Iron Or Manganese Containing Patents (Class 420/487)
  • Patent number: 7413619
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 19, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takenori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Patent number: 7291231
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a discontinuous network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 6, 2007
    Assignee: Metglas, Inc.
    Inventors: Shinya Myojin, Richard L. Bye, Nicholes J. DeCristofaro, David W. Millure, Gary A. Schuster
  • Publication number: 20070253858
    Abstract: The invention relates to a copper multicomponent alloy, consisting of [in % by weight]: Ni 1.0 to 15.0% Sn 2.0 to 12.0% Mn 0.1 to 5.0% Si 0.1 to 3.0%, remainder Cu and inevitable impurities, optionally individually or in combination up to 1.5% Ti, Co, Cr, Al, Fe, Zn, Sb, optionally individually or in combination up to 0.5% B, Zr, P, S, optionally up to 25% Pb.
    Type: Application
    Filed: March 15, 2007
    Publication date: November 1, 2007
    Inventors: Maher Ababneh, Hans-Achim Kuhn, Volker Voggeser
  • Patent number: 7238296
    Abstract: When the entire amount of conductive metal mixed powder made of copper, manganese, and germanium is 100 parts by weight, the metal mixed powder is formed by mixing 4.0 to 13.0 parts manganese by weight, 0.2 to 1.4 parts germanium by weight, and 85.6 to 95.8 parts copper by weight, and 0 to 10 parts glass powder by weight and 0 to 10 parts copper-oxide powder by weight are mixed relative to the entire amount (100 parts by weight) of these metal components. The obtained resistive paste is then baked, and the resistive composition having the low resistance value and low TCR may be obtained. In addition, a resistor is made by forming the resistive element upon a substrate.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: July 3, 2007
    Assignee: KOA Kabushiki Kaisha
    Inventor: Satoshi Moriya
  • Patent number: 6866818
    Abstract: A method for the manufacture of tools and components for the offshore field and the mining industry, in particular, for drilling installations, using a spray formed Cu—Ni—Mn alloy of 10 to 25% Ni, 10 to 25% Mn, the remainder being copper and common impurities. Due to the favorable characteristics of the combination, the alloy is suitable as a replacement material for Be-containing copper materials.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller, Frank Michael Keppeler, Hendrik John
  • Patent number: 6811623
    Abstract: A Cu-Ni-Mn alloy which consists of 15 to 25% Ni; 15 to 25% Mn; 0.001 to 1.0% of a chip-breaking additive (lead, carbon, etc.), the remainder being copper and common impurities. The alloy can preferably be used as a replacement material for Be-containing copper materials for the manufacture of disconnectable electrical connections or for the manufacture of tools and components for the offshore field and the mining industry.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 2, 2004
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller
  • Publication number: 20040166017
    Abstract: An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu—Ti—X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 105 ksi and the electrical conductivity is at least 50% IACS.
    Type: Application
    Filed: September 5, 2003
    Publication date: August 26, 2004
    Applicants: Olin Corporation, Wieland-Werke AG
    Inventors: Ronald N. Caron, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Doris Humpenoder-Bogel, Hans-Achim Kuhn, Joerg Seeger
  • Patent number: 6764556
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 20, 2004
    Inventors: Shinya Myojin, Richard L. Bye, Nicholas J. Decristofaro, Jeng S. Lin, David W. Millure, Joseph G. Cox, Jr., Dale R. Walls, Gary B. A. Schuster
  • Patent number: 6716541
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02- 0.5%  The remainder is copper and includes impurities caused by smelting.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Jürgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Patent number: 6605371
    Abstract: A brazing alloy according to the present invention has a melting point equivalent to that of a copper brazing filler and is excellent in corrosion- and oxidation-resistance. The brazing alloy consists essentially of Mn, Ni and Cu, and has a composition in terms of weight percentage which, when plotted on a diagram as shown in FIG. 1, falls within a range defined by: the point A (37% Mn, 63% Ni, 0% Cu), the point B (18% Mn, 27% Ni, 55% Cu); the point C (42% Mn, 3% Ni, 55% Cu); the point D (50% Mn, 3% Ni, 47% Cu); and the point E (50% Mn, 50% Ni, 0% Cu), wherein Mn=50% is exclusive.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masami Ueda, Masaaki Ishio, Hidetoshi Noda, Tsuyoshi Hasegawa
