Molybdenum Containing Patents (Class 420/586.1)
  • Patent number: 11890668
    Abstract: Systems and methods of making a cast steel alloy crankshaft for an internal combustion engine are provided. The method comprises providing a mold of the crankshaft. The mold has cavities to form the crankshaft. The method further comprises melting a first metallic material at between 1400 degrees Celsius (° C.) and 1600° C. to define a molten metallic material. In addition, the method further comprises feeding the molten metallic material at a riser connection angle of between 30° and 75° in the cavities of the negative sand cast mold. The method further comprises cooling the molten metallic material at a solidification time of between 5 seconds (sec) and 20 sec in the negative sand cast mold with at least one chill member to define a solidified metallic material having dimensions of the cast steel alloy crankshaft. Furthermore, the method comprises separating the solidified metallic material from the negative sand cast mold to define the cast steel alloy crankshaft.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: February 6, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Liang Wang, Qigui Wang, Jianghuai Yang, Kiran Mistry, Oliver Patrick Jordan
  • Patent number: 11814704
    Abstract: An alloy includes a composition, in weight percent, of aluminum from about 1.3% to about 1.8%, cobalt from about 1.5% to about 4.0%, chromium from about 18.0% to about 22.0%, iron from about 4.0% to about 10.0%, molybdenum from about 1.0% to about 3.0%, niobium from about 1.0% to about 2.5%, titanium from about 1.3% to about 1.8%, tungsten from about 0.8% to about 1.2%, carbon from about 0.01% to about 0.08%, and balance nickel and incidental impurities. The alloy has a stress rupture life at 700° C. and 393.7 MPa (57.1 ksi) of at least 300 hours and a room temperature percent elongation of at least 15% after aging at 700° C. for 1,000 hours.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: November 14, 2023
    Assignee: HUNTINGTON ALLOYS CORPORATION
    Inventors: Brian A. Baker, John J. Debarbadillo
  • Patent number: 11549374
    Abstract: A turbine rotor disk and a method of making the turbine rotor disk using solid state bonding techniques are disclosed. The turbine rotor disk includes a radially inner portion comprising a wrought nickel alloy having a yield strength of at least 126 ksi at 1,000° F. The turbine rotor disk also includes a radially outer portion bonded to the radially inner portion, said radially outer portion comprising a cast nickel alloy configured as a single crystal or with a grain size of ASTM 2 or larger.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 10, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Jeremy K. Paskind, Carl Busta
  • Patent number: 11313006
    Abstract: A process of producing an austenitic stainless steel tube comprises the steps of: a) producing an ingot or a continuous casted billet of the austenitic stainless steel, b) hot extruding the ingot or the billet obtained from step a) into a tube, c) cold rolling the tube obtained from step b) to a final dimension thereof. The outer diameter D of the cold rolled tube is 70-250 mm and the thickness t thereof is 6-25 mm, and the cold rolling step is performed such that the following formula is satisfied: (2.5×Rc+1.85×Rh?17.7×Q)=(Rp0.2target+49.3?1073×C?21Cr?7.17×Mo?833.3×N)±Z??(1) wherein Rp0.2target is targeted yield strength and is 750?Rp0.2target?1000 MPa, 30?Rc?75%, 50%?Rh?90%, 1?Q?3.6, and Z is 65.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 26, 2022
    Assignee: Sandvik Intellectual Property AB
    Inventors: Erik Könberg, Daniel Svedberg
  • Patent number: 9347121
    Abstract: An austenitic alloy may generally comprise, in weight percentages based on total alloy weight: up to 0.2 carbon; up to 20 manganese; 0.1 to 1.0 silicon; 14.0 to 28.0 chromium; 15.0 to 38.0 nickel; 2.0 to 9.0 molybdenum; 0.1 to 3.0 copper; 0.08 to 0.9 nitrogen; 0.1 to 5.0 tungsten; 0.5 to 5.0 cobalt; up to 1.0 titanium; up to 0.05 boron; up to 0.05 phosphorus; up to 0.05 sulfur; iron; and incidental impurities.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 24, 2016
    Assignee: ATI PROPERTIES, INC.
