Abstract: A coating for metallic faces comprising an alloy of aluminum with at least one of zinc, cadmium or manganese is proposed, whereby the alloy coating is applied onto the metal surface by means of electrodeposition using a non-aqueous electrolyte. The electrolyte comprises toluene as a solvent for chlorides of the alloy components. The coating may be used e.g. for corrosion protection.
Abstract: An aluminum alloy, a lithographic printing plate support, a lithographic printing plate using the aluminum alloy are disclosed. The aluminum alloy is comprised of aluminum containing 0.20 to 1.0% Fe and 0.005 to 0.1% of elements selected from the group consisting of Sn, In, Ga and Zn. The support composed by the aluminum alloy can be chemically etched with an acid and/or an alkali solution and after undergoing etching the surface of the support is uniformly etched. The uniformly etched surface may be provided with a subbing layer or an anode oxidation film. The support is coated with a light-sensitive layer and utilized as a lithographic printing plate.
Type:
Grant
Filed:
June 1, 1983
Date of Patent:
January 6, 1987
Assignees:
Fuji Photo Film Co., Ltd., Sumitomo Light Metal Industries, Ltd.
Abstract: An aluminum base alloy for use as a bearing material. The alloy contains 4% or more by weight of bismuth. The bismuth content by weight may be up to 8%, and for some purposes as much as 12%. The alloy also contains lead and silicon to enhance bearing surface properties and wear resistance and copper as a strengthening addition. There may be other strengthening and/or hard particles additivies such as nickel, manganese, chromium, antimony and zinc. Tin can be added to improve corrosion resistance.
Abstract: An aluminum base material with a hard facing deposit which shows extremely good hot hardness properties when subjected to high operating temperatures. The invention provides a hard facing deposit which shows a hot hardness of at least 100 BHN at 600.degree. F., and has sufficient toughness to resist the formation of cracks when subjected to such operating temperatures. According to the preferred embodiment, the hard facing deposit includes, by weight, about 6% to about 12% silicon, up to about 6% copper, about 2% to about 6% manganese, up to about 3% iron, and about 16% to about 25% nickel. The invention is particularly useful in forming a heavy duty diesel engine piston with a piston ring groove formed in the hard facing deposit.