Magnesium Containing Patents (Class 420/532)
-
Patent number: 12163206Abstract: An aluminum alloy is provided including between about 7.5-9.5 wt. % silicon, between about 3.0-4.0 wt. % copper, and between about 0.01-5.0 wt. % titanium. The aluminum alloy may include up to about 1.3 wt. % iron, up to about 0.5 wt. % manganese, up to about 0.1 wt. % magnesium, up to about 3.0 wt. % zinc, and up to about 0.35 wt. % tin. The balance of the aluminum alloy may include aluminum.Type: GrantFiled: October 29, 2018Date of Patent: December 10, 2024Assignee: FNA GROUP, INC.Inventors: Gus Alexander, Richard J. Gilpatrick
-
Patent number: 12110575Abstract: A high strength and toughness die-casting aluminum alloy without heat treatment, a preparation method and an article thereof are provided. Aluminum alloy includes the following components in percentage by mass: 7.0-10.0 wt. % of silicon, not more than 0.05 wt. % of copper, not more than 0.4 wt. % of magnesium, 0.3-0.7 wt. % of manganese, not more than 0.2 wt. % of iron, not more than 0.07 wt. % of zinc, not more than 0.2 wt. % of titanium, 0.015-0.03 wt. % of strontium, 0.01-0.1 wt. % of vanadium, 0.01-0.1 wt. % of zirconium, and other unavoidable impurity elements, each not more than 0.05 wt. %. The total amount of other unavoidable impurity elements is not more than 0.25 wt. %, and the rest is aluminum.Type: GrantFiled: August 15, 2023Date of Patent: October 8, 2024Assignees: GUANGDONG HONGTU AUTO PARTS CO., LTD, GUANGDONG HONGTU TECHNOLOGY (HOLDINGS) CO., LTDInventors: Hua Huang, Yu Zhu, Feng Yan, Yun Lin, Li Wan
-
Patent number: 11898224Abstract: The present invention provides a high thermal conductivity aluminum alloy, which comprises the following components in percentage by weight: Al: 80%-90%; Si: 6.5%-8.5%; Fe: 0.2%-0.5%; Zn: 0.8%-3%; V: 0.03%-0.05%; Sr: 0.01%-1%; graphene: 0.02%-0.08%. In the high thermal conductivity aluminum alloy of the present invention, alloying elements including Si, Fe, and Zn are optimized; Sr, V, graphene, among others are added. The amount of each component is controlled so that they coordinate to ALLOW high thermal conductivity, good casting performance and excellent semi-solid die-casting property. Graphene is introduced to the high thermal conductivity aluminum alloy of the present invention to exploit the good thermal conductivity of graphene, allowing the formation of a high thermal conductivity aluminium alloy.Type: GrantFiled: August 14, 2019Date of Patent: February 13, 2024Assignee: ZHUHAI RUNXINGTAI ELECTRICAL CO., LTDInventors: Huaide Ren, Jicheng Wang, Gunan Li, Jie Tan, Ying Zhang, Mingfeng Wang
-
Patent number: 11466352Abstract: Described herein are formable, high strength aluminum alloy products and methods of preparing and processing the same. The methods of preparing and processing the aluminum alloy products include casting an aluminum alloy and performing tailored rolling and downstream thermal processing steps. The resulting aluminum alloy products possess high strength and formability properties.Type: GrantFiled: October 23, 2019Date of Patent: October 11, 2022Assignee: Novelis Inc.Inventors: Sazol Kumar Das, Rajeev G. Kamat, Rajasekhar Talla, Tudor Piroteala
-
Patent number: 10994328Abstract: A method for casting that includes a.) determining a diameter (D) of a cross section of a product to be cast in meter (m), b.) determining an intended steady-state casting speed (V) of the product to be cast using direct chill casting in meter per second (m/s), c.) determining a Si content (cSi) in percent by weight based on the total weight of a melt (wt-%) for the melt to be used for casting the cast product, d.) preparing a melt comprising Zn: 5.30 to 5.9 wt-%, Mg: 2.07 to 3.3 wt-%, Cu: 1.2 to 1.45 wt-%, Fe: 0 to 0.5 wt-%, Si: according to cSi, impurities up to 0.2 wt-% each and 0.5 wt-% in total, and balance aluminium, and e.) casting the melt into the cast product having the intended diameter (D) using direct chill casting, wherein the casting is carried out using the intended steady-state casting speed (V).Type: GrantFiled: January 21, 2019Date of Patent: May 4, 2021Assignee: NORSK HYDRO ASAInventors: Arild Håkonsen, Rune Ledal, Britt Elin Gihleengen, Knut Omdal Tveito, John Erik Hafsås, Kjerstin Ellingsen, Qiang Du, Mohammed M'Hamdi
-