    Inventors: Robin M. Forbes Jones, C. Kevin Evans, Henry E. Lippard, Adrian R. Mills, John C. Riley, John J. Dunn
  • Patent number: 9260770
    Abstract: An austenitic alloy for high temperature use, particularly for use in resistance heating elements. The alloy includes primarily the elements Fe, Ni, and Cr, and it has the following main composition, given in weight %, Ni 38-48, Cr 18-24, Si 1.0-1.9, C<0.1, and the balance Fe. The alloy provides good hot form stability, good oxidation resistance, and a relatively high electrical resistance coupled with a low change in resistance as a function of temperature.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: February 16, 2016
    Assignee: Sandvik Intellectual Property AB
    Inventors: Bo Jönsson, Thomas Helander
  • Publication number: 20150104667
    Abstract: A cladding material for stainless steel clad steel plate, includes, by mass %, 0.03% or less carbon, 1.5% or less silicon, 2.0% or less manganese, 0.04% or less phosphorus, 0.03% or less sulfur, 22.0% to 25.0% nickel, 21.0% to 25.0% chromium, 2.0% to 5.0% molybdenum, 0.15% to 0.25% nitrogen, and the balance being iron and incidental impurities, wherein critical pitting temperature (CPT) after normalization as determined in accordance with ASTM G48-03 Method E is 45° C. or higher, and corrosion loss at a welded zone as determined by a corrosion test in accordance with NORSOK Standard M-601 is 1.0 g/m2 or less.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 16, 2015
    Inventors: Keiichiro Kishi, Yoshihiro Yazawa, Shunichi Tachibana, Yota Kuronuma, Toshiyuki Hoshino
  • Patent number: 8906171
    Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 9, 2014
    Assignee: Sandvik Intellectual Property
    Inventors: Ulrika Magnusson, Guocai Chai
  • Publication number: 20140284882
    Abstract: The present invention relates to a wear-resistant layer, which is preferably used on piston rings for internal combustion engines. The wear-resistant layer comprises: 15-25% by weight iron (Fe), 10-25% by weight tungsten carbide (WC), 30-40% by weight chromium (Cr), 10-25% by weight nickel (Ni), 10-25% by weight molybdenum (Mo), 1-10% by weight carbon (C), 0.1-2% by weight silicon (Si), wherein Cr is present in elemental form and/or as a carbide in the form of Cr2C3. A method for applying the wear resistant layer and a piston ring having such a wear resistant layer are also disclosed.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 25, 2014
    Inventors: Michael Zinnabold, Marcus Kennedy, Marc-Manuel Matz
  • Patent number: 8808473
    Abstract: An austenitic heat resistant alloy includes, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 10.14 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 0.05%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 1.36% or less, Ti: 3% or less, and Nb: 3% or less, and the balance being Fe and impurities. The contents of P and S in the impurities are P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, where an element in the Formulas represents the content by mass percent.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
  • Publication number: 20140169973
    Abstract: A Ni-based heat resistant alloy has a composition of, by mass percent, carbon: 0.001 to 0.1%, chromium: 16 to 22%, aluminum: 0.5 to 1.5%, molybdenum: 0.1 to 2.0%, tungsten: 0.1 to 6.0%, niobium: 3.5 to 5.5%, titanium: 0.8 to 3.0%, iron: 16 to 20%, and the balance being nickel and inevitable impurities. A parameter Ps indicating a segregation tendency is in a range of Ps??3.5. The parameter Ps is represented by Formula (1). Ps=1.05×Al content+0.6×Ti content?0.8×Nb content?0.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 19, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20140030141
    Abstract: Nickel-chromium-iron-molybdenum alloy, comprising 40 to 48 wt % nickel, 30 to 38 wt % chromium, 4 to 12 wt % molybdenum and iron, wherein the alloy optionally further comprises up to 5 wt % manganese, up to 2 wt % copper, up to 0.6 wt % nitrogen, up to 0.5 wt % aluminium and up to 0.5 wt % vanadium.
