Iron Or Manganese Containing Patents (Class 420/487)
-
Patent number: 11639672Abstract: A valve seat formed within an aluminum engine component includes a valve seat surface machined within the aluminum engine component, a layer of copper alloy material laser clad onto the valve seat surface of the aluminum engine component, the layer of copper alloy material having a thickness of less than 2.0 millimeters, and a layer of copper alloy/tool steel carbide material laser clad onto the layer of copper alloy material, the layer of copper alloy/tool steel carbide material having an average thickness of less than 0.5 millimeters, wherein the layer of copper alloy/tool steel carbide material has an outer surface that is machined to a final valve seat profile.Type: GrantFiled: November 23, 2020Date of Patent: May 2, 2023Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Daniel J. Wilson, Huaxin Li, Edward J. Keating, Liang Wang, Devin R. Hess
-
Patent number: 11427889Abstract: A copper alloy for engine valve seats manufactured by laser cladding improves wear resistance of the copper alloy. The copper alloy includes 12 to 24 wt % of Ni, 2 to 4 wt % of Si, 4 to 12 wt % of Mo, 15 to 35 wt % of Fe, and the remaining wt % of Cu and impurities.Type: GrantFiled: October 20, 2020Date of Patent: August 30, 2022Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATIONInventors: Young Nam Kim, Min Woo Kang, Seung Hyun Hong
-
Patent number: 11326242Abstract: Disclosed are various processes for preparing a strip or plate of a copper-nickel-tin alloy. The processes begin with an input, usually of a rectangular shape. The input is hot rolled and annealed. The input is then subjected to a first cold reduction, a first annealing a second cold reduction, a second annealing, a third cold reduction, and a third annealing. If desired, a fourth cold reduction, a fourth annealing, and a fifth cold reduction may be performed. The resulting strip or plate is very smooth and has increased fatigue life, along with high strength.Type: GrantFiled: February 2, 2018Date of Patent: May 10, 2022Assignee: Materion CorporationInventors: Karl R. Ziegler, John E. Gatehouse, Bruce D. Schmeck, Fritz C. Grensing
-
Patent number: 10984931Abstract: Magnetic copper-nickel-tin-manganese alloys are disclosed. Also disclosed are processing steps that can be performed for maintaining and/or changing various magnetic or mechanical properties of the alloys. Further described herein are methods for using such an alloy, including various articles produced therefrom.Type: GrantFiled: March 18, 2016Date of Patent: April 20, 2021Assignee: MATERION CORPORATIONInventors: Fritz C. Grensing, W. Raymond Cribb, Amy E. Craft, Derrick L. Brown
-
Patent number: 9034123Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0??(1), where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.Type: GrantFiled: February 12, 2008Date of Patent: May 19, 2015Assignee: DOWA METALTECH CO., LTD.Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
-
Publication number: 20150110668Abstract: A Cu—Ni—Si based copper alloy, comprising 1.2 to 4.5% by mass of Ni, 0.25 to 1.0% by mass of Si and the the balance Cu with inevitable impurities, wherein when an X-ray diffraction intensity of a {111} plane of a rolled surface and that of a {111} plane of a pure copper powder standard specimen is represented by I{111}, I0{111} respectively, I{111}/I0{111} is 0.15 or more, wherein when an X-ray diffraction intensity of a {200} plane of the rolled surface and that of a plane {200} of the pure copper powder standard specimen is represented by I{200}, I0{200} respectively, I{200}/I0{200} is 0.5 or less, when an X-ray diffraction intensity of a {220} plane and a plane {311} of the rolled surface is represented by I{220}, I{311} respectively, I{111}/(I{111}+I{200}+I{220}+I{311}) is 0.2 or more, a bending coefficient is 130 GPa or more, a yield strength YS satisfies: YS=>?22×(Ni mass %)2+215×(Ni mass %)+422, and the electrical conductivity is 30% IACS or more both in a direction transverse to rolling direction.Type: ApplicationFiled: February 15, 2013Publication date: April 23, 2015Inventor: Hiroshi Kuwagaki
-
