Chromium Containing Patents (Class 420/583)
-
Patent number: 12054814Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. One or both of the compartmentalization network and the pressure vessel may be formed by a 3D printing process, such as by Selective Laser Melting (SLM) and/or Direct Metal Laser Sintering (DMLS). The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.Type: GrantFiled: July 21, 2022Date of Patent: August 6, 2024Assignee: HARNYSS IP, LLCInventors: Henry U. Lee, Baoquan Huang, Benjamin S. Chao, Kirby Alan Smith
-
Patent number: 12054815Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. The compartmentalization network includes a plurality of thermally conductive elongate tubes positioned within the pressure vessel forming a coherent, tightly packed tube bundle providing a thermally conductive network between the hydrogen storage alloy and the pressure vessel. The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.Type: GrantFiled: May 2, 2023Date of Patent: August 6, 2024Assignee: HARNYSS IP, LLCInventors: Benjamin S. Chao, Baoquan Huang, Henry U. Lee, Kirby Alan Smith
-
Patent number: 11969368Abstract: A lumen stent preform is provided using a plasma nitriding technology, a preparation method thereof, a method for preparing a lumen stent by using the preform, and a lumen stent obtained according to the method. The preform is manufactured by using pure iron or an iron alloy containing no strong nitrogen compound, has a hardness of 160-250HV0.05/10, and has a microstructure that is a deformed structure having a grain size scale greater than or equal to 9 or a deformed structure after cold machining. Alternatively, the preform is an iron alloy containing a strong nitrogen compound, and has a microstructure that is a deformed structure having a grain size scale greater than or equal to 9 or a deformed structure after cold machining. The lumen stem preform meets the requirements of a conventional stent for radial strength and plasticity, so that plasma nitriding is applicable to commercial preparation of a lumen stent.Type: GrantFiled: July 7, 2022Date of Patent: April 30, 2024Assignee: BIOTYX MEDICAL (SHENZHEN) CO., LTD.Inventors: Deyuan Zhang, Xianmiao Chen, Wenjiao Lin, Xiangdong Liu
-
Patent number: 11932944Abstract: A pipe according to the present disclosure comprises: a hollow tube body in which fluids of different temperatures pass through the inside and outside thereof; and a coating layer which is provided on an external surface of the hollow tube body, and which has an alloy comprising an amorphous phase, wherein the alloy comprises Fe, and comprises at least one or more first component selected from the group consisting of Cr, Mo and Co, and at least one or more second component selected from the group consisting of B, C, Si and Nb.Type: GrantFiled: January 14, 2021Date of Patent: March 19, 2024Assignee: KOLON INDUSTRIES, INCInventors: Geun Sang Cho, Choongnyun Paul Kim, Kwan Min Choi
-
Patent number: 11846008Abstract: The present invention relates to Nb-based refractory alloys that are less expensive and less dense than current Nb-based refractory alloys, have better ductility than current Nb-based refractory alloys, yet which have similar or better high temperature strengths and oxidation resistance when compared to current Nb-based refractory alloys. Such Nb-based refractory alloys typically continue to be compatible with current coating systems for Nb-based refractory alloys. Such Nb-based refractory alloys are disclosed herein.Type: GrantFiled: January 4, 2022Date of Patent: December 19, 2023Assignee: United States of America as represented by Secretary of the Air ForceInventors: Kevin J. Chaput, Oleg N. Senkov, Todd M. Butler, Satish I Rao
-
Patent number: 11542578Abstract: The present invention relates to a silicon based alloy comprising between 45 and 95% by weight of Si; max 0.05% by weight of C; 0.4-30% by weight Cr; 0.01-10% by weight of Al; 0.01-0.3% by weight of Ca; max 0.10% by weight of Ti; up to 25% by weight of Mn; 0.005-0.07% by weight of P; 0.001-0.02% by weight of S; the balance being Fe and incidental impurities in the ordinary amount, a method for the production of said alloy and the use thereof.Type: GrantFiled: June 7, 2019Date of Patent: January 3, 2023Assignee: ELKEM ASAInventors: Amélie Dieudonne, Ole Svein Klevan
-