    Type: Application
    Filed: November 18, 2011
    Publication date: January 30, 2014
    Inventors: Per Henrik Asteman, Georg-Wilheim Overbeck
  • Publication number: 20130294966
    Abstract: A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 0; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Ryan R. Dehoff, Craig A Blue, William H. Peter, Wei Chen, Louis F. Apriglianoi
  • Publication number: 20130224069
    Abstract: Provided is a hydrochloric acid corrosion resistant alloy For brazing that is provided with corrosion resistance against hydrochloric acid, and when brazing various types of stainless steel, can be used for brazing at practical temperatures (1150° C. or less), and has good joint strength and brazeability to the substrate. The hydrochloric acid corrosion resistant alloy of the present invention contains, in mass percent, 6.0-18.0% Mo, 10.0-25.0% Cr, 0.5-5.0% Si, and 4.5-8.0% P, with the remainder being 40.0-73.0% Ni and unavoidable impurities, and the total of Si and P being 6.5-10.5%. In this case, the alloy may contain 12.0% or less of Cu, 20.0% or less of Co, 15.0% or less of Fe, 8.0% or less of W, 5.0% or less of Mn, and 0.5% or less of the total of C, B, Al, Ti, and Nb.
    Type: Application
    Filed: May 26, 2011
    Publication date: August 29, 2013
    Applicant: FUKUDA METAL FOIL & POWDER CO., LTD
    Inventors: Katsunori Otobe, Shinichi Nishimura
  • Patent number: 8512485
    Abstract: A alloy and a process of forming a alloy are disclosed. The alloy has a predetermined grain boundary morphology. The alloy includes by weight greater than about 0.06 percent carbon, up to about 0.0015 percent sulfur, less than about 16 percent chromium, between about 39 percent and about 44 percent nickel, between about 2.5 percent and about 3.3 percent niobium, between about 1.4 percent and about 2 percent titanium, up to about 0.5 percent aluminum, up to about 0.006 percent boron, up to about 0.3 percent copper, up to about 0.006 percent nitrogen, and greater than about 0.5 percent molybdenum.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Ganjiang Feng, George A. Goller, Raymond Joseph Stonitsch, Jason R. Parolini, Shan Liu
  • Patent number: 8506729
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9 (Cr+0.3Si+Mo+0.5W)?2.6 (Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 13, 2013
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Patent number: 8486204
    Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 16, 2013
    Assignee: Shin Zu Shing Co., Ltd.
    Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
  • Publication number: 20130160466
    Abstract: It is an objective of the invention to provide an Ni-based forged alloy having good large ingot formability and good hot formability as well as high mechanical strength at high temperature. There is provided an Ni-based forged alloy comprising: 0.001 to 0.1 mass % of C; 0.001 to 0.01 mass % of B; 16 to 22 mass % of Cr; 0.5 to 1.5 mass % of Al; 0.1 to 6.0 mass % of W; 3.5 to 5.5 mass % of Nb; 0.8 to 3.0 mass % of Ti; 16 to 20 mass % of Fe; 2.0 mass % or less of Mo; and the balance including Ni and unavoidable impurities, in which: a segregation parameter Ps defined by a formula of “Ps (mass %)=1.05[Al concentration (mass %)]+0.6[Ti concentration (mass %)]?0.8[Nb concentration (mass %)]?0.3[Mo concentration (mass %)]” satisfies a relationship of “Ps??3.0 mass %”; and total amount of W and Mo is 1.75 atomic % or less.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: HITACHI, LTD.
    Inventor: Hitachi, Ltd.