  • Patent number: 6531003
    Abstract: A valve seat (2) is formed by build-up cladding by irradiating a laser beam on a copper alloy powder (4) provided in the rim of a port (3) formed in an engine cylinder head (1). The copper alloy powder (4) consists of copper (Cu), 6-9 wt % nickel (Ni), 1-5 wt % silicon (Si), and 1-5 wt % of one of molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb) and vanadium (V). Due to this composition, the valve seat (2) has few microcracks and excellent abrasion resistance.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 11, 2003
    Assignees: Mitsui Mining & Smelting Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Ryuji Ninomiya, Takeshi Ojiro, Koichi Miyake, Makoto Kano, Kenji Tsushima, Hidenobu Matsuyama, Kenji Suzuki
  • Publication number: 20030007884
    Abstract: A Cu—Ni—Mn alloy which consists of 15 to 25% Ni; 15 to 25% Mn; 0.001 to 1.0% of a chip-breaking additive (lead, carbon, etc.), the remainder being copper and common impurities. The alloy can preferably be used as a replacement material for Be-containing copper materials for the manufacture of disconnectable electric connections or for the manufacture of tools and components for the offshore field and the mining industry.
    Type: Application
    Filed: April 18, 2002
    Publication date: January 9, 2003
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller
  • Publication number: 20020166609
    Abstract: A method for the manufacture of tools and components for the offshore field and the mining industry, in particular for drilling installations using a spray formed Cu—Ni—Mn alloy consisting of 10 to 25% Ni, 10 to 25% Mn, the remainder being copper and the common impurities. Due to the favorable characteristic of the combination, it is suitable as a replacement material for Be-containing copper materials.
    Type: Application
    Filed: April 18, 2002
    Publication date: November 14, 2002
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller, Frank Michael Keppeler, Hendrik John
  • Patent number: 6391163
    Abstract: The present invention provides a method and apparatus for forming a copper layer on a substrate, preferably using a sputtering process. The sputtering process involves bombarding a conductive member of enhanced hardness with ions to dislodge the copper from the conductive member. The hardness of the target may be enhanced by alloying the copper conductive member with another material and/or mechanically working the material of the conductive member during its manufacturing process in order to improve conductive member and film qualities. The copper may be alloyed with magnesium, zinc, aluminum, iron, nickel, silicon and any combination thereof.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 21, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Murali Abburi, Murali Narasimhan, Seshadri Ramaswami
  • Patent number: 6334915
    Abstract: A copper alloy sheet comprises 0.4 to 2.5 wt % of Ni, 0.05 to 0.6 wt % of Si, 0.001 to 0.05 wt % of Mg, and the balance being Cu and inevitable impurities wherein an average grain size in the sheet is in the range of 3 to 20 &mgr;m and a size of an intermetallic compound precipitate of Ni and Si is in the range of 0.3 &mgr;m or below. If necessary, the sheet may further comprise one or more of 0.01 to 5 wt % of Zn, 0.01 to 0.3 wt % of Sn, 0.01 to 0.1 wt % of Mn, and 0.001 to 0.1 wt % of Cr. It is preferred that when an X-ray diffraction intensity from {200} plane in the surface of said sheet is taken as I{200}, an X-ray diffraction intensity from {311} plane is taken as I{311}, and an X-ray diffraction intensity from {220} plane is taken as I{220}, the following equation is satisfied [I{200}+I{311}]/I{220}≧0.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 1, 2002
    Assignee: Kabushiki Kaish Kobe Seiko Sho
    Inventors: Tetsuzo Ogura, Takashi Hamamoto, Masahiro Kawaguchi
  • Patent number: 6197433
    Abstract: A rolled copper foil for flexible printed circuits contains not more than 10 ppm by weight of oxygen and has a softening-temperature rise index T defined as T=0.60[Bi]+0.55[Pb]+0.60[Sb]+0.64 [Se]+1.36[S]+0.32[As]+0.09[Fe]+0.02[Ni]+0.76[Te]+0.48[Sn]+0.16[Ag]+1.24[P] (each symbol in the brackets representing the concentration in ppm by weight of the element) in the range of 4 to 34. The concentrations of the elements are in the ranges of[Bi]<5, [Pb]<10, [Sb]<5, [Se]<5, [S]<15, [As]<5, [Fe]<20, [Ni]<20, [Te]<5, [Sn]<20, [Ag]<50, and [P]<15 (each symbol in the brackets representing the concentration in ppm by weight of the element).
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: March 6, 2001
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Takaaki Hatano
  • Patent number: 6103188
    Abstract: We provide a new copper microalloy with high-conductivity, excellent heat resistance and high strain strength, which can be obtained by conventional continuous or semi-continuous casting, which essentially consists of at least one element selected from the following list:______________________________________ 5-800 mg/Kg Pb (lead) 10-100 mg/Kg Sb (antimony) 5-1000 mg/Kg Ag (silver) 5-700 mg/Kg Sn (tin) 1-25 mg/Kg Cd (cadmium) 1-30 mg/Kg Bi (bismuth) 20-500 mg/Kg Zn (zinc) 10-400 mg/Kg Fe (iron) 15-500 mg/Kg Ni (nickel) 1-15 mg/Kg S (sulfur) ______________________________________in all cases, with 20-500 mg/Kg O (oxygen). The alloy is suitable for all the applications that require an electrical conductivity similar to that of pure copper, but with a better heat resistance, better mechanical properties and lower standard deviation values in strain strength.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: August 15, 2000
    Assignee: La Farga Lacambra, S.A.
    Inventors: Jose Oriol Guixa Arderiu, Miquel Garcia Zamora, Ferran Espiell Alvarez, Miquel Angel Fernandez Lopez, Araceli Esparducer Broco, Merce Segarra Rubik, Josep M.sup.a Chimenos Ribera
  • Patent number: 6074604
    Abstract: Provided is a brazing filler metal for brazing stainless steel at low temperatures so as not to adversely affect the properties of the stainless steel, and without producing any brittleness in the brazed joint. The brazing filler metal essentially consists of 5 to 30 weight % of Mn or Sn, 20 to 70 weight % of Cu, inevitable impurities, and a balance of Ni. The brazing filler metal may further include no more than 3 weight % of Cr and/or Si.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: June 13, 2000
    Assignee: NHK Spring Co., Ltd.
    Inventors: Shinji Saito, Takashi Kayamoto
  • Patent number: 5938864
    Abstract: A copper alloy material excellent in the resistance to corrosion caused by lubricating oils containing sulfur-based additives. The alloy comprises from over 5 to 50% Ni, 0.1-2% Ag and the balance consisting substantially of Cu, and optionally contains at least one member selected among (1) up to 20% Sn, up to 0.5% P, up to 5% Al, up to 1% Si, up to 5% Mn, up to 30% Zn, up to 10% Fe and/or up to 1% Sb, (2) up to 30% in total of Pb and/or Bi, (3) up to 30% in total of graphite MoS.sub.2. WS.sub.2 and/or BN, (4) up to 20% in total of Al.sub.2 O.sub.3, SiC, SiO.sub.2. Fe.sub.3 P, AlN, Si.sub.3 N.sub.4, TiC, WC, BN, NiB and/or FeB, and (5) 0.001-1% S.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: August 17, 1999
    Assignee: Taiho Kogyo Co., LTd.
    Inventors: Takashi Tomikawa, Toshihiko Kira, Soji Kamiya
  • Patent number: 5911949
    Abstract: An abrasion resistant copper alloy suitable for the material of an overlaid layer formed at the valve seat of an engine cylinder head formed of aluminum alloy. The copper alloy consists essentially of nickel in an amount ranging from 10 to 30% by weight; silicon in an amount ranging from 0.5 to 5.0% by weight; at least one element selected from the group consisting of molybdenum, tungsten, tantalum, niobium and vanadium, in an amount ranging from 2.0 to 15.0% by weight; and balance being copper and impurities.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: June 15, 1999
    Assignees: Nissan Motor Co., Ltd., Mitsui Mining & Smelting Co., Ltd.
    Inventors: Ryuji Ninomiya, Takeshi Ojiro, Makoto Kano, Hidenobu Matsuyama
  • Patent number: 5858125
    Abstract: A magnetoresistive material of the present invention has a structure in which many clusters are surrounded by a crystal phase of Cu and/or Ag, where each cluster has a grain size of 20 nm or less and composed of an amorphous phase containing at least one ferromagnetic metal element T as a main component selected from Fe, Co and Ni, and at least one element M selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: January 12, 1999
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 5843243
    Abstract: A wear-resistant copper-based alloy includes 10.0 to 30.0% by weight Ni, 2.0 to 15.0% by weight Fe, 2.0 to 15.0% by weight Co, 0.5 to 5.0% by weight Si, 1.0 to 10.0% by weight Cr, 2.0 to 15.0% by weight at least one first optional element selected from the group consisting of Mo, Ti, Zr, Nb and V, at least one second optional element selected from the group consisting of C and O, and the balance of Cu and inevitable impurities. A carbon content "X" and an oxygen content "Y" satisfy the following relationships; namely: 0.ltoreq."X".ltoreq.0.5, 0.ltoreq."Y".ltoreq.0.05, and "Y".gtoreq.(-0.8)("X")+0.04. The wear-resistant copper-based alloy enables to improve the toughness of weld bead, and to inhibit weld bead from cracking effectively in the solidifying process of a building-up operation.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: December 1, 1998
    Assignees: Toyota Jidosha Kabushiki Kaisha, Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Minoru Kawasaki, Noboru Takayanagi, Hiromi Nomura, Akio Sato, Isaka Kanazawa, Kensuke Hidaka, Shozo Nagai
  • Patent number: 5516484
    Abstract: A copper-nickel based alloy, having reduced break-out during casting and reduced cracking during processing in solid state, which consists essentially of 3.1 to 25 wt. % of Ni, 0.1 to 1.5 wt. % of Mn, 0.0001 to 0.0093 wt. % of B, 0.01 to 0.7 wt. % of Si, and from 3 to 10 wt. % of Sn and the remainder being Cu and unavoidable elements.
    Type: Grant
    Filed: February 7, 1995
    Date of Patent: May 14, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5441696
    Abstract: A copper-nickel based alloy, which comprises 3 to 25 wt % of Ni, 0.1 to 1.5 t % of Mn, 0.0001 to 0.01 wt % of B and the rest being Cu and an unavoidable element.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 15, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5424030
    Abstract: A copper alloy contains beryillium ranging from 0.2 to 0.7% in weight, nickel ranging from 0.1% to 2% in weight, and the balance copper and incidental impurities. Preferably, the incidental impurities include sulfur. A first preferable additional substance includes cobalt, zirconium or iron. A second preferable substance includes tin or zinc. A lead frame with a fine lead pattern is formed from a sheet of the copper alloy without burr, thereby improving the production yield of the lead frame.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: June 13, 1995
    Assignee: Yamaha Metanix Corporation
    Inventor: Hideya Takahashi
  • Patent number: 5378294
    Abstract: The invention relates to low-nickel copper alloys to be used as brazing filler metals, which alloys also contain phosphorus, tin and possibly small amounts of manganese. The alloys are produced by means of atomization methods. Their advantages are low liquidus temperature and narrow mushy zone, high joint strength and good corosion properties. The alloys are cadmium free and economical in price and they are mainly used for brazing copper and its alloys.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: January 3, 1995
    Assignee: Outokumpu Oy
    Inventor: Petri T. Rissanen
  • Patent number: 5370840
    Abstract: There is disclosed a copper base alloy which contains specified additions of chromium, zirconium, cobalt and/or iron, and titanium as well as methods for the processing of the copper alloy. One method of processing results in a copper alloy having high strength and high electrical conductivity. A second method of processing results in a copper alloy with even higher strength and a minimal reduction in electrical conductivity.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: December 6, 1994
    Assignee: Olin Corporation
    Inventors: Ronald N. Caron, John F. Breedis
  • Patent number: 5336444
    Abstract: A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: August 9, 1994
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Renuka S. Divakaruni, Govindarajan Natarajan, Srinivasa S. N. Reddy, Manfred Sammet
  • Patent number: 5334346
    Abstract: This invention relates to a high performance copper alloy and its manufacturing methods for electrical and electronic parts which have good electrical conductivity, superior mechanical properties, and high thermal stability of tin-lead plating. The copper alloy consisting essentially of copper and from copper-nickel-silicon-phosphor-magnesium alloys for semiconductor leadframe alloys consisting essentially of copper and from 0.5 to 2.4% by weight nickel, from 0.1 to 0.5% by weight silicon, from 0.02 to 0.16% by weight phosphorus, and from 0.02 to 0.2% by weight magnesium.
    Type: Grant
    Filed: February 18, 1993
    Date of Patent: August 2, 1994
    Assignees: Poongsan Corporation, Young G. Kim
    Inventors: Young G. Kim, In Y. Hwang
  • Patent number: 5259898
    Abstract: An alloy, in particular for the manufacture of spectacle frames, and a spectacle wire or a spectacle frame and connecting wires for electronic component parts manufactured using the alloy of the invention. In order to obtain good mechanical characteristics, for example, of the spectacle frame at low expense, the invention provides the following alloy which, in percentage by weight, is composed as follows: 63-78% copper, 3-7% nickel, 1-3% iron, 0.01-0.20% phosphorus, the remainder being zinc.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: November 9, 1993
    Assignee: Berkenhoff GmbH
    Inventors: Klaus Tauber, Wolfgang Brandstaetter, Erich Dommer, Juergen Fackert, Bruno Rechtziegel
  • Patent number: 5256214
    Abstract: A method for the manufacture of a copper based alloy and the alloy produced thereby having improved mechanical properties. An alloy containing a dispersoid ingredient and a precipitating ingredient are spray cast so that during spray casting the dispersoid ingredient forms a second phase as a uniform dispersion of relatively small dispersoids. After solution treating and aging, the solid state precipitating ingredient precipitates as a third phase of a solid state precipitate.
    Type: Grant
    Filed: June 10, 1992
    Date of Patent: October 26, 1993
    Assignee: Olin Corporation
    Inventor: Sankaranarayanan Ashok
  • Patent number: 5215711
    Abstract: An age-hardening type special Cu alloy prepared by compounding 0.1 to 5% by weight of Ni, 0.01 to 7% by weight of Si, 0.01 to 10% by weight of Fe, 0.01 to 7% by weight of Ti and 0.001 to 1% by weight of B in Cu as the main component.This alloy is improved in the electrical conductivity, heat-conductivity and mechanical properties such as, in particular, the hardness and resiliency compared to the hitherto known alloys, and is useful for electronic parts.
    Type: Grant
    Filed: April 6, 1992
    Date of Patent: June 1, 1993
    Inventor: Tsuneaki Mikawa
  • Patent number: 5188799
    Abstract: A wear-resistant copper-base alloy having superior self-lubricity includes, by weight %,Ni: 10.0 to 30.0%;Si: 0.5 to 3%;Co: 2.0 to 15.0%;at least one metal selected from the group consisting of Mo, W, Nb and V:2.0 to 15.0%; andthe balance being Cu and unavoidable impurities, and having a structure in which hard phase grains containing 5 vol% or more of silicide of at least one metal selected from the group consisting of Mo, W, Nb and V are uniformly dispersed in an amount of 10 to 60 vol% in a copper-rich matrix, to which 2.0 to 15.0% of Fe and/or 1.0 to 10.0% of Cr may be further added.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: February 23, 1993
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazuhiko Mori, Minoru Kawasaki, Shin Yoshida, Hiroyuki Murase, Takashi Saito, Kouji Tanaka, Yoshio Shimura
  • Patent number: 5132083
    Abstract: A laser padding material in accordance with the present invention comprises copper as its main component and at least one, as other contained elements, selected from the group consisting of 1-5 weight % of nickel (Ni), 0.2-5 weight % of silicon (Si), less than 1 weight % of boron (B), less than 2 weight % of phosphorus (P) and less than 3 weight % of manganese (Mn), whereby there can be easily formed at a high speed a padded layer which is high both in sliding friction resistance and in quality.In accordance with a laser padding method of the present invention, since material powder having such a composition as mentioned above is blown onto a metal base material and at the same time a laser beam is irradiated thereon in an inert gas atmosphere to thereby melt the material powder and form a padded layer, there can be easily formed at a high speed a padded layer which is high both in sliding friction resistance and in quality.
    Type: Grant
    Filed: January 19, 1990
    Date of Patent: July 21, 1992
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Toshihide Takeda, Kazuo Okamura
  • Patent number: 5074933
    Abstract: The invention provides a process for the manufacture of copper alloys having improved processability. The alloys are melted and atomized into droplets which are spray cast into a coherent deposit. The spray cast alloys are characterized by a finer dispersion of intermetallic than is possible by conventional casting. The alloys are capable of being cold rolled to a reduction of up to 70%. The spray cast alloys exhibit good electrical conductivity and a high yield strength. They are particularly suited for electrical spring contacts.
    Type: Grant
    Filed: July 25, 1989
    Date of Patent: December 24, 1991
    Assignee: Olin Corporation
    Inventors: Sankaranarayanan Ashok, John F. Breedis
  • Patent number: 5024815
    Abstract: A copper alloy comprising:(A) 0.15-1.0 wt % Fe,(B) 0.05-0.3 wt % P, and(C)(1) 0.01-0.1 wt % Ni and 0.01-0.05 wt % Si or(2) 0.01-0.1 wt % Ni and 0.005-0.05 wt % b or(3) 0.05-0.3 wt % Mg and 0.05-0.3 wt % Pb or(4) 0.01-0.1 wt % Mn and 0.005-0.05 wt % Si,with the balance being essentially composed of Cu.
    Type: Grant
    Filed: May 24, 1989
    Date of Patent: June 18, 1991
    Assignee: Yazaki Corporation
    Inventors: Yasusuke Ohashi, Toshihiro Fujino, Yasuhito Taki, Tamotsu Nishijima
  • Patent number: 5004581
    Abstract: A dispersion strengthened Cu (copper)-base alloy for a wear-resistant overlay formed on a metal substrate consists essentially of, by weight %,Ni: 5 to 30%;B: 0.5 to 3%;Si: 1 to 5%;Fe: 4 to 30%;Sn: 3 to 15% and/or An: 3 to 30%; andthe remainder being Cu and unavoidable impurities, and has a structure in which particles of boride and silicide of the Fe-Ni system are dispersed in a Cu-base matrix, and Cu-base primary crystals contain Sn and/or Zn in a solid solution state. If necessary, 0.1 to 5% of Al, 0.1 to 5% of Ti, and/or 1 to 10% of Mn may be added. 0.02 to 2% of C, and 0.1 to 10% of Cr and/or 0.3 to 5% of Ti may be further added. Instead of or along with Sn and/or Zn, 2 to 20% of Pb can be used, and nonsoluble Pb particles are uniformly dispersed between Cu-base .alpha. phase dendrites and serve as a solid lubricant.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: April 2, 1991
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Soya Takagi, Kazuhiko Mori, Minoru Kawasaki, Shinji Kato
  • Patent number: 4886641
    Abstract: A novel electrical contact spring material made of a copper base alloy is disclosed. This spring material has high strength and toughness, as well as good adhesion of solder. It also has reduced anisotropy in its characteristics in two directions, i.e., the working direction and the direction perpendicular to it. A very thin-walled member can be produced from this spring material since its anisotropy in characteristics is small and will not increase even if the amount of working is increased.The copper base alloy of which this spring material is made consists essentially of 2.2-5% Ti, 0.1-0.8% Co, 0.02-0.5% Cr, 0-0.6% of Ni and/or Fe, 0-0.5% of at least one of Ca, Mg, Zn, Cd, Li, Zr, Si, Mn, Sn and Al, and the balance being Cu and incidental impurities.
    Type: Grant
    Filed: April 20, 1988
    Date of Patent: December 12, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Takuro Iwamura, Masao Kobayashi
  • Patent number: 4873674
    Abstract: A bronze alloy composition for glass making molds that has excellent corrosion resistance and resistance to pitting, the composition comprising copper, aluminum, nickel, iron, manganese, and a critical amount of silicon to provide the resistance to pitting.
    Type: Grant
    Filed: February 24, 1989
    Date of Patent: October 10, 1989
    Assignee: O-I Brockway Glass, Inc.
    Inventor: Thomas W. McCausland
  • Patent number: 4822693
    Abstract: The present invention relates to copper-iron-nickel composite materials having utility in electronic applications because of their low coefficients of expansion and high thermal conductivities. Composite materials in accordance with the present invention consist essentially of about 10% to 80% copper and the balance iron plus nickel with the ratio of iron to nickel being in the range of from about 1.5:1 to about 2.0:1. Preferred composite materials have an iron to nickel ratio in the range of from about 1.6:1 to about 1.9:1.
    Type: Grant
    Filed: March 23, 1987
    Date of Patent: April 18, 1989
    Assignee: Olin Corporation
    Inventors: Sankaranarayanan Ashok, Jacob Crane, Julius C. Fister
  • Patent number: 4818307
    Abstract: Herein disclosed is a dispersion strengthened copper-base alloy having an excellent wear resistance, which alloy contains 5 to 30% (in weight) of nickel, 1 to 5% of silicon, 0.5 to 3% of boron and 4 to 30% of iron, the remainder being copper and unavoidable impurities, and having a structure in which hard particles composed chiefly of a silicide of iron-nickel system are dispersed in a copper-base matrix. The copper-base alloy is suitably cladded (or deposited) locally on a metallic base. The alloy may contain at least one of 0.1 to 5% of aluminum, 0.1 to 5% of Ti and 1 to 10% of Mn, if necessary, in addition to the above specified components. If necessary, 0.02 to 2% of carbon and 0.5 to 10% of chromium and/or 0.3 to 5% of titanium may be further added. Then, the structure is modified such that both the particles composed chiefly of the iron-nickel silicide and carbide particles are coexistently dispersed in the copper-base matrix.
    Type: Grant
    Filed: December 16, 1987
    Date of Patent: April 4, 1989
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiko Mori, Katsuhiko Ueda, Soya Takagi, Minoru Kawasaki
  • Patent number: 4780275
    Abstract: A corrosion-resistant copper-based alloy contains 0.1-5 percent by weight of nickel; 0.01-1.5 percent by weight total of titanium and niobium; 0.2-5 percent by weight total of iron and chromium; 0.01-0.25 percent by weight total of germanium and gallium; and up to 0.01 percent by weight each of the trace elements phosphorus, silicon and manganese. The alloying elements passivate and cathodically protect the copper while the trace elements function as stabilizers. The alloy may be used for the facades of buildings, for roofs, for the gutters of buildings and for applications involving flowing corrosive media.
    Type: Grant
    Filed: March 6, 1987
    Date of Patent: October 25, 1988
    Assignee: William Prym-Werke GmbH. & Co. KG.
    Inventors: Horst Grefkes, Alex Troost, Okan Akin, Michael Prym
  • Patent number: 4743314
    Abstract: A highly corrosion-resistant amorphous Ni-Cu-Ti-Ta, Ni-Cu-Ti-Nb and Ni-Cu-Ti-Ta-Nb alloys in which the sum of Ti and Ta and/or Nb is 30-62.5 atomic %.
    Type: Grant
    Filed: September 21, 1987
    Date of Patent: May 10, 1988
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Kimikado Miura, Katsuhiko Asami, Asahi Kawashima
  • Patent number: 4732733
    Abstract: A copper-base alloy for leadframes consisting essentially of 0.8-4.0 weight % of Ni, 0.2-4.0 weight % of Ti and 0.05-0.6 weight % of Mg, the balance being essentially Cu and inevitable impurities, and a ratio of Ni to Ti being 1-4. This copper-base alloy has high mechanical strength of about 50 kgf/mm.sup.2 or more and electric conductivity of 30% IACS or more as well as good solderability and solder durability. Thus, it may be used as a highly reliable material for leadframes of semiconductor devices.
    Type: Grant
    Filed: August 22, 1986
    Date of Patent: March 22, 1988
    Assignee: Hitachi Metals, Ltd.
    Inventors: Daiji Sakamoto, Rikizo Watanabe
  • Patent number: 4732602
    Abstract: This invention relates to a copper base alloy with improved toughness and weldability for use in making molds for glass containers. The alloy of the present invention contains copper, nickel and aluminum and may have intentional additions of iron for grain refinement and niobium for increased oxidation resistance. It is felt that niobium should be added when the alloy is to be welded under adverse conditions. The nickel content sould be between about 12 and 16 wt/o and the aluminum content between about 8.5 and 11.5 wt/o. If the aluminum content is above or below the range, and/or the nickel content is near or above 16 wt/o the alloy may have excessive hardness. Iron additions for grain refinement should be up to about 1.0 wt/o. The niobium, when added to improve weldability, should be maintained between about 0.5 and 1.0 wt/o.
    Type: Grant
    Filed: June 26, 1986
    Date of Patent: March 22, 1988
    Assignee: Kelly Machine & Foundry
    Inventors: John F. Dakan, Donald G. Schmidt
  • Patent number: 4666795
    Abstract: In construction of a clad material for ornamental use such as eyeglass frames and watch bands, use of age-hardenable alloy sheath followed by age-hardening enables production of product with light weight, high mechanical strength, excellent workability and good fit to brazing and plating.
    Type: Grant
    Filed: May 23, 1985
    Date of Patent: May 19, 1987
    Assignee: Nippon Gakki Seizo Kabushiki Kaisha
    Inventors: Kazuo Kurahashi, Nobutoshi Onodera
  • Patent number: 4661178
    Abstract: A predominately beta phase copper base alloy which is adapted for forming in a semi-solid slurry condition. The alloy has a microstructure comprising discrete particles within a lower melting point matrix and consists essentially of from about 9% to about 10.5% by weight aluminum, at least about 10% by weight nickel and the balance essentially copper. In accordance with an alternative embodiment the nickel can be replaced on a one for one basis by iron within certain limits. The alloys are processed by chill casting with a cooling rate throughout the section of the casting comprising at least about 10.degree. C./sec. The alloys as-cast or when reheated to a semi-solid exhibit a microstructure suitable for press forging.
    Type: Grant
    Filed: June 28, 1985
    Date of Patent: April 28, 1987
    Assignee: Olin Corporation
    Inventors: Sankaranarayanan Ashok, John F. Breedis
  • Patent number: 4612167
    Abstract: A copper-base alloy for leadframes comprising 0.8-4.0 weight % of Ni, 0.2-4.0 weight % of Ti, and balance Cu and inevitable impurities, the ratio of Ni to Ti being 1-4. It may also comprise 0.1-2.0 weight % of Zn. It may further comprise 0.01-2.0 weight % of at least one of Fe and Co and 0.005-0.5 weight % of at least one element selected from the group consisting of Al, Si, Mn and Mg. The copper-base alloy has good electric conductivity and high mechanical strength. It further has good solderability and solder durability.
    Type: Grant
    Filed: March 1, 1985
    Date of Patent: September 16, 1986
    Assignee: Hitachi Metals, Ltd.
    Inventors: Rikizo Watanabe, Daizi Sakamoto
  • Patent number: 4612164
    Abstract: Malleability and resistance to cracking of alloys containing nickel, copper, sulfur, etc. are enhanced through the co-presence of cerium and magnesium.
    Type: Grant
    Filed: November 1, 1984
    Date of Patent: September 16, 1986
    Assignee: Inco Alloys International, Inc.
    Inventors: Cecil L. Ramsey, Francis S. Suarez
  • Patent number: 4591484
    Abstract: A lead material for semiconductor devices comprising from 0.4 to 4.0 wt % of Ni, from 0.1 to 1.0 wt % of Si, from 0.05 to 1.0 wt % of Zn, from 0.01 to 1.0 wt % of Mn, from 0.001 to less than 0.01 wt % of Mg, from 0.001 to less than 0.01 wt % of Cr, up to 0.003 wt % of S, and the balance of Cu and inevitable impurities. The material may further comprise up to 5 ppm of hydrogen and up to 5 ppm of oxygen.
    Type: Grant
    Filed: April 3, 1985
    Date of Patent: May 27, 1986
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Takashi Matsui, Hidekazu Harada