Patent number: 10619948Abstract: A heat radiating plate 10 of a metal material includes a flat plate portion 10a, a large number of columnar protruding portions 10b which protrude from one major surface of the flat plate portion and which are integrated with the flat plate portion, and a reinforcing plate member 12 of a material, which has a higher melting point than that of the flat plate portion and columnar protruding portions and which is arranged in a region, which is arranged in the flat plate portion and which is close to one major surface of the flat plate portion, the reinforcing member passing through the flat plate portion to extend in directions substantially parallel to the one major surface of the flat plate portion and having end faces exposed to the outside, the whole surface of the reinforcing member except for the end faces being bonded directly to the flat plate portion.Type: GrantFiled: September 25, 2013Date of Patent: April 14, 2020Assignee: DOWA METALTECH CO., LTD.Inventors: Satoru Ideguchi, Hideyo Osanai, Hirotaka Kotani
-
Patent number: 10538834Abstract: Disclosed are high-strength aluminum alloys and methods of making and processing such alloys. More particularly, disclosed is a 6XXX series aluminum alloy exhibiting improved mechanical strength, formability, corrosion resistance, and anodized qualities. An exemplary method includes homogenizing, hot rolling, solutionizing, and quenching. In some cases, the processing steps can further include annealing and/or cold rolling.Type: GrantFiled: December 16, 2016Date of Patent: January 21, 2020Assignee: NOVELIS INC.Inventors: Wei Wen, Hany Ahmed, Rajeev Kamat, Corrado Bassi, Guillaume Florey, Cyrille Bezencon, Juergen Timm, David Leyvraz, Aude Despois, Sazol Kumar Das
-
Patent number: 10513766Abstract: Provided are new high strength 6xxx aluminum alloys and methods of making aluminum sheets thereof. These aluminum sheets may be used to fabricate components which may replace steel in a variety of applications including the transportation industry. In some examples, the disclosed high strength 6xxx alloys can replace high strength steels with aluminum. In one example, steels having a yield strength below 340 MPa may be replaced with the disclosed 6xxx aluminum alloys without the need for major design modifications.Type: GrantFiled: December 16, 2016Date of Patent: December 24, 2019Assignee: NOVELIS INC.Inventors: Hany Ahmed, Wei Wen, Corrado Bassi, Aude Despois, Guillaume Florey, Xavier Varone
-
Patent number: 10358695Abstract: A method of making an aluminum alloy containing zirconium includes heating a first composition comprising aluminum to a first temperature of greater than or equal to about 580° C. to less than or equal to about 800° C. The method further includes adding a second composition including a copper-zirconium compound to the first composition to form a third composition. The copper-zirconium compound of the second composition has a molar composition of greater than or equal to about 41% zirconium to less than or equal to about 67% zirconium and a balance of copper. The method also includes solidifying the third composition at a cooling rate of greater than or equal to about 0.1° C./second to less than or equal to about 100° C./second to a second temperature less than or equal to a solidus temperature and decomposing the copper-zirconium compound at a third temperature of less than or equal to about 715° C.Type: GrantFiled: April 7, 2017Date of Patent: July 23, 2019Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Michael J. Walker, Qigui Wang
-
Patent number: 10253402Abstract: The invention relates to the use of a sheet made of an aluminium alloy for manufacturing a stamped bodywork or structural part of a motor vehicle body, also referred to as a “body in white”, wherein said sheet has a yield strength Rp0.2 no lower than 60 MPa and a tensile elongation Ag0 no lower than 34%. The invention also relates to a method for making such a stamped bodywork or structural part for a motor vehicle body, made from said sheet and selected in the group including inner panels or linings for car doors, a passenger compartment floor, a boot floor, a spare wheel housing, or even a passenger compartment side.Type: GrantFiled: July 9, 2014Date of Patent: April 9, 2019Assignee: CONSTELLIUM NEUF-BRISACHInventors: Herve Ribes, Gilles Guiglionda, Dominique Daniel
-
Patent number: 10208371Abstract: The disclosure provides aluminum alloys having varying ranges of alloying elements and properties. In some variations, the alloy can include 3.4 to 4.9 wt % Zn, 1.3 to 2.1 wt % Mg, no greater than 0.06 wt % Cu, no greater than 0.06 wt % Zr, 0.06 to 0.08 wt % Fe, no greater than 0.05 wt % Si, and the balance is aluminum and incidental impurities.Type: GrantFiled: January 13, 2017Date of Patent: February 19, 2019Assignee: Apple Inc.Inventors: Abhijeet Misra, James A. Wright, Herng-Jeng Jou
-