  • Patent number: 8460604
    Abstract: In order to provide a nonmagnetic material for producing parts or coatings adapted for highly wear and corrosion intensive applications, said material comprising preformed particles made of tungsten carbide which are embedded in a metal phase made of a Ni-based alloy. It is suggested that the weight portion of said tungsten carbide particles is in the range between 30 wt. % and 65 wt. % and wherein the Ni-based alloy is a Nickel-Chromium-Molybdenum alloy comprising: (in wt. %): Cr 11.0.-30.0? Mo 5.0-25.0? Fe ?0-10.0 B 0-5.0 Co ?0-2.5.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: June 11, 2013
    Assignee: Mec Holding GmbH
    Inventors: Michel Junod, Michael Gill, Alain Tremblay
  • Patent number: 8454765
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 4, 2013
    Assignees: Boehler Edelstahl GmbH & Co. KG, Schoeller-Bleckmann Oilfield Technology GmbH
    Inventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
  • Publication number: 20130126056
    Abstract: A cast nickel-iron-base alloy component having by weight about 12.0% to about 16.5% Cr, about 1.0% to about 2.0% Al, about 2.0% to about 3.0% Ti, about 2.0% to about 3.0% W, about 3.0 to about 5.0% Mo, up to about 0.1% Nb, up to about 0.2% Mn, up to about 0.1% Si, about 0.05% to about 0.10% C, about 0.003 to about 0.010% B, about 35% to about 37% Fe, and balance essentially Ni and inevitable impurities. The nickel-iron-base alloy component has a creep rupture life greater than about 1000 hours at about 25 ksi to about 30 ksi at about 1400° F. A method for forming the cast nickel-iron-base alloy component is also disclosed.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, George Albert GOLLER, Joseph C. RAZUM, Matthew LAYLOCK
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Publication number: 20120301347
    Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Govindarajan MURALIDHARAN, Yukinori Yamamoto, Michael P. Brady
  • Patent number: 8318083
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M23C6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 27, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Roman I Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Patent number: 8313591
    Abstract: An austenitic heat resistant alloy, which contains, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: November 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Publication number: 20120286025
    Abstract: A Ni—Fe-based alloy brazing filler material is provided comprising, in mass %, Fe: 21 to 40%; Cr: 10 to 30%; P: 7 to 11%; B: 0 to 5%; Si: 0 to 4.5%; V: 0 to 5%; Co: 0 to 5%; Mo: 0 to 5%; the balance being Ni and unavoidable impurities, wherein the mass ratio of Fe to P (Fe/P) is in a range of 2.6 to 5. The present invention provides a Ni—Fe-based alloy brazing filler material having a low melting temperature and a superior corrosion resistance and comprising raw materials that are relatively easily available, for use in manufacture of stainless-steel heat exchangers or the like.
    Type: Application
    Filed: November 26, 2010
    Publication date: November 15, 2012
    Applicants: TOKYO BRAZE CO., LTD., SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Shingo Fukumoto, Kotaro Matsu
  • Patent number: 8287805
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: October 16, 2012
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Sjödin
  • Publication number: 20120190321
    Abstract: A nonmagnetic stainless steel which has a higher electrical resistivity than existing nonmagnetic alloys, a production process for producing the stainless steel, and a radio wave receiver. The receiver has a main case and rear cover constituted of a nonmagnetic stainless steel having an electrical resistivity as high as more than 100 ??·cm and consisting of C: not more than 0.1%, Si: 4.0-7.5%, Mn: not more than 2.0%, Ni: 25.5-30.0%, Cr: 15.0-20.0%, Mo: 0.1-3.0%, Cu: 0-2.0%, in mass % and the balance Fe and impurities. Even if some variable magnetic flux generated by a coil of an antenna runs through the main case and the rear cover, the receiving efficiency of the antenna can be prevented from being reduced by eddy current loss and a sufficient radio receiving sensitivity can be obtained. This nonmagnetic stainless steel is produced by hot and/or cold plastic working and subsequent solution treating conducted at 1,000-1,180° C.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 26, 2012
    Applicants: HITACHI METALS, LTD., CASIO COMPUTER CO., LTD.