Patent number: 11440796Abstract: The present relates to a Metal hydride compressor control method for generating a variable output pressure P_desired_outPut, comprising a first step of inflowing gaseous hydrogen into a metal hydride compartment at a constant temperature and then stopping the gaseous hydrogen inflow, a second step of heating the metal hydride to a predetermined temperature which corresponds to a temperature which passes through the ?+? phase at the desired output pressure P_desired_output, a third step of opening the output connection of the compressor and keeping it at a constant pressure by regulating the temperature to keep a constant output pressure P_desired_outPut until the system completely leaves the ?+? phase.Type: GrantFiled: November 16, 2018Date of Patent: September 13, 2022Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)Inventors: Noris Gallandat, Andreas Züttel
-
Publication number: 20150147220Abstract: A material for components of a gas turbine, in particular a jet aircraft engine, is disclosed. The material contains an amount of a ferritic phase with Fe and Al and an amount of at least one Laves phase, where the amount of the at least one Laves phase constitutes the largest amount of the material.Type: ApplicationFiled: November 21, 2014Publication date: May 28, 2015Applicant: MTU Aero Engines AGInventors: Wilfried SMARSLY, Gerhard SAUTHOFF
-
Publication number: 20140353285Abstract: Electrodes for depositing hardfacing alloys containing boron, carbon, chromium, manganese, and silicon on the surface of metal components that are subjected to high thermal and mechanical stresses. The deposited hardfacing alloys have from about 2.5 to about 14.0 atomic weight percent boron and have a hardness on the Rockwell “C” scale of at least about 65 HRC in the first layer of the weld deposit.Type: ApplicationFiled: May 30, 2013Publication date: December 4, 2014Applicant: Lincoln Global, Inc.Inventors: Daniel J. Langham, Badri K. Narayanan
-
Publication number: 20140224446Abstract: The present invention relates to a base material for high temperature alloy and a process for manufacturing the same. The base material includes following components (by weight): 10-45% Cr, 0.5-12% Nb, 0.7-2.5% Ti, ?9.0% Mo, ?8.0% W, ?2% Mn, ?1.0% Si, ?2.0% Al, ?0.5% C, ?0.032% O, ?0.032% N,?0.01% S, ?0.02% P, and balance being Fe and unavoidable impurities. The process for manufacturing the base material for high temperature alloy includes following steps: providing raw materials according to the target composition; charging the raw materials in a crucible uniformly layer and layer according to a certain sequence, smelting in vacuum condition; after the materials being melted completely, holding the melt at a temperature; and casting ingot, and cooling to obtain a base material for high temperature alloy.Type: ApplicationFiled: January 16, 2014Publication date: August 14, 2014Applicant: NINGXIA ORIENT TANTALUM INDUSTRY CO., LTD.Inventors: XIAOYING SONG, QUANXIN NIE, XUN LIANG, WEIPING XIE, ZHANGJUN BAI, BING ZHAO, MINGYANG LI, DONG MU, LI WANG, PENG WAN
-
Publication number: 20130306019Abstract: A surface hardening material being excellent in impact resistance and having abrasion resistance is provided. Provided are: a high-toughness cobalt-based alloy containing 25.0 to 40.0 mass % of Cr, 0.5 to 12.0 mass % of a sum of W and/or Mo, 0.8 to 5.5 mass % of Si, and 0.5 to 2.5 mass % of B, 8.0 mass % or less of each of Fe, Ni, Mn, and Cu, and 0.3 mass % or less of C, the sum amount of Fe, Ni, Mn, and C being 10.0 mass % or less, and the remainder comprising 48.0 to 68.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.Type: ApplicationFiled: May 23, 2011Publication date: November 21, 2013Inventors: Katsunori Otobe, Shinichi Nishimura, Kazunori Kurahashi
-
Publication number: 20130226281Abstract: Provided is a Co-based alloy for a living body based on Co—Cr—W—Fe, including a composition of Cr: 5% by mass to 30% by mass, W: 5% by mass to 20% by mass, Fe: 1% by mass to 15% by mass, Co as the remainder, and unavoidable impurities. In this alloy, when the content of W is 5% by mass to 10% by mass, the content of Fe can be set to be in a range of 1% by mass to 5% by mass, and when the content of W is 11% by mass to 20% by mass, the content of Fe can be set to be in a range of 3% by mass to 15% by mass.Type: ApplicationFiled: February 20, 2013Publication date: August 29, 2013Applicants: TOHOKU UNIVERSITY, SEIKO INSTRUMENTS INC.Inventors: SEIKO INSTRUMENTS INC., TOHOKU UNIVERSITY