Patent number: 9005521Abstract: The distribution of Ni—Si compound grains is controlled to thereby improve the properties of Corson alloys. The copper alloy for electronic materials comprises 0.4 to 6.0% mass of Ni and 0.1 to 1.4% by mass of Si, with the balance being Cu and unavoidable impurities. The copper alloy comprising: small particles of Ni—Si compound having a particle size of equal to or greater than 0.01 ?m and smaller than 0.3 ?m; and large particles of Ni—Si compound having a particle size of equal to of greater than 0.3 ?m and smaller than 1.5 ?m. The number density of the small particles is 1 to 2000 pieces/?m2 and the number density of the large particles is 0.05 to 2 pieces/?m2.Type: GrantFiled: April 2, 2010Date of Patent: April 14, 2015Assignee: JX Nippon Mining & Metals CorporationInventor: Mitsuhiro Ookubo
-
Publication number: 20140356224Abstract: Provided is a copper alloy sheet excellent in strengths, electroconductivity, and bending workability. The copper alloy contains Cr of 0.10% to 0.50%, Ti of 0.010% to 0.30%, and Si of 0.01% to 0.10%, where a ratio (in mass) of the Cr content to the Ti content is from 1.0 to 30, a ratio (in mass) of the Cr content to the Si content is from 3.0 to 30, with the remainder including copper and inevitable impurities. The copper alloy includes grains that have an average major axis length of 6.0 ?m or less and an average minor axis length of 1.0 ?m or less as measured on a microstructure of the copper alloy in a plane surface perpendicular to a transverse direction by FESEM-EBSP analysis.Type: ApplicationFiled: February 21, 2013Publication date: December 4, 2014Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Hisao Shishido, Yuki Tanaka, Yuya Sumino, Akira Fugono
-
Patent number: 8795446Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.Type: GrantFiled: April 21, 2011Date of Patent: August 5, 2014Assignee: Furukawa Electric Co., Ltd.Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
-
Patent number: 8784580Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation ? of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.Type: GrantFiled: February 14, 2008Date of Patent: July 22, 2014Assignee: Kobe Steel, Ltd.Inventors: Akira Fugono, Hiroshi Sakamoto
-
Publication number: 20140193655Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.Type: ApplicationFiled: February 28, 2012Publication date: July 10, 2014Applicant: JX NIPPON MINING & METALS CORPORATIONInventor: Ikuya Kurosaki
-
Publication number: 20140065441Abstract: A Co—Si based copper alloy plate, comprising: Co: 0.5 to 3.0% by mass, Si: 0.1 to 1.0% by mass and the balance Cu with inevitable impurities, wherein the Co—Si based copper alloy plate satisfies the relationship {(60 degree specular gloss G(RD) in a rolling direction)?(60 degree specular gloss G(TD) in a direction transverse to rolling direction)}?90%.Type: ApplicationFiled: March 7, 2012Publication date: March 6, 2014Applicant: JX Nippon Mining & Metals CorporationInventor: Kazutaka Aoshima
-
Patent number: 8641838Abstract: A copper alloy sheet material, having a composition containing any one or both of Ni and Co in an amount of 0.5 to 5.0 mass % in total, and Si in an amount of 0.3 to 1.5 mass %, with the balance of copper and unavoidable impurities, wherein an area ratio of cube orientation {0 0 1} <1 0 0> is 5 to 50%, according to a crystal orientation analysis in EBSD measurement.Type: GrantFiled: December 1, 2010Date of Patent: February 4, 2014Assignee: The Furukawa Electric Co., Ltd.Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Koji Sato
-
Publication number: 20130323114Abstract: The present invention relates to a high-strength copper alloy forging material having properties of high hardness, high strength and high thermal conductivity. The high-strength copper alloy forging material contains, in mass %, 3 to 7.2% of Ni, 0.7 to 1.8% of Si, 0.02 to 0.35% of Zr and 0.002 to 0.05% of P, and further contains 1.5% or less of one or two or more of Cr, Mn and Zn in total, as needed, whereby appropriate amounts of Zr and P act to cause cracks to be less likely to occur in the material during working or heat treatment. After the working and the heat treatment, the forging material of the invention can have properties of high hardness, high strength and high thermal conductivity, and can be suitably used for resin injection mold materials, aircraft components and the like.Type: ApplicationFiled: February 14, 2012Publication date: December 5, 2013Applicant: THE JAPAN STEEL WORKS, LTD.Inventors: Yoshiharu Miyabe, Mamoru Mizusawa, Shinji Tanaka
-