    Inventors: Junichi Sato, Toshihiro Uehara, Kenji Yokoyama
  • Publication number: 20120156085
    Abstract: An article of manufacture formed of an alloy having the following weight percent composition is described. Carbon 0.25 max. Manganese ?14-20? Silicon up to 2.0 Phosphorus 0.05 max. Sulfur ?0.5 max. Chromium ?12-22? Nickel ?3.5 max. Molybdenum 0.5-4?? Copper ?2.0 max. Nitrogen 0.2-0.8 Boron 0.06 max. The balance of the alloy is iron and the usual, inevitable impurities found in commercial grades of stainless steel alloys. Optionally, the alloy may contain niobium, titanium, vanadium, zirconium, hafnium, and tungsten in a combined amount of up to about 0.5%. An intermediate form of the article is armor plate made from the alloy. In accordance with another aspect of the present invention, the plate is shaped to form an armor part that is attached to a larger structure to provide resistance to an explosion fragments or a ballistic projectile.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 21, 2012
    Inventors: Peter T. Thompson, Christopher F. Pilliod
  • Patent number: 8172959
    Abstract: There are provided an austenitic stainless steel having high stress corrosion crack resistance, characterized by containing, in percent by weight, 0.030% or less C, 0.1% or less Si, 2.0% or less Mn, 0.03% or less P, 0.002% or less S, 11 to 26% Ni, 17 to 30% Cr, 3% or less Mo, and 0.01% or less N, the balance substantially being Fe and unavoidable impurities; a manufacturing method for an austenitic stainless steel, characterized in that a billet consisting of the said austenitic stainless steel is subjected to solution heat treatment at a temperature of 1000 to 1150° C.; and a pipe and a in-furnace structure for a nuclear reactor to which the said austenitic stainless steel is applied.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 8, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Tokyo Electric Power Company, Inc.
    Inventors: Yasuhiro Sakaguchi, Toshihiko Iwamura, Hiroshi Kanasaki, Hidehito Mimaki, Masaki Taneike, Shunichi Suzuki, Kenrou Takamori, Suguru Ooki, Naoki Anahara, Naoki Hiranuma, Toshio Yonezawa
  • Publication number: 20120051963
    Abstract: A nickel-iron-base alloy has by weight about 0.06% to about 0.09% C, about 35% to about 37% Fe, about 12.0% to about 16.5% Cr, about 1.0% to about 2.0% Al, about 1.0% to about 3.0% Ti, about 1.5% to about 3.0% W, up to about 5.0% Mo, up to about 0.75% Nb, up to about 0.2% Mn, up to about 0.1% Si, up to about 0.006% B, and balance essentially Ni. A method for making the nickel-iron-base alloy is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, George GOLLER, Joseph RAZUM, Matthew LAYLOCK
  • Patent number: 8119063
    Abstract: High-alloy austenitic stainless steels that are extra resistant to pitting and crevice corrosion in aggressive, chloride-containing solutions have a tendency for macro-segregation of Mo, at solidification of the melt. This problem is solved by a super austenite stainless steel having the following composition, in % by weight: max 0.03 C, max 0.5 Si, max 6 Mn, 28-30 Cr, 21-24 Ni, 4-6% (Mo+W/2), the content of W being max 0.7, 0.5-1.1 N, max 1.0 Cu, balance iron and impurities at normal contents originating from the production of the steel.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 21, 2012
    Assignee: Outokumpu Oyj
    Inventors: Hachemi Loucif, Mats Liljas
  • Patent number: 8105447
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9(Cr+0.3Si+Mo+0.5W)?2.6(Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Publication number: 20120003116
    Abstract: An austenitic stainless steel, which consists of by mass %, C?0.02%, Si: 0.01 to 0.50%, Mn: 0.01 to 2.0%, Cr: 24 to 26%, Ni: 19 to 22%, Mo: more than 0.10% to less than 0.50%, N: more than 0.04% to not more than 0.15%, and one or two elements selected from Nb?0.30% and V?0.40%, with the balance being Fe and impurities, and among the impurities P?0.030%, S?0.002% and Sn?0.015%, and satisfies [2.5?36Nb+53V+15N?25.0] and [S+{(P+Sn)/2??5.76×10?4×(36Nb+53V+15N)+0.0267] has excellent corrosion resistance, in particular, excellent intergranular corrosion resistance, and further has excellent crack insusceptibility in a weld heat affected zone. This austenitic stainless steel is a particularly excellent material as structural members for a nuclear power plant.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 5, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Takahiro OSUKI, Kiyoko Takeda, Tetsuo Yokoyama
  • Publication number: 20110311390
    Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 6.0-20.0% by weight Cr, 45.0-88.5% by weight Fe, 3.0-15.0% by weight Mn and 2.0-10.0% by weight Si. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.