-
Patent number: 8506884Abstract: A ?? phase strengthened Fe—Ni base superalloy comprising 1.0 to 3.0 wt % of Nb, 10 to 20 wt % of Cr, 30 to 50 wt % of Fe, 1.0 to 2.0 wt % of Ti, 1.0 to 2.0 wt % of Al, 0.02 wt % or less of C, the balance being Ni and inevitable impurities wherein an area of NbC in a cross sectional structure thereof is 0.4% or less. A hydrogen flow meter for high pressure hydrogen that uses the Fe—Ni base superalloy material mentioned above.Type: GrantFiled: December 11, 2007Date of Patent: August 13, 2013Assignee: Hitachi, Ltd.Inventors: Hiroshi Haruyama, Shinya Imano, Terufumi Iwata
-
Publication number: 20130052361Abstract: One embodiment provides a composition, comprising: a powder composition comprising alloy that is at least partially amorphous, the alloy comprising chromium, molybdenum, carbon, boron, and iron. One embodiment provides a method of forming a coating, comprising: providing a substrate; and disposing onto the substrate a coating, comprising: powder composition comprising an alloy that is at least partially amorphous, the alloy comprising chromium, molybdenum, carbon, boron, and iron.Type: ApplicationFiled: March 18, 2011Publication date: February 28, 2013Inventor: Marcella Wilson Croopnick
-
Publication number: 20120288399Abstract: The present invention relates to a high-hardness hardfacing alloy powder, containing: 0.5<C?3.0 mass %, 0.5?Si?5.0 mass %, 10.0?Cr?30.0 mass %, and 16.0<Mo?40.0 mass %, with the balance being Co and unavoidable impurities, wherein a total amount of Mo and Cr satisfies 40.0?Mo+Cr?70.0 mass %. The high-hardness hardfacing alloy powder according to the present invention may further contain at least one element selected from the group consisting of: Ca?0.03 mass %, P?0.03 mass %, Ni?5.0 mass % and Fe?5.0 mass %. The high-hardness hardfacing alloy powder according to the present invention can be employed for build-up welding of a face part of a valve used in various internal combustion engines, automotive engines, steam turbines, heat exchangers, heating furnaces and the like.Type: ApplicationFiled: May 3, 2012Publication date: November 15, 2012Applicant: DAIDO STEEL CO., LTD.Inventors: Kaoru IMAIZUMI, Shigeki UETA
-
Publication number: 20120244035Abstract: A noble alloy suitable for dental purposes that contains cobalt and chromium in addition to ruthenium and optionally gold and/or platinum group elements, and is non-magnetic is provided. In the alloy system cobalt-chromium-ruthenium-gallium it was found that gallium contents above about 10 weight percent may exhibit ferromagnetism upon slow cooling. Ferromagnetism is an undesirable feature for dental prosthesis. Reducing the gallium content below 10%, however, lowers the thermal expansion coefficient of the alloy.Type: ApplicationFiled: January 12, 2012Publication date: September 27, 2012Applicant: The Argen CorporationInventors: Paul J. Cascone, Arun Prasad
-
Publication number: 20120093679Abstract: The invention relates to a method for the production of tools for a chip-removing machining of metallic materials and to a tool with improved wear resistance and/or high toughness. The invention further provides an alloyed steel with a chemical composition comprising carbon, silicon, manganese, chromium, molybdenum, tungsten, vanadium, and cobalt as well as aluminum, nitrogen, and iron. The alloyed steel may be used to make tools to a hardness of greater than 66 HRC and increased chip-removing machining performance.Type: ApplicationFiled: October 17, 2011Publication date: April 19, 2012Applicant: BOEHLER EDELSTAHL GMBH & CO. KGInventors: Gert KELLEZI, Devrim CALISKANOGLU, Andreas BAERNTHALER
-
Publication number: 20120058004Abstract: Providing a metal mold repair method and a metal mold repair paste agent which are capable of repairing cracks with simple work. A repair paste agent containing components that become an alloy is directly applied to a surface of a metal mold having a crack so as to cover the crack part, subsequently a surface of the repair paste agent is coated with an oxidation inhibitor and the repair paste agent is made to penetrate the inside of the crack by heating and becomes an alloy, thereby filling up the crack.Type: ApplicationFiled: March 3, 2011Publication date: March 8, 2012Inventors: Michiharu HASEGAWA, Noriyuki Miyazaki, Masafumi Nakamura, Naoji Yamamoto, Kazuo Ueda