Publication number: 20130316222Abstract: A braze alloy composition for sealing a ceramic component to a metal component in an electrochemical cell is presented. The braze alloy composition includes copper, nickel, and an active metal element. The braze alloy includes nickel in an amount less than about 30 weight percent, and the active metal element in an amount less than about 10 weight percent. An electrochemical cell using the braze alloy for sealing a ceramic component to a metal component in the cell is also provided.Type: ApplicationFiled: June 29, 2012Publication date: November 28, 2013Applicant: GENERAL ELECTRIC COMPANYInventors: Raghavendra Rao Adharapurapu, Sundeep Kumar, Mohamed Rahmane
-
Patent number: 8449697Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.Type: GrantFiled: February 27, 2011Date of Patent: May 28, 2013Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
-
Patent number: 8430979Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.Type: GrantFiled: October 26, 2006Date of Patent: April 30, 2013Assignee: GBC Metals, LLCInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Publication number: 20130045130Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer.Type: ApplicationFiled: June 8, 2012Publication date: February 21, 2013Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
-
Patent number: 8360647Abstract: The invention relates to a plain bearing composite material with a supporting layer made of steel, a bearing metal layer made of a copper alloy, and with a lining applied to the bearing metal layer. The copper alloy can contain 0.5 5% by weight of nickel, 0.2 to 2.5% by weight of silicon and =0.1% by weight of lead. The lining can be an electrodeposited layer, a sputtered layer or a plastic layer. The invention also relates to methods for producing this composite material.Type: GrantFiled: May 13, 2006Date of Patent: January 29, 2013Assignee: Federal-Mogul Wiesbaden GmbHInventor: Gerd Andler
-
Publication number: 20120288402Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.Type: ApplicationFiled: June 8, 2012Publication date: November 15, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
-
Publication number: 20120237394Abstract: The present invention relates to a low lead brass alloy which ensures reduction of harmful to human health effects of lead that is useful for increasing machinability of brass raw material used in tapwares, valves and water meters, in the event of it's contact with water and which comprises less than 0.25% lead. The inventive brass alloy is an alloy which has machinability, is cost-efficient and environmentally friendly by means of its bismuth content.Type: ApplicationFiled: January 29, 2010Publication date: September 20, 2012Inventors: Omer Ozgen, Ahmet Taner Ozkalan
-
Publication number: 20120148439Abstract: A copper alloy containing Ni: 1.5%-3.6% and Si: 0.3%-1.0% in terms of mass percent with the remainder consisting of copper and unavoidable impurities, wherein: the average crystal grain size of the crystal grains in the copper alloy is 5 to 30 ?m; the area ratio of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 3%; and the ratio of the area of cube orientation grains to the area of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 50%.Type: ApplicationFiled: November 18, 2011Publication date: June 14, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Hisao SHISHIDO, Shinya Katsura, Yasuhiro Aruga, Katsushi Matsumoto
-
Publication number: 20120148440Abstract: A copper brazing filler metal includes Ni in an amount of from 20 or more to 36% or less by mass, Mn in an amount from 19 or more to 30% or less by mass, Fe in an amount of from 0 or more to 16% or less by mass, Si in an amount of from more than 0 (not inclusive) to 2% or less by mass, B in an amount of from 0.1 or more to 0.5% or less by mass, and the balance being copper (Cu) as well as inevitable impurities and/or a modifying element, when the entirety is taken as 100% by mass. Moreover, the copper brazing filler metal exhibits a ratio of the Ni content with respect to the Mn content (i.e., (Ni Content)/(Mn Content)) that falls in a range of from 1.1 or more to 2 or less when being free from Fe.Type: ApplicationFiled: December 2, 2011Publication date: June 14, 2012Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHOInventors: Kazuhiko ITOH, Tadashi OSHIMA, Hisaaki TAKAO
-