    Type: Application
    Filed: October 12, 2009
    Publication date: December 22, 2011
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20110311391
    Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 2.0-20.0% by weight Cr, 49.0-97.1% by weight Fe, 0.1-3.0% by weight Mn, 0.1-3.0% by weight Mo, 0.-7.0% by weight Nb, 2.0-10.0% by weight Si, 0-7.0% by weight Ti, 0.-7.0% by weight V and 0.-0.5% by weight W, the sum of the fractions of Nb, Ti, V and W being 2.0-7.0% by weight. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.
    Type: Application
    Filed: October 13, 2009
    Publication date: December 22, 2011
    Applicant: FEDERAL-MOGUL BURSCHEID GMBH
    Inventor: Laszlo Pelsoeczy
  • Patent number: 8071020
    Abstract: A high strength Cr—Ni alloy material excellent in hot workability and stress corrosion cracking resistance, and seamless pipe for oil well application which consists of, by mass percent, C: 0.05% or less, Si: 0.05 to 1.0%, Mn: 0.01% or more and less than 3.0%, P: 0.05% or less, S: 0.005% or less, Cu: 0.01 to 4%, Ni: 25% or more and less than 35%, Cr: 20 to 30%, Mo: 0.01% or more and less than 4.0%, N: 0.10 to 0.30%, Al: 0.03 to 0.30%, O (oxygen): 0.01% or less, and REM (rare earth metal): 0.01 to 0.20% with the balance being Fe and impurities, and also satisfies the conditions in the following formula (1). N×P/REM?0.40??formula (1) where P, N, and REM in the formula (1) respectively denote the contents (mass %) of P, N, and REM. The high strength Cr—Ni alloy material may further contain one or more types of W, Ti, Nb, Zr, V, Ca, and Mg, instead of part of Fe.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yohei Otome, Masaaki Igarashi, Hisashi Amaya, Hirokazu Okada
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Publication number: 20110206553
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 12 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Application
    Filed: May 5, 2011
    Publication date: August 25, 2011
    Applicant: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Patent number: 8003045
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 23, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Patent number: 8002909
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charles Horace Craig
  • Publication number: 20110158844
    Abstract: This ring-shaped disk for a gas turbine includes a ring-shaped disk material consisting of a Ni-based alloy, wherein the Ni-based alloy has a composition that includes, in terms of percent by mass, Ni: 50.00 to 55.00%, Cr: 17.0 to 21.0%, Nb: 4.75 to 5.60%, Mo: 2.8 to 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, and C: 0.01 to 0.08%, with the balance being Fe and inevitable impurities, and has a microstructure in which ? phase particles are distributed in a matrix thereof, and wherein, in the microstructure, flattened ? phase particles of which maximum length directions are oriented at angles within a range of 60 to 120° with respect to a radial direction of the ring-shaped disk material are present in an amount of 60% or more of a total amount of the ? phase particles distributed in the matrix.