-
Publication number: 20110311391Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 2.0-20.0% by weight Cr, 49.0-97.1% by weight Fe, 0.1-3.0% by weight Mn, 0.1-3.0% by weight Mo, 0.-7.0% by weight Nb, 2.0-10.0% by weight Si, 0-7.0% by weight Ti, 0.-7.0% by weight V and 0.-0.5% by weight W, the sum of the fractions of Nb, Ti, V and W being 2.0-7.0% by weight. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.Type: ApplicationFiled: October 13, 2009Publication date: December 22, 2011Applicant: FEDERAL-MOGUL BURSCHEID GMBHInventor: Laszlo Pelsoeczy
-
Publication number: 20110311390Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 6.0-20.0% by weight Cr, 45.0-88.5% by weight Fe, 3.0-15.0% by weight Mn and 2.0-10.0% by weight Si. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.Type: ApplicationFiled: October 12, 2009Publication date: December 22, 2011Inventor: Laszlo Pelsoeczy
-
Publication number: 20110305591Abstract: A low density high ductility alloy for making a golf club head is composed of 31 to 36 w. t. % of Manganese (Mn), 6 to 10 w. t. % of Aluminum (Al), 0.3 to 1 w. t. % of Carbon (C), 4 to 8 w. t. % of Chromium (Cr), 0.2 to 0.6 w. t. % of Silicon (Si), and other component is iron (Fe). The density of the alloy is 6.8˜7 g/cm3. The elongation of the alloy is from 33 to 55.4%. The tensile strength of the alloy is 61 to 67% f/mm2. The yield strength of the alloy is greater than 35 kgf/mm2.Type: ApplicationFiled: June 15, 2010Publication date: December 15, 2011Inventors: Yu-Chi WU, Chung-Le YEN
-
Publication number: 20110275033Abstract: A nonmagnetic alloy is provided based on a palladium-cobalt binary system with the addition of gold, has a coefficient of thermal expansion (CTE) of about 13.8 to about 15 and may include one or more of the following additive metals: aluminum, boron, chromium, gallium, lithium, rhenium, ruthenium, silicon, tantalum, titanium, and tungsten.Type: ApplicationFiled: July 12, 2011Publication date: November 10, 2011Applicant: IVOCLAR VIVADENT, INC.Inventors: Tridib Dasgupta, George Tysowsky
-
Patent number: 8012271Abstract: The presently described technology relates to a material for components of a gas turbine, in particular for components of a gas turbine aircraft engine, having a matrix of an iron-based alloy material, wherein the matrix of the iron-based alloy material being hardened by means of an intermetallic material of the Laves phase.Type: GrantFiled: December 15, 2006Date of Patent: September 6, 2011Assignee: MTU Aero Engines GmbHInventors: Wilfried Smarsly, Gerhard Sauthoff
-
Patent number: 8002909Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.Type: GrantFiled: October 5, 2009Date of Patent: August 23, 2011Assignee: Boston Scientific Scimed, Inc.Inventor: Charles Horace Craig
-
Publication number: 20110101619Abstract: A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal are provided. The MCrAlY alloy includes chromium, aluminum, yttrium and iron and optionally titanium, hafnium or silicon. The honeycomb seal includes a substrate, honeycomb cells and a protective coating on side walls of the honeycomb cells or a diffusion area inside side walls of the honeycomb cells, the protective coating or the diffusion area including the MCrAlY alloy.Type: ApplicationFiled: January 23, 2009Publication date: May 5, 2011Inventors: David Fairbourn, Paul Mathew Walker
-
Publication number: 20110081540Abstract: The present invention pertains to wear-resistant components for internal combustion engines, particularly piston rings, that feature a wear protection layer with iron base alloy on their surface that is subjected to wear and are characterized in that the components are manufactured of a coating powder by means of high-velocity flame spraying (HVOF) and the coating is single-phase, wherein the proportions of the elements Fe, Cr, B and C in the wear protection layer are 45-75 wt.-% Fe, 15-40 wt.-% Cr, 1-10 wt.-% B and 0.1-5 wt.-% C. The present invention furthermore pertains to a method for manufacturing wear-resistant components for internal combustion engines, particularly piston rings, according to the present invention.Type: ApplicationFiled: January 20, 2009Publication date: April 7, 2011Inventors: Marcus Kennedy, Michael Zinnabold, Marc-Manuel Matz
-