Patent number: 10138537Abstract: An aluminum alloy member resistant to cracking and having high strengths and excellent stress corrosion cracking resistance is manufactured by crushing a 7xxx aluminum alloy extrudate. Specifically, a 7xxx aluminum alloy extrudate containing Zn of 3.0-8.0%, Mg of 0.4-2.5%, Cu of 0.05-2.0%, and Ti of 0.005-0.2%, in mass percent, and prepared through press quenching is subjected to a reversion treatment, to crushing within 72 hours after the reversion treatment, and then to aging. The reversion treatment includes heating at a temperature use rate of 0.4° C./second or more, holding in a temperature range of 200-550° C. for longer than 0 second, and cooling at a rate of 0.5° C./second or more. The ratio of the tensile residual stress ?rs to the 0.2% yield stress ?0.2 after aging and the total content X of Mg and Zn satisfy a condition specified by Expression (1): Y??0.1X+1.4??(1).Type: GrantFiled: December 18, 2013Date of Patent: November 27, 2018Assignee: Kobe Steel, Ltd.Inventors: Narikazu Hashimoto, Takahiro Shikama, Tsunetake Tsuyoshi
-
Patent number: 10119183Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.Type: GrantFiled: January 30, 2017Date of Patent: November 6, 2018Assignee: ARCONIC INC.Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
-
Patent number: 10086429Abstract: Methods for casting high strength, high ductility lightweight metal components are provided. The casting may be die-casting. A molten lightweight metal alloy is introduced into a cavity of a mold. The molten lightweight metal alloy is solidified and then a solid component is removed from the mold. The solid component is designed to have a thin wall. For example, the solid component has at least one dimension of less than or equal to about 2 mm. In this way, a chill zone microstructure is formed that extends across the at least one dimension of the solid lightweight metal alloy component. The solid component thus may be substantially free of dendritic microstructure formation, enabling more extensive alloy chemistries than previously possible during casting. Such methods may be used to form high strength, high ductility, and lightweight metal alloy vehicle components.Type: GrantFiled: October 13, 2015Date of Patent: October 2, 2018Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Bin Hu, Anil K. Sachdev, Jon T. Carter, Jianfeng Wang
-
Patent number: 10006108Abstract: The disclosure is related to new, formable and strong aluminum alloys for making packaging products such as bottles and cans.Type: GrantFiled: March 11, 2016Date of Patent: June 26, 2018Assignee: NOVELIS INC.Inventors: Wei Wen, Johnson Go, Daehoon Kang
-
Patent number: 9890448Abstract: This relates to an aluminum alloy product, in particular an age-hardenable Al—Zn—Mg type alloy product for structural members, the alloy product combining a high strength with high toughness and reduced quench sensitivity, and having a chemical composition including, in wt. %: Zn about 3 to 11%, Mg about 1 to 3%, Cu about 0.9 to 3%, Ge about 0.03 to 0.4%, Si max. 0.5%, Fe max. 0.5%, balance aluminum and normal and/or inevitable elements and impurities. Furthermore, this relates to a method of producing such aluminum alloy products.Type: GrantFiled: November 19, 2014Date of Patent: February 13, 2018Assignee: ALERIS ALUMINUM KOBLENZ GMBHInventors: Shangping Chen, Linzhong Zhuang, Sunil Khosla, Hugo Van Schoonevelt, Andrew Norman, Achim Burger
-
Patent number: 9850556Abstract: New heat treatable aluminum alloys having magnesium and zinc are disclosed. The new aluminum alloys generally contain 3.0-6.0 wt. % Mg, 2.5-5.0 wt. % Zn, where (wt. % Mg)/(wt. % Zn) is from 0.60 to 2.40.Type: GrantFiled: February 3, 2017Date of Patent: December 26, 2017Assignee: Arconic Inc.Inventor: Jen Lin
-
Patent number: 9663847Abstract: Disclosed is an aluminum alloy for die casting which comprises 1.0 weight % to 2.0 weight % of magnesium (Mg), 0.5 weight % to 1.6 weight % of iron (Fe), and 0.5 weight % to 0.9 weight % of silicon (Si), with the remainder being aluminum (Al) and inevitable impurities.Type: GrantFiled: October 9, 2012Date of Patent: May 30, 2017Assignee: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGYInventors: Ki Tae Kim, Je Sik Shin, Se Hyun Ko
-
Patent number: 9580775Abstract: New heat treatable aluminum alloys having magnesium and zinc are disclosed. The new aluminum alloys generally contain 3.0-6.0 wt. % Mg, 2.5-5.0 wt. % Zn, where (wt. % Mg)/(wt. % Zn) is from 0.60 to 2.40.Type: GrantFiled: March 31, 2016Date of Patent: February 28, 2017Assignee: ARCONIC INC.Inventor: Jen Lin
-