Publication number: 20120039743Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
-
Publication number: 20120039742Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
-
Publication number: 20120039741Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Ryoichi OZAKI, Yosuke MIWA
-
Patent number: 8070893Abstract: The invention provides Cu—Ni—Si—Co—Cr copper alloys for electronic materials having excellent characteristics such as dramatically improved strength and electrical conductivity. In one aspect, the invention is a Cu—Ni—Si—Co—Cr copper alloy for electronic materials, containing about 0.5-about 2.5% by weight of Ni, about 0.5 -about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and about 0.09 -about 0.5% by weight of Cr, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si in the alloy composition satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co in the alloy composition satisfies the formula: about 0.5?Ni/Co?about 2, and wherein Pc is equal to or less than about 15/1000 ?m2, or Pc/P is equal to or less than about 0.Type: GrantFiled: March 31, 2006Date of Patent: December 6, 2011Assignee: JX Nippon Mining & Metals CorporationInventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
-
Publication number: 20110226138Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.Type: ApplicationFiled: February 27, 2011Publication date: September 22, 2011Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
-
Patent number: 7947133Abstract: A copper alloy strip material for electrical/electronic equipment includes a copper alloy containing 2.0 to 5.0 mass % Ni, 0.43 to 1.5 mass % Si, and a remaining component formed of Cu and an unavoidable impurity. Three types of intermetallic compounds A, B, and C comprising Ni and Si in a total amount of 50 mass % or more are contained. The intermetallic compound A has a compound diameter of 0.3 ?m to 2 ?m, the intermetallic compound B has a compound diameter of 0.05 ?m to less than 0.3 ?m, and the intermetallic compound C has a compound diameter of more than 0.001 ?m to less than 0.05 ?m.Type: GrantFiled: September 12, 2007Date of Patent: May 24, 2011Assignee: Furukawa Electric Co., Ltd.Inventors: Kuniteru Mihara, Tatsuhiko Eguchi
-
Patent number: 7910512Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.Type: GrantFiled: September 26, 2008Date of Patent: March 22, 2011Assignee: Cataler CorporationInventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
-
METHOD FOR PRODUCING CAST MOLDED PARTS AS WELL AS CAST MOLDED PARTS PRODUCED ACCORDING TO THE METHOD
Publication number: 20110056646Abstract: The invention relates to a method for the production of castings made of a copper alloy comprising silicon, nickel, chromium, and zirconium, and also inter-metal primary phases, wherein an ingot is drawn by means of hot forming in only one direction at a ratio of at least 4:1, wherein a casting surface of a casting produced from the drawn ingot, said surface coming into contact with a metal melt, is substantially selected perpendicular to the drawing direction of the ingot. A casting produced in this manner is characterized by high wear resistance and increased service life, particularly when used as a block of a side bank of a double strip casting system.Type: ApplicationFiled: March 19, 2009Publication date: March 10, 2011Applicant: KME GERMANY AG & CO. KGInventors: Thomas Helmenkamp, Dirk Rode, Markus Niemann -
Publication number: 20110038753Abstract: A copper alloy sheet material which has a tensile strength of 730-820 MPa and contains at least nickel (Ni) and silicon (Si), with the remainder being copper (Cu) and inevitable impurities. When the sheet material has a shape capable of 180° tight bending and the width and thickness of this sheet material are expressed by W (unit: mm) and T (unit: mm) respectively, then the product of W and T is 0.16 or less. Preferably, the sheet material is constituted of an alloy containing nickel at 1.8-3.3 mass %, silicon at 0.4 mass %, and chromium (Cr) at 0.01-0.5 mass %, with the remainder being copper and inevitable impurities. The sheet material may further contain one or more of: at least one member selected among tin (Sn), magnesium (Mg), silver (Ag), manganese (Mn), titanium (Ti), iron (Fe), and phosphorus (P) in a total amount of 0.01-1 mass %; zinc (Zn) at 0.01-10 mass %, cobalt (Co) at and 0.01-1.5 mass %.Type: ApplicationFiled: November 5, 2008Publication date: February 17, 2011Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Kuniteru Mihara, Tatsuhiko Eguchi