Publication number: 20110059332Abstract: Composition containing a MCrAlY, wherein M is selected from the group consisting of cobalt (Co), nickel (Ni), iron (Fe) and mixtures thereof, and germanium in an amount of about 10% by weight or less of germanium. Coated articles coated with the composition are also provided.Type: ApplicationFiled: September 10, 2009Publication date: March 10, 2011Inventors: Canan Uslu Hardwicke, Kivilcim Onal Hance, Paul Stephen DiMascio
-
Publication number: 20100230299Abstract: The hydrogen storage alloy has, as a main phase thereof, a bcc structure phase having a composition represented by TixCryVzXw wherein 3/2?y/x?3/1, 50?z?75 mol %, 0?w?5 mol %, and x+y+z+w=100 mol %, and X represents any one or more selected from Al, Si, and Fe. The hydrogen storage device is a device using the alloy. The preparation process of a hydrogen storage alloy includes the steps of: melting/casting raw materials mixed to give the composition represented by TixCryVzXw; heat-treating an ingot obtained in the melting/casting step; and subjecting the heat-treated ingot to a hydrogen storing/releasing treatment at least once to activate the ingot.Type: ApplicationFiled: March 5, 2010Publication date: September 16, 2010Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHOInventors: Masakazu Aoki, Shinichi Towata, Tatsuo Noritake, Akio Itoh, Kota Washio, Mamoru Ishikiriyama
-
Publication number: 20100209284Abstract: A soft magnetic alloy for perpendicular magnetic recording medium excellent n saturation magnetic flux density, amorphousness and atmospheric corrosion resistance. The alloy is an Fe-Co based alloy and comprises Fe in an amount satisfying 0.25 to 0.65 of Fe/(Fe+Co) ratio, which is an atomic ratio of Fe and Fe+Co; Zr+Hf in an amount of 6 to 100 at %; Na+Ta in an amount of 0 to 2 at %; Al and/or Cr in an amount of 0 to 5 at %; and the balance Co and unavoidable impurities. A part of Zr and/or Hf can be replaced by B, provided that the amount of B to replace Zr and/or Hf is double in at % of the total amount of Zr and Hf to be replaced and that the total amount of Zr and Hf after replacement is 4 at % or more.Type: ApplicationFiled: May 1, 2008Publication date: August 19, 2010Applicant: SANYO SPECIAL STEEL CO., LTD.Inventors: Toshiyuki Sawada, Akihiko Yanagitani
-
Publication number: 20100104440Abstract: The present invention provides a coating material, a method of manufacturing the coating material and a coating method using the coating material that are capable of forming a coating film that retains high abrasion resistance while offering improved oxidation resistance at high temperatures, and also provides a moving blade fitted with a shroud. A coating material is used that comprises not less than 14% by mass and not more than 30% by mass of Mo, not less than 13% by mass and not more than 20% by mass of Cr, and not less than 0.5% by mass and not more than 4% by mass of Si, may further comprise not more than 1.5% by mass of Ni, not more than 1.5% by mass of Fe, and not more than 0.08% by mass of C, and comprises a balance of Co and unavoidable impurities, wherein the material further comprises at least one added component selected from the group consisting of not less than 0.01% by mass and not more than 3% by mass of Y, not less than 0.01% by mass and not more than 10% by mass of Al, and not less than 0.Type: ApplicationFiled: March 28, 2009Publication date: April 29, 2010Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., TSINGHUA UNIVERSITYInventors: Taiji Torigoe, Tomoaki Yunomura, Ikuo Okada, Zhi-Gang Yang
-
Patent number: 7691215Abstract: The invention relates to inorganic intermetallic compounds having a PMR effect (combined GMR/CMR effect), which are characterized in that they contain at least two elements per formula unit and have a field sensitivity of less than 10% per 0.1 T at temperatures greater than 290 K. The invention also relates to composites consisting of these compounds, to a method for the production thereof an to their use, in particular, as magnetic field sensors or in the domain of spin electronics.Type: GrantFiled: February 22, 2002Date of Patent: April 6, 2010Assignee: International Business Machines CorporationInventor: Claudia Felser
-
Publication number: 20100080921Abstract: A target material for thermal spraying may include chromium and at least one of about 0.5-12% by weight of aluminum and about 2-15% by weight of manganese.Type: ApplicationFiled: September 30, 2008Publication date: April 1, 2010Inventor: M. Brad Beardsley