Patent number: 9546566Abstract: The invention relates to a part comprising a coating on a superalloy metal substrate, the coating comprising a metal underlayer covering said substrate, the part being characterized in that said metal underlayer contains a base of nickel aluminide and also contains 0.5 at % to 0.95 at % of one or more stabilizer elements M from the group formed by Cu and Ag for stabilizing the gamma and gamma prime phases.Type: GrantFiled: April 24, 2012Date of Patent: January 17, 2017Assignees: SNECMA, Centre National de la Recherche ScientifiqueInventors: Jean-yves Guedou, Mathieu Boidot, Claude Estournes, Daniel Monceau, Djar Oquab, Serge Selezneff
-
Patent number: 9315885Abstract: New heat treatable aluminum alloys having magnesium and zinc are disclosed. The new aluminum alloys generally contain 3.0-6.0 wt. % Mg, 2.5-5.0 wt. % Zn, where (wt. % Mg)/(wt. % Zn) is from 0.60 to 2.40.Type: GrantFiled: March 9, 2013Date of Patent: April 19, 2016Assignee: ALCOA INC.Inventor: Jen Lin
-
Patent number: 9109271Abstract: A nickel containing hypereutectic aluminum-silicon sand cast alloy is disclosed herein containing 18-20% by weight silicon, 0.3-1.2% by weight magnesium, 3.0-6.0% by weight nickel, 0.6% by weight maximum iron, 0.4% by weight maximum copper, 0.6% by weight maximum manganese, 0.1% maximum zinc and balance aluminum. The alloy may have a more narrow nickel content of 4.5%-6.0% by weight, and up to 2% by weight cobalt. The alloy may be substantially free from iron, copper and manganese. The alloy of the present invention is preferably sand cast, and most preferably lost foam cast with a pressure of 10 ATM to produce engine parts with high thermal properties that are easily machined.Type: GrantFiled: March 14, 2013Date of Patent: August 18, 2015Assignee: Brunswick CorporationInventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
-
Publication number: 20150136608Abstract: An aluminum alloy comprising more than 3.5% and up to 6.0% of Mg, 0.02 to 1.0% inclusive of Cu, 0.02 to 0.1% inclusive of Cr, and a remainder made up by Al and unavoidable impurities, wherein the contents of Si and Fe in the unavoidable impurities are limited to 0.05% or less and 0.05% or less, respectively, and wherein the number of intermetallic compound particles contained in the aluminum alloy and having a maximum length of 4 ?m or more is 50 particles or less per 1 mm2 of an arbitrary cross-sectional area of the aluminum alloy. An aluminum alloy is provided, which has excellent anodic-oxidation-treatability and can be used for providing an anodic-oxidation-treated aluminum alloy member having high withstand voltage properties and such excellent heat resistance that the occurrence of cracking under high temperatures conditions can be prevented.Type: ApplicationFiled: July 10, 2013Publication date: May 21, 2015Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Satoru Takada, Kazunori Kobayashi, Toshiyuki Tanaka, Kenichi Inoue
-
Patent number: 9033025Abstract: An aluminium-copper alloy comprising substantially insoluble particles which occupy the interdendritic regions of the alloy, provided with free titanium in quantity sufficient to result in a refinement of the grain structure in the cast alloy.Type: GrantFiled: February 10, 2011Date of Patent: May 19, 2015Assignee: AEROMET INTERNATIONAL PLCInventors: John Forde, William Stott
-
Publication number: 20150132181Abstract: A composition for producing aluminum casting, wrought, and welding filler metal alloys having a chemistry comprising Si varying from approximately 0.1 and 0.9 wt %,Mn varying from approximately 0.05 to 1.2 wt %, Mg varying from approximately 2.0 to 7.0 wt %, Cr varying from approximately 0.05 to 0.30 wt %, Zr varying from approximately 0.05 to 0.30 wt %, Ti varying from approximately 0.003 to 0.20 wt %, and B varying from approximately 0.0010 to 0.030 wt %, and a remainder of aluminum and various trace elements. The alloy is particularly suited to producing high strength structures such as automobiles, truck trailers, rail cars, and ships. It is the first 6xxx series weld filler metal that can be post-weld thermally treated and can weld 3xxx, 5xxx, 6xxx, and 7xxx series base alloys yielding far superior mechanical properties than those attainable from any other aluminum filler metal.Type: ApplicationFiled: November 4, 2014Publication date: May 14, 2015Inventors: Stephen L. ANDERSON, Bruce E. ANDERSON
-