-
Patent number: 7850795Abstract: While securing the building-up ability and crack resistance, to provide a build-up wear-resistant copper alloy and valve seat. The build-up wear-resistant copper alloy and valve seat are characterized by having a composition of nickel: 5.0-24.5%, iron: 3.0-20.0%, silicon: 0.5-5.0%, boron: 0.05-0.5%, chromium: 0.3-5.0%, one member or two members or more selected from the group consisting of molybdenum, tungsten and vanadium: 3.0-20.0%, by weight %, and the balance being copper and inevitable impurities.Type: GrantFiled: December 28, 2005Date of Patent: December 14, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventors: Minoru Kawasaki, Takao Kobayashi, Tadashi Oshima, Kazuyuki Nakanishi
-
Publication number: 20100310413Abstract: A copper alloy material, containing Ni 1.8 to 5.0 mass % and Si 0.3 to 1.7 mass %, at a ratio of contents of Ni and Si, Ni/Si, of 3.0 to 6.0, and having a content of S of less than 0.005 mass %, with the balance of being Cu and inevitable impurities, wherein the copper alloy material satisfies formulae (1) to (4): 130×C+300?TS?130×C+650??(1) 0.001?d?0.020??(2) W?150??(3) 10?L?800??(4) wherein TS represents a tensile strength (MPa) of the copper alloy material in a direction parallel to rolling; C represents the content (mass %) of Ni in the copper alloy material; d represents an average grain diameter (mm) of the copper alloy material; W represents a width (nm) of a precipitate free zone; and L represents a particle diameter (nm) of a compound on a grain boundary.Type: ApplicationFiled: August 17, 2010Publication date: December 9, 2010Inventors: Kiyoshige HIROSE, Tatsuhiko EGUCHI
-
MELT-SOLIDIFIED SUBSTANCE, COPPER ALLOY FOR MELT-SOLIDIFICATION AND METHOD OF MANUFACTURING THE SAME
Publication number: 20100297464Abstract: A melt-solidified substance includes melt-solidified portions formed by welding, build-up spray welding, metallizing or fusing. The melt-solidified portions have the alloy composition containing Zr: 0.0005 to 0.05 mass %, P: 0.01 to 0.34 mass %, Cu: the remainder and satisfying the relationship between the contents of P and Zr, [P]/[Zr]=0.3 to 20, and the mean grain size in the macrostructure after melt-solidification is 300 ?m or less. If Fe and/or Ni are contained in the melt-solidified portion as inevitable impurities, the content of Fe or Ni is restricted to be 0.3 mass % or less when either Fe or Ni is contained, and the total content of Fe and Ni is restricted to be 0.4 mass % or less when both Fe and Ni are contained.Type: ApplicationFiled: September 30, 2005Publication date: November 25, 2010Applicant: SANBO SHINDO KOGYO KABUSHIKI KAISHAInventor: Keiichiro Oishi -
Patent number: 7815756Abstract: This is to provide a build-up wear-resistant copper-based alloy, which is advantageous for enhancing the cracking resistance and machinability, which is appropriate for cases of building up to form built-up layers especially, and which is equipped with the wear resistance, cracking resistance and machinability combinedly in a well balanced manner. A build-up wear-resistant copper-based alloy is characterized in that it has a composition, which includes nickel: 5.0-20.0%; silicon: 0.5-5.0%; manganese: 3.0-30.0%; and an element, which combines with manganese to form a Laves phase and additionally to form silicide: 3.0-30.0%; by weight %, and inevitable impurities; and additionally the balance being copper. The element can be one member or two or more members of titanium, hafnium, zirconium, vanadium, niobium and tantalum.Type: GrantFiled: September 15, 2006Date of Patent: October 19, 2010Assignee: Toyota Jidosha Kabushiki KaishaInventors: Minoru Kawasaki, Tadashi Oshima, Takao Kobayashi, Kazuyuki Nakanishi
-
Publication number: 20100189593Abstract: A copper alloy material consists of, by mass % Ti: 0.01-2.5%, Cr: 0.01-0.5%, Fe: 0.01% or more and less than 1%, and the balance Cu and impurities. The copper alloy possesses excellent strength, electrical conductivity, and workability without containing any environmentally harmful elements. These properties are attained by control of the total number and the diameter of precipitates and inclusions having a diameter of 1 ?m, and control of the relationship between tensile strength TS (MPa) and electrical conductivity, IACS (%). The copper alloy material is a sheet and the relationship between tensile strength and the bending workability in a bad way B90 of the copper alloy material as well as the relationship between elongation and tensile strength are also controlled with respect to each other for property improvement.Type: ApplicationFiled: January 26, 2010Publication date: July 29, 2010Inventors: Yasuhiro MAEHARA, Mitsuharu YONEMURA, Keiji NAKAJIMA, Tsuneaki NAGAMICHI