-
Patent number: 7662740Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.Type: GrantFiled: June 3, 2004Date of Patent: February 16, 2010Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki KaishaInventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
-
Patent number: 7658883Abstract: Novel carbon-plus-nitrogen corrosion-resistant ferrous and austenitic alloys, apparatus incorporating an inventive alloy, and methods of making and using the apparatus are described. The corrosion-resistant ferrous and austenitic alloys comprise no greater than about 4 wt. % nickel, are characterized by a strength greater than about 700 MPa (100 ksi), and, when being essentially free of molybdenum (<0.3 wt. %), have minimum Pitting Resistance Equivalence (PRE) numbers of 20 and minimum Measure of Alloying for Corrosion Resistance numbers (MARC) of 30 because of the use of both carbon and nitrogen. The ferrous and austenitic alloys are particularly formulated for use in oilfield operations, especially sour oil and gas wells and reservoirs. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims.Type: GrantFiled: December 18, 2006Date of Patent: February 9, 2010Assignee: Schlumberger Technology CorporationInventors: Manuel Marya, Rashmi Bhavsar
-
Publication number: 20100008812Abstract: A hard phase forming alloy powder, for forming a hard phase dispersed in a sintered alloy, consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities. A production method, for a wear resistant sintered alloy, includes preparing a matrix forming powder, the hard phase forming alloy powder, and a graphite powder. The production method further includes mixing 15 to 45% of the hard phase forming alloy powder and 0.5 to 1.5% of the graphite powder with the matrix forming powder into a raw powder. The production method further includes compacting the raw powder into a green compact having a predetermined shape and includes sintering the green compact. A wear resistant sintered alloy exhibits a metallic structure in which 15 to 45% of a hard phase is dispersed in a matrix. The hard phase consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities.Type: ApplicationFiled: June 30, 2009Publication date: January 14, 2010Applicant: HITACHI POWDERED METALS CO., LTD.Inventor: Hideaki Kawata
-
Publication number: 20100003159Abstract: The present invention discloses a low-density high-toughness alloy and the fabrication method thereof. The alloy of the present invention consists essentially of: by weight percent, equal to or greater than 23% but lower than or equal to 33% manganese, equal to or greater than 8.1% but lower than or equal to 9.8% aluminum, equal to or greater than 3% but lower than or equal to 5.0% chromium, equal to or greater than 0.6% but lower than or equal to 1.2% carbon, equal to or greater than 0.1% but lower than or equal to 0.24% silicon and the balance of iron. The golf-club head made from the abovementioned alloy can obtain superior elongation, strength, damping capacity, and corrosion resistance even without any heat treatment, or any hot/cold working, such as forging and rolling; therefore, the fabrication cost thereof can be obviously reduced.Type: ApplicationFiled: July 15, 2009Publication date: January 7, 2010Inventors: Tzeng-Feng Liu, Jian-Wei Lee
-
Publication number: 20090297396Abstract: Provided is a method of manufacturing a part and the part capable of manufacturing a high value-added precision part having a low sintering temperature, a good hardness, and a good productivity at a low cost. The method includes steps of: mixing a material of from 40 to 75 wt % selected from the group consisting of Fe and a combination of Fe and Co, a material of 20 wt % or more selected from the group consisting of W, Mo, Cr, Nb, V, and Ni, a material of from 2 to 14 wt % selected from the group consisting of B, C, Cu, and Si, alloy powder having a composition including unavoidable impurities, and a binder; performing an injection molding on the mixture to form the injection moldings to have a shape of the part; removing the binder from the injection moldings; and sintering the injection moldings from which the binder is removed.Type: ApplicationFiled: January 30, 2007Publication date: December 3, 2009Applicants: POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, POSTECH Academy-Industry FoundationInventors: Sunghak Lee, Nackjoon Kim, Taeshik Yoon, Changkyu Kim, Changyoung Son, Daejin Ha