Publication number: 20150098859Abstract: A diecasting alloy based on Al—Si is made of 6 to 12% by weight of silicon (Si), at least 0.3% by weight of iron (Fe), at least 0.25% by weight of manganese (Mn), at least 0.1% by weight of copper (Cu), 0.24 to 0.8% by weight of magnesium (Mg) and 0.40 to 1.5% by weight of zinc (Zn). The alloy also has 50 to 300 ppm of strontium (Sr) and/or 20 to 250 ppm of sodium (Na) and/or 20 to 350 ppm of antimony (Sb), and at least one of the following constituents: titanium (Ti) to an extent of not more than 0.2% by weight; not more than 0.3% by weight of zirconium; not more than 0.3% by weight of vanadium (V); and as the remainder aluminium and unavoidable impurities resulting from the production. The total content of Fe and Mn in the diecasting alloy together is not more than 1.5% by weight, the quotient of the percentages by weight of Fe and Mn is 0.35 to 1.5, and the quotient of the percentages by weight of Cu and Mg is 0.2 to 0.8.Type: ApplicationFiled: April 10, 2013Publication date: April 9, 2015Applicants: AMAG CASTING GMBH, AUDI AGInventors: Jan Hauck, Dominik Nicolas Boesch, Heinz Werner Hoeppel, Peter J. Uggowitzer, Marc Hummel, Werner Fragner, Helmut Suppan, Holm Boettcher
-
Patent number: 8992661Abstract: A series of inventions leading to the production of specific aluminum alloys (especially aluminum beverage can sheet product) through novel approach of introducing, selectively partitioning and managing alloying elements. This invention also enables manufacturing practices to enhance the performance characteristics of aluminum alloys produced. The selected elements can be derived from carbon anodes made from calcined petroleum coke with high metallic contents (such as nickel and vanadium). Alloying elements can also be introduced and managed from other raw material such as alumina and bath constituents added during aluminum smelting process. Additionally, cell operating parameters, such as cell temperature, off gas flow rate, aluminum tapping rate and impurity partition characteristics can also be manipulated to produce low cost aluminum alloys and facilitate utilization of high metallic content calcined petroleum coke.Type: GrantFiled: August 27, 2012Date of Patent: March 31, 2015Assignee: Tri-Arrows Aluminum Inc.Inventors: Gyan Jha, Frank R. Cannova, Subodh K. Das, Barry A. Sadler
-
Publication number: 20150071815Abstract: An aluminum alloy for components with increased rigidity, having a tensile yield strength Rp0.2>200 MPa and simultaneous elongation at break A>6% after a heat treatment, or a tensile yield strength Rp 0.2>120 MPa and simultaneously high elongation at break A>9% in the cast state, or >10% after a T6 heat treatment, in particular for structural and chassis components of a motor vehicle, containing 9 to 11.5 wt % silicon, 0.5 to 0.8 wt % manganese, 0.2 to 1.0 wt % magnesium, 0.1 to 1.0 wt % copper, 0.2 to 1.5 wt % zinc, 0.05 to 0.4 wt % zirconium, 0.01 to 0.4 wt % Cr, max. 0.2 wt % iron, max. 0.15 wt % titanium, 0.01 to 0.02 wt % strontium and the remainder as aluminum and production-related impurities with a maximum total of 0.5 wt %.Type: ApplicationFiled: April 3, 2013Publication date: March 12, 2015Inventors: Stuart Wiesner, Leif Speckert
-
Publication number: 20150064058Abstract: Provided are a method of manufacturing an aluminum-zinc-based alloy sheet using twin-roll casting and an aluminum-zinc-based alloy sheet manufactured thereby. Specifically, a method of manufacturing an aluminum-zinc-based alloy sheet, including preparing a melt by melting elements corresponding to an aluminum alloy including 0.5 wt % to 10 wt % of zinc, inevitable impurities and aluminum as a balance (step 1); and twin-roll casting by introducing the melt prepared in step 1 between a pair of rotating cooling rolls (step 2), and an aluminum-zinc-based alloy sheet manufactured thereby are provided. The present invention may manufacture an aluminum-zinc-based alloy sheet, in which twin-roll casting is known to be difficult due to a wide solid-liquid coexistence region, by twin-roll casting by using cooling rolls having high thermal conductivity and controlling a reduction force by the rotational speed of the rolls.Type: ApplicationFiled: October 16, 2013Publication date: March 5, 2015Applicant: KOREA INSTITUTE OF MACHINERY AND MATERIALSInventors: Hyoung-Wook KIM, Yun-Soo LEE, Cha Yong LIM, Jae Hyung CHO
-
Aluminum alloy products having improved property combinations and method for artificially aging same
Patent number: 8961715Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The instantly disclosed alloys are useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction.Type: GrantFiled: April 17, 2014Date of Patent: February 24, 2015Assignee: Alcoa Inc.Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana K. Denzer, Jen C. Lin, John Newman, Gregory B. Venema, Cagatay Yanar, Julien Boselli -
