Type: GrantFiled: June 25, 1984Date of Patent: August 27, 1985Assignee: Mitsubishi Denki Kabushiki KaishaInventors: Takashi Yamanaka, Yasushi Takeya, Mitsumasa Yorita, Toshiaki Horiuchi, Kouichi Inagaki, Eizo Naya, Michinosuke Demizu, Mitsuhiro Okumura
-
Patent number: 4519980Abstract: A fin material for automobile radiators comprising less than 0.05% by weight of lead; from 0.001 to 0.05% by weight of one or more elements selected from a group consisting of silver, cadmium, chromium, magnesium, nickel, antimony, tin, zinc and rare-earth element; and the remaining copper.Type: GrantFiled: May 31, 1983Date of Patent: May 28, 1985Assignee: Hitachi Cable, Ltd.Inventors: Hajime Sasaki, Shinichi Nishiyama
-
Patent number: 4471026Abstract: The invention relates to the use of ternary alloys in brazing ceramics.Brazing is a process of limited usefulness in the fabrication of ceramic components because of the inability of many alloys to wet industrially important ceramics. A possible solution is the metallizing of ceramics but this has technical and economic disadvantages. Alloys are known which wet ceramics but they do not necessarily give good bond strength. The following alloys have now been devised which both wet ceramics and give good bond strength, e.g., greater than 40 MNm.sup.-2 at room temperature, with unmetallized ceramics. The alloys are:Cu: 16 to 28 Ti: 6.5 to 14 SnCu: 15 to 25 Ti: 10 to 25 AuCu: 15 to 50 Ti: 3 to 10 AgCu: 25 to 35 Ti: 3 to 8 Inwherein the compositions are in atom percent.Type: GrantFiled: November 3, 1982Date of Patent: September 11, 1984Assignee: United Kingdom Atomic Energy AuthorityInventors: Michael G. Nicholas, Thomas M. Valentine
-
Patent number: 4406857Abstract: The properties of copper-tin-lead alloys are improved with respect to mechanical resistance and resistance to corrosion by the incorporation therein, in specific proportions of nickel. Antifriction layers on steel supporting strips are obtained by sintering and rolling onto steel strips metal powder particles obtained by powdering a metal alloy of 2-10% nickel, 8-27% lead, 0.5-10% tin and the balance copper.Type: GrantFiled: September 22, 1981Date of Patent: September 27, 1983Assignee: Metal Leve S.A. Industria e ComercioInventors: Duraid Mahrus, Antonio C. Paulos