-
Patent number: 7601230Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.Type: GrantFiled: September 27, 2007Date of Patent: October 13, 2009Assignee: Scimed Life Systems, Inc.Inventor: Charles Horace Craig
-
Publication number: 20090202381Abstract: The presently described technology relates to a material for components of a gas turbine, in particular for components of a gas turbine aircraft engine, having a matrix of an iron-based alloy material, wherein the matrix of the iron-based alloy material being hardened by means of an intermetallic material of the Laves phase.Type: ApplicationFiled: December 15, 2006Publication date: August 13, 2009Inventors: Wilfried Smarsly, Gerhard Sauthoff
-
Publication number: 20090123324Abstract: A method and cast wear resistant component made of an alloy that includes carbon, tungsten, chromium, and cobalt with the balance essentially iron and other alloying components made using waste, surplus or worn-out cemented carbide product, such as cemented carbide cutting tool inserts. In one method, the alloy further includes silicon, manganese, nickel, titanium, and molybdenum. In practicing the method, pieces of waste, surplus or worn-out cemented carbide product having tungsten carbide (WC) are added to a cast iron alloy melt. The melt includes enough chromium to control solubility of the WC. In one method, precipitated carbide structure having chromium and carbon is produced with tungsten in the melt being substitutionally dissolved. In one implementation, tungsten is substitutionally dissolved in a lattice of the precipitated carbide structure. Carbide can be added to the melt via super inoculation. The cast wear resistant component can be a cutting tool.Type: ApplicationFiled: October 22, 2008Publication date: May 14, 2009Inventors: Carl-Hakan Andersson, Mikael Andersson, Henrik Andersson, Helena Andersson, Anders Nilsson, Jan-Eric Stahl
-
Publication number: 20080199349Abstract: Alloy compositions which are resistant to metal dusting corrosion are provided by the present invention. Also provided are methods for preventing metal dusting on metal surfaces exposed to carbon supersaturated environments. The alloy compositions include an alloy (PQR), and a multi-layer oxide film on the surface of the alloy (PQR). The alloy (PQR) includes a metal (P) selected from the group consisting of Fe, Ni, Co, and mixtures thereof, an alloying metal (Q) comprising Cr, Mn, and either Al, Si, or Al/Si, and an alloying element (R). When the alloying metal (Q) includes Al, the multi-layer oxide film on the surface of the alloy includes at least three oxide layers. When the alloying metal (Q) includes Si, the multi-layer oxide film on the surface of the alloy (PQR) includes at least four oxide layers. When the alloying metal (Q) includes Al and Si, the multi-layer oxide film on the surface of the alloy (PQR) includes at least three oxide layers.Type: ApplicationFiled: February 8, 2008Publication date: August 21, 2008Inventors: ChangMin Chun, Trikur A. Ramanarayanan
-
Publication number: 20080175749Abstract: A ?? phase strengthened Fe—Ni base superalloy comprising 1.0 to 3.0 wt % of Nb, 10 to 20 wt % of Cr, 30 to 50 wt % of Fe, 1.0 to 2.0 wt % of Ti, 1.0 to 2.0 wt % of Al, 0.02 wt % or less of C, the balance being Ni and inevitable impurities wherein an area of NbC in a cross sectional structure thereof is 0.4% or less. A hydrogen flow meter for high pressure hydrogen that uses the Fe—Ni base superalloy material mentioned-above.Type: ApplicationFiled: December 11, 2007Publication date: July 24, 2008Inventors: Hiroshi Haruyama, Shinya Imano, Terufumi Iwata
-
Publication number: 20080159905Abstract: A controlled combustion synthesis apparatus comprises an ignition system, a pressure sensor for detecting internal pressure, a nitrogen supply, a gas pressure control valve for feeding nitrogen and exhausting reaction gas, means for detecting the internal temperature of the reaction container, a water cooled jacket, and a cooling plate. A temperature control system controls the temperature of the reaction container by controlling the flow of cooling water supplied to the jacket and the cooling plate in response to the detected temperature. By combustion synthesizing, while controlling the internal pressure and temperature, the apparatus can synthesize a silicon alloy including 30-70 wt. % silicon, 10-45 