Patent number: 8962163Abstract: The present invention provides an aluminum alloy component having an anodic oxide film less causing cracks and high in surface smoothness, which is capable of reducing abrasion of a cutting tool regardless of the excellent machinability. The aluminum alloy component (1) has an anodic oxide film formed on a surface of a base metal of an aluminum alloy. The aluminum alloy consists of Fe: 0.5 to 2 mass %, Cu: 0.35 to 0.6 mass %, Mg: 0.35 to 1.3 mass %, Si: 0.2 to 1.3 mass %, Cr: 0.005 to 0.3 mass %, Mn: 0.01 to 0.3 mass %, Ti: 0.005 to 0.1 mass %, and the balance being inevitable impurities, wherein Zn is controlled to be less than 0.25 mass %, and wherein Al—Fe series crystals and Al—Fe—Si series crystals having a maximum grain diameter of 30 ?m or less exist in the anodic oxide film in a dispersed manner with an average center-to-center distance of 10 to 100 ?m, and a percentage of a total occupied area of the Al—Fe series crystals and Al—Fe—Si series crystals in the anodic oxide film is 5% or more.Type: GrantFiled: December 17, 2010Date of Patent: February 24, 2015Assignee: Showa Denko K.K.Inventors: Ryousuke Shimao, Shigekazu Nagai
-
Patent number: 8961870Abstract: The invention relates to an aluminum alloy lithographic sheet product having an enhanced electrolytic graining response in which Zn between 0.5 and 2.5 wt % is added to an aluminum base alloy, in particular an alloy of the 1XXX, 3XXX or 5XXX series alloys. The invention also relates to a method of producing a lithographic sheet product.Type: GrantFiled: March 22, 2010Date of Patent: February 24, 2015Assignee: Novelis Inc.Inventors: Andrew Coleman, David S. Wright, Nicolas Kamp, Jeremy Mark Brown
-
Publication number: 20150030496Abstract: Vehicle parts, and more particularly wire and wire assembly parts, manufactured from a non-heat-treatable, wrought aluminum alloy are disclosed. The wire and wire assembly parts are shaped into different forms that meet certain strength and bendability requirements and are capable of being manufactured using forming, threading and swaging. The aluminum alloy used to manufacture the parts is a non-heat-treatable, wrought alloy formed predominantly from aluminum (Al) metal, which is alloyed primarily with magnesium (Mg), and which also includes silicon (Si), iron (Fe), copper (Cu), manganese (Mn), chromium (Cr), zinc (Zn), titanium (Ti), beryllium (Be) and other elements.Type: ApplicationFiled: July 26, 2013Publication date: January 29, 2015Applicant: M&C CorporationInventors: Ronald Daniel MCLEOD, Stephen Alan Moore
-
Publication number: 20140348698Abstract: An aluminum alloy member is used for joining ends of a sheet-like aluminum alloy member by friction stir welding, and forming an anodic oxidation coating on a weld front surface or a weld back surface, the aluminum alloy member including 0.3 to 1.5 mass % of Mg, 0.2 to 1.2 mass % of Si, 0.5 mass % or less of Cu, and 0.2 mass % or less of Fe, with the balance being Al and unavoidable impurities, Fe-containing second phase particles having a particle size (circle equivalent diameter) of more than 1 ?m, among second phase particles dispersed in a matrix of the aluminum alloy member, having an average particle size of 5 ?m or less.Type: ApplicationFiled: August 6, 2013Publication date: November 27, 2014Inventors: Mineo Asano, Yusuke Yamamoto, Toshihiko Fukuda
-
Publication number: 20140341678Abstract: The invention relates to an aluminum alloy strip with improved surface optics, which is fabricated via hot and/or cold rolling, and consists of a type AA 3xxx, AA 5xxx, AA 6xxx or AA 8xxx aluminum alloy. The object of proposing an aluminum alloy strip that is suitable for attractive and precious surface optics despite the elevated percentage of alloy constituents is achieved in that, after degreasing, the finish-rolled aluminum alloy strip exhibits an increase in the luminance value L*(?L) in relation to the rolled-greasy state of more than 5 while measuring the color of the surface in the CIE L*a*b* color space using a standard illuminant D65 and a normal observation angle of 10°, excluding direct reflection in 45°/0° geometry.Type: ApplicationFiled: July 31, 2014Publication date: November 20, 2014Applicant: Hydro Aluminium Rolled Products GmbHInventors: Dieter Bögershausen, Jochen Schwarz, Bernhard Kernig, Kathrin Eckhard, Axel Blecher, Olaf Güßgen
-
Publication number: 20140319956Abstract: A rotor includes a shorting ring defining a plurality of cavities therein, and a plurality of conductor bars each integral with the shorting ring and having an end disposed within a respective one of the plurality of cavities. The shorting ring and each of the conductor bars are formed from an aluminum alloy including a lanthanoid present in an amount of from about 0.1 part by weight to about 0.5 parts by weight based on 100 parts by weight of the aluminum alloy. An aluminum alloy, and a method of forming a rotor are also disclosed.Type: ApplicationFiled: April 26, 2013Publication date: October 30, 2014Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Qigui Wang, Richard Jack Osborne, Yucong Wang, Margarita Thompson
-
Publication number: 20140308155Abstract: An efficient polishing method for polishing an alloy material to have an excellent mirror surface is provided. The alloy material contains a main component and 0.1% by mass or more of an element that has a Vickers hardness (HV) different from the Vickers hardness of the main component by 5 or more. A polishing composition used in the polishing method contains abrasive grains and an oxidant. The alloy material is preferably an aluminum alloy, a titanium alloy, a stainless steel, a nickel alloy, or a copper alloy. It is also preferable that the alloy material is subjected to preliminary polishing before being subjected to polishing in which the polishing composition is used.Type: ApplicationFiled: November 19, 2012Publication date: October 16, 2014Inventors: Hitoshi Morinaga, Hiroshi Asano, Maiko Asai, Shogo Tsubota, Kazusei Tamai
-
Patent number: 8852364Abstract: Provided is material for an aluminum alloy exhibiting a sufficient heat resistance, tensile strength as well as stress corrosion cracking resistance necessary for use as automobile parts. Also, provided are a forged part forged from such aluminum alloy and an aluminum alloy high strength bolt made thereof. The aluminum alloy (by mass) is consisted of (by mass) 1.0 to 1.7% of Si, 0.05 to 0.5% of Fe, 0.8 to 1.5% of Cu, 0.6 to 1.2% of Mn, 0.9 to 1.5% of Mg, 0.05 to 0.5% of Zn, 0.05 to 0.3% of Zr, 0.01 to 0.2% of V, and when needed, Ti exceeding 0% and not more than 0.05%, and, when further needed, Ni exceeding 0% and not more than 0.7%, the remainder being Al and unavoidable impurities.Type: GrantFiled: December 14, 2010Date of Patent: October 7, 2014Assignee: Nissan Motor Co., Ltd.Inventor: Fumihiko Gejima
-
Patent number: 8845827Abstract: The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.Type: GrantFiled: April 11, 2011Date of Patent: September 30, 2014Assignee: Alcoa Inc.Inventors: Cagatay Yanar, Roberto J. Rioja, Jen C. Lin, Ralph R. Sawtell
-
Aluminum alloy products having improved property combinations and method for artificially aging same
Patent number: 8840737Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The instantly disclosed alloys are useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction.Type: GrantFiled: May 14, 2008Date of Patent: September 23, 2014Assignee: Alcoa Inc.Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana K. Denzer, Jen C. Lin, John Newman, Gregory B. Venema, Cagatay Yanar, Julien Boselli -
Publication number: 20140271342Abstract: A nickel containing hypereutectic aluminum-silicon sand cast alloy is disclosed herein containing 18-20% by weight silicon, 0.3-1.2% by weight magnesium, 3.0-6.0% by weight nickel, 0.6% by weight maximum iron, 0.4% by weight maximum copper, 0.6% by weight maximum manganese, 0.1% maximum zinc and balance aluminum. The alloy may have a more narrow nickel content of 4.5%-6.0% by weight, and up to 2% by weight cobalt. The alloy may be substantially free from iron, copper and manganese. The alloy of the present invention is preferably sand cast, and most preferably lost foam cast with a pressure of 10 ATM to produce engine parts with high thermal properties that are easily machined.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Applicant: BRUNSWICK CORPORATIONInventor: BRUNSWICK CORPORATION
-
Publication number: 20140251511Abstract: New heat treatable aluminum alloys having magnesium and zinc are disclosed. The new aluminum alloys generally contain 3.0-6.0 wt. % Mg, 2.5-5.0 wt. % Zn, where (wt. % Mg)/(wt. % Zn) is from 0.60 to 2.40.Type: ApplicationFiled: March 9, 2013Publication date: September 11, 2014Applicant: ALCOA INC.Inventor: Jen Lin
-
Publication number: 20140246127Abstract: A high-strength aluminum alloy material having a chemical composition which includes Zn: more than 7.2% (mass %, the same applies hereafter) and 8.7% or less, Mg: 1.3% or more and 2.1% or less, Cu: 0.01% or more and 0.10% or less, Zr: 0.01% or more and 0.10% or less, Cr: less than 0.02%, Fe: 0.30% or less, Si: 0.30% or less, Mn: less than 0.05%, Ti: 0.001% or more and 0.05% or less, the balance being Al and unavoidable impurities, is provided. It has a proof stress of 350 MPa or more, and a metallographic structure formed of a recrystallized structure, and L* and b* values, as defined in JIS Z8729 (ISO 7724-1), are 85 or more and 95 or less and 0 or more and 0.8 or less, respectively, as measured after anodization using a sulfuric acid bath.Type: ApplicationFiled: November 5, 2012Publication date: September 4, 2014Applicant: UACJ CORPORATIONInventor: Hidenori Hatta
-
Publication number: 20140227130Abstract: An aluminum alloy has a composition consisting of Si: 0.03 to 0.6 mass %, Fe: 0.1 to 0.7 mass %, Cu: 0.05 to 0.20 mass %, Mn: 1.0 to 1.5 mass %, Mg: 0.01 to 0.1 mass %, Zn: 0 to 0.1 mass %, Ti: 0 to 0.1 mass %, and the balance being Al and inevitable impurities.Type: ApplicationFiled: June 25, 2012Publication date: August 14, 2014Applicant: SHOWA DENKO K.K.Inventors: Yoshimasa Ohashi, Koji Hisayuki, Yoshikazu Kato, Kazunori Sakayori, Ryouta Kimura, Shigeru Aoya
-
ALUMINUM ALLOY PRODUCTS HAVING IMPROVED PROPERTY COMBINATIONS AND METHOD FOR ARTIFICIALLY AGING SAME
Publication number: 20140227131Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The instantly disclosed alloys are useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction.Type: ApplicationFiled: April 17, 2014Publication date: August 14, 2014Applicant: ALCOA INC.Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana K. Denzer, Jen C. Lin, John Newman, Gregory B. Venema, Cagatay Yanar, Julien Boselli -
Publication number: 20140212326Abstract: Improved aluminum-copper-lithium alloys are disclosed. The alloys may include 3.4-4.2 wt. % Cu, 0.9-1.4 wt. % Li, 0.3-0.7 wt. % Ag, 0.1-0.6 wt. % Mg, 0.2-0.8 wt. % Zn, 0.1-0.6 wt. % Mn, and 0.01-0.6 wt. % of at least one grain structure control element, the balance being aluminum and incidental elements and impurities. The alloys achieve an improved combination of properties over prior art alloys.Type: ApplicationFiled: April 1, 2014Publication date: July 31, 2014Applicant: ALCOA INC.Inventors: Edward L. Colvin, Roberto J. Rioja, Les A. Yocum, Diana K. Denzer, Todd K. Cogswell, Gary H. Bray, Ralph R. Sawtell, Andre L. Wilson
-
Patent number: 8758529Abstract: Aluminum alloys having improved properties are provided. The alloy includes about 0 to 2 wt % rare earth elements, about 0.5 to about 14 wt % silicon, about 0.25 to about 2.0 wt % copper, about 0.1 to about 3.0 wt % nickel, approximately 0.1 to 1.0% iron, about 0.1 to about 2.0 wt % zinc, about 0.1 to about 1.0 wt % magnesium, 0 to about 1.0 wt % silver, about 0.01 to about 0.2 wt % strontium, 0 to about 1.0 wt % scandium, 0 to about 1.0 wt % manganese, 0 to about 0.5 wt % calcium, 0 to about 0.5 wt % germanium, 0 to about 0.5 wt % tin, 0 to about 0.5 wt % cobalt, 0 to about 0.2 wt % titanium, 0 to about 0.1 wt % boron, 0 to about 0.2 wt % zirconium, 0 to 0.5% yttrium, 0 to about 0.3 wt % cadmium, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % indium, and the balance aluminum. Methods of making cast aluminum parts are also described.Type: GrantFiled: June 30, 2010Date of Patent: June 24, 2014Assignee: GM Global Technology Operations LLCInventors: Qigui Wang, Wenying Yang, Yucong Wang, Patricia E. Shaw
-
Publication number: 20140140886Abstract: Aluminium alloy for components having increased strength with a yield point Rp0.2>120 MPa and at the same time an elongation at break A>7% in the cast state, a yield point Rp0.2>200 MPa and at the same time an elongation at break A>6% after a T5 heat treatment or a yield point Rp0.2>200 MPa and at the same time a high elongation at break A>9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.Type: ApplicationFiled: November 19, 2013Publication date: May 22, 2014Applicants: Georg Fischer GmbH & Co KG, Georg Fischer Druckguss GmbH & Co KGInventors: Leif Speckert, Stuart Wiesner
-
Publication number: 20140138250Abstract: Disclosed is an aluminum wheel comprising: Al as a major ingredient, Si: about 0˜2 wt % (excluding 0), Fe: about 0˜0.15 wt% (excluding 0), Cu : about 0.5˜1 wt %, Mn: about 0.03˜0.2 wt %, Mg: about 0.8˜1.2 wt %, Cr: about 0.05˜0.35 wt %, Zn: about 0.2˜0.6 wt %, Ti: about 0.01˜0.1 wt %, Sr: about 0.001˜0.05 wt %, P: about 0˜0.001 wt % (excluding 0) and inevitable impurities; and a method for producing the same.Type: ApplicationFiled: March 15, 2013Publication date: May 22, 2014Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANYInventors: Kwang Min Yoon, Min Soo Kim
-
Publication number: 20140127076Abstract: New 5xxx-lithium aluminum alloys and related products are disclosed. The new 5xxx-lithium aluminum alloy may contain from 3.75 to 5.0 wt. % Mg, from 1.6 to 2.3 wt. % Li, and from 0.50 to 2.5 wt. % Zn, among others.Type: ApplicationFiled: February 26, 2013Publication date: May 8, 2014Applicant: ALCOA INC.Inventors: Roberto J. Rioja, Francine S. Bovard, Ralph R. Sawtell