-
Patent number: 7736448Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.Type: GrantFiled: October 16, 2003Date of Patent: June 15, 2010Assignee: Institute of Metal Research Chinese Academy of SciencesInventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
-
Publication number: 20100086435Abstract: An object of the present invention is to provide a Corson alloy having significantly improved characteristics, i.e. high strength and high electrical conductivity, by enhancing the effect of addition of Cr to a Cu—Ni—Si system alloy. There is provided a copper alloy for electronic materials comprising 1.0-4.5% by mass Ni, 0.50-1.2% by mass Si, 0.003-0.3% by mass Cr wherein the weight ratio of Ni to Si satisfies the expression: 3?Ni/Si?5.5, and the balance being Cu and incidental impurities, wherein particles of Cr—Si compounds having a size of 0.1 ?m to 5 ?m are dispersed in the alloy and the dispersed particles having an atomic concentration ratio of Cr to Si of 1 to 5 and a dispersion density of no more than 1×106/mm2.Type: ApplicationFiled: March 28, 2008Publication date: April 8, 2010Applicant: Nippon Mining & Metals Co., Ltd.Inventor: Naohiko Era
-
Publication number: 20100061884Abstract: Disclosed is a white-colored copper alloy comprising by weight up to 30% zinc, up to 20% manganese, up to 5% nickel with the balance copper. This alloy may have from 6% to 25% zinc, from 4% to 17% manganese, from 0.1% to 3.5% nickel and the balance copper. The balance copper in the alloy may further contain at least one of: up to 0.5% of at least one of the group which consists of Sn, Si, Co, Ti, Cr, Fe, Mg, Zr, and Ag; and up to 0.1% of at least one of the group which consists of P, B, Ca, Ge, Se, Te. It may also contain up to 0.3% Zr by weight. The alloy may have an electrical conductivity greater than 2.5% IACS at eddy current gauge exciting frequencies between 60 kHz and 480 kHz.Type: ApplicationFiled: September 8, 2009Publication date: March 11, 2010Applicant: PMX INDUSTRIES INC.Inventors: CRAIG CLARK, THOMAS D. JOHNSON, RICHARD PRATT, TIMOTHY SUH
-
Publication number: 20100047112Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.Type: ApplicationFiled: February 14, 2008Publication date: February 25, 2010Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)Inventors: Akira Fugono, Hiroshi Sakamoto
-
Patent number: 7628873Abstract: A beryllium copper alloy is provided, having a thickness “t” in a range from 0.05 mm to 0.5 mm and having an alloy composition consisting by weight (or mass %), of Cu100?(a+b)NiaBeb, wherein 1.0?a?2.0, 0.15?b?0.35, and 5.5 ?a/b?6.5. The beryllium copper alloy also exhibits a 0.2% proof stress equal to or above 650 MPa, an electric conductivity equal to or above 70% IACS, and a bending formability defined by a ratio of R/t=0, wherein “R” is a maximum bend radius before cracking at a bent portion when the beryllium copper alloy is bent into a V shape at a right angle.Type: GrantFiled: September 8, 2006Date of Patent: December 8, 2009Assignee: NGK Insulators, Ltd.Inventors: Satoshi Ota, Naokuni Muramatsu
-
Publication number: 20090183803Abstract: A copper base alloy having an improved combination of yield strength and electrical conductivity consisting essentially of between about 1.0 and about 6.0 weight percent Ni, up to about 3.0 weight percent Co, between about 0.5 and about 2.0 weight percent Si, between about 0.01 and about 0.5 weight percent Mg, up to about 1.0 weight percent Cr, up to about 1.0 weight percent Sn, and up to about 1.0 weight percent Mn, the balance being copper and impurities, the alloy processed to have a yield strength of at least about 137 ksi, and an electrical conductivity of at least about 25% IACS.Type: ApplicationFiled: December 17, 2008Publication date: July 23, 2009Inventors: Ralph A. Mutschler, Peter William Robinson, Derek E. Tyler, Andrea Kaufler, Hans-Achim Kuhn, Uwe Hofmann
-