    Type: Application
    Filed: May 8, 2009
    Publication date: June 30, 2011
    Inventors: Jun Ohsone, Akira Mitsuhashi, Takanori Matsui, Yuji Ishiwari
  • Patent number: 7959854
    Abstract: A heat resistant alloy comprising, in % by weight, over 0.6% to not more than 0.9% of C, up to 2.5% of Si, up to 3.0% of Mn, 20 to 28% of Cr, 8 to 55% of Ni, 0.01 to 0.8% of Ti and 0.05 to 1.5% of Nb, the balance being Fe and inevitable impurities, the value of (Ti+Nb)/C being 0.12 to 0.29 in atomic % ratio. When the alloy further contains up to 0.5% of Zr, the value of (Ti+Nb+Zr)/C is 0.12 to 0.29 in atomic % ratio. When the alloy is heated at a temperature of at least about 800 degrees C., a fine Ti—Nb—Cr carbide or Ti—Nb—Zr—Cr carbide precipitates within grains to thereby retard creep deformation and give an improved creep rupture strength. The alloy is therefore suitable as a material for hydrogen production reforming tubes.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 14, 2011
    Assignee: Kubota Corporation
    Inventors: Makoto Takahashi, Kunihide Hashimoto, Makoto Hineno
  • Publication number: 20100303669
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 2, 2010
    Applicant: Ut-Battelle, LLC
    Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Publication number: 20100294472
    Abstract: The present disclosure relates to the use of a duplex stainless steel as heat exchanger material in a phosphoric acid production system using the wet method. The steel has the following composition in percent by weight: C max 0.03 Si max 0.5 Mn max 3 Cr 26-29 Ni 4.9-10 Mo 3-5 N 0.35-0.5 B max 0.0030 Co max 3.5 W max 3 Cu max 2 Ru max 0.3 balance Fe and normal occurring impurities.
    Type: Application
    Filed: October 24, 2008
    Publication date: November 25, 2010
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Sabina Ronneteg, Knut Tersmeden, Anna-Lena Nyström
  • Publication number: 20100272597
    Abstract: Disclosed herein is a nickel based alloy comprising, in weight percentage: carbon from about 0.5 to about 1.5; chromium from about 25 to about 35; tungsten from about 12 to about 18; iron from about 3.5 to about 8.5; molybdenum from about 1 to about 8; manganese up to about 0.50; silicon up to about 1.0; and the balance nickel and incidental impurities. The alloy is suitable for valve seat insert applications in internal combustion engines.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Applicant: L. E. Jones Company
    Inventors: Cong Yue Qiao, Daniel W. Bancroft
  • Patent number: 7815848
    Abstract: A corrosion resistant alloy is provided which includes, in percent by weight: (a) 16 to 24% Ni; (b) 18 to 26% Cr; (c) 1.5 to 3.5% Mo; (d) 0.5 to 1.5% Si; (e) 0.001 to 1.5% Nb; (f) 0.0005 to 0.5% Zr; (g) 0.01 to 0.6% N; (h) 0.001 to 0.2% Al; (j) less than 0.2% Ti; and (k) less than 1% Mn, trace impurities, and the balance Fe. Articles, such as flexible automotive exhaust couplings, including the present alloys are also provided.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 19, 2010
    Assignee: Huntington Alloys Corporation
    Inventors: James Roy Crum, Nathan Charles Eisinger, Stephen Mark Gosnay, Gaylord Darrell Smith
  • Publication number: 20100247370
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M (C, N).
    Type: Application
    Filed: June 4, 2010
    Publication date: September 30, 2010
    Applicant: OAK RIDGE NATIONAL LABORATORY
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Patent number: 7780798
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 24, 2010
    Assignees: Boston Scientific Scimed, Inc., CRS Holdings, Inc.
    Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
  • Publication number: 20100196799
    Abstract: The present invention relates to the use of the A286 alloy grade for the manufacture of a sheet, optionally surfaced, making it possible to obtain a conducting plate of mono polar or bipolar type for a fuel cell element. The invention also relates to this optional surface treatment process, which comprises a cold-rolling step followed by a continuous annealing step in an oxidizing atmosphere and by an acid pickling step.
    Type: Application
    Filed: June 19, 2007
    Publication date: August 5, 2010
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etude et L'Exploration DesProcedes George Claude, Arcelormittal-Stainless & Nickel Alloys, Alfa Laval Corporate AB
    Inventors: Eric Claude, Richard Bousquet, Gilles Platen, Claude Roussel