Patent number: 7507305Abstract: This aims to provide a wear-resistant copper-based alloy, which is advantages in not only enhancing wear resistance in a high temperature range but also enhancing crack resistance and machinability and which is especially suitable for forming a cladding layer. The wear-resistant copper-based alloy comprises, by weight, 4.7 to 22.0% nickel, 0.5 to 5.0% silicon, 2.7 to 22.0% iron, 1.0 to 15.0% chromium, 0.01 to 2.00% cobalt, 2.7 to 22.0% one or more of tantalum, titanium, zirconium and hafnium, and the balance of copper with inevitable impurities.Type: GrantFiled: December 10, 2004Date of Patent: March 24, 2009Assignee: Toyota Jidosha Kabushiki KaishaInventors: Minoru Kawasaki, Tadashi Oshima, Takao Kobayashi, Kazuyuki Nakanishi, Hideo Tachikawa
-
Publication number: 20090010797Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.Type: ApplicationFiled: August 11, 2005Publication date: January 8, 2009Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro Aruga, Katsura Kajihara
-
Publication number: 20080314612Abstract: A conductor of an electric cable for wiring, containing a copper alloy material containing 1.0 to 4.5 mass % of Ni, 0.2 to 1.1 mass % of Si, and the balance of Cu and unavoidable impurities, in which the copper alloy material has an average grain diameter of 0.2 to 5.0 ?m.Type: ApplicationFiled: June 6, 2008Publication date: December 25, 2008Applicant: THE FURUKAWA ELECTRIC CO., LTD.Inventors: Isao Takahashi, Tatsuhiko Eguchi
-
Patent number: 7461770Abstract: The invention proposes a brazing alloy, which can be produced in particular as a homogenous, ductile, amorphous brazing foil and consists of 2 to 20 atom % of nickel, 2 to 12 atom % of tin, 0.5 to 5.0 atom % of zinc, 6 to 16 atom % of phosphorus, remainder copper and incidental impurities. The total amount of copper, nickel, tin and zinc is between 80 and 95 atom %. The addition of more than 0.5 atom % of zinc produces excellent resistance to surface oxidation in air and/or atmospheric humidity. These brazing alloys can be used to produce excellent brazed joints.Type: GrantFiled: April 1, 2005Date of Patent: December 9, 2008Assignee: Vacuumschmelze GmbH & Co. KGInventors: Thomas Hartmann, Dieter Nuetzel
-
Publication number: 20080298998Abstract: A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities, wherein R{200} is 0.3 or more, in which the R{200} is a proportion of a diffraction intensity from a {200} plane of the following diffraction intensities and is represented by R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}), I{111} is a diffraction intensity from a {111} plane, I{200} is a diffraction intensity from a {200} plane, I{220} is a diffraction intensity from a {220} plane, and I{311} is a diffraction intensity from a {311} plane, each at the material surface.Type: ApplicationFiled: May 30, 2008Publication date: December 4, 2008Applicant: THE FURUKAWA ELECTRIC CO., LTD.Inventors: Hiroshi KANEKO, Tatsuhiko EGUCHI, Kuniteru MIHARA, Kiyoshige HIROSE
-
Publication number: 20080279718Abstract: A metal alloy is primarily formed of copper, nickel, magnesium and iron. The main constituents are copper and nickel. The contents of magnesium and iron are increased considerably in comparison with the prior art conventional alloys. The novel alloy has the following constituents in the following proportions (in % by mass and/or % by weight): copper (40% to 61%), nickel (35% to 45%), manganese (3.9% to 10%), iron (0.1% to 5%); and other materials, such as carbon, silicon, aluminum, magnesium, titanium, chromium, rare earths, molybdenum, and/or yttrium (at most 2% in total), with the sum of the components amounting to 100% by mass or, respectively, to 100% by weight.Type: ApplicationFiled: May 12, 2008Publication date: November 13, 2008Applicant: Gebauer & Griller Metallwerk GmbHInventors: Ewald Koppensteiner, Rudolf Schrayvogel
-
Patent number: 7431881Abstract: A thermally conductive, wear-resistant alloy is particularly suited to cladding aluminum engine head valve seats. In the preferred embodiments, the alloys are metallurgically compatible with the cast Al—Si alloy used for the engine head. Three alternative embodiments are disclosed, namely, copper-based alloys; aluminum silicon-based alloys; and two-layer systems.Type: GrantFiled: February 23, 2004Date of Patent: October 7, 2008Assignee: The P.O.M. GroupInventor: Jyoti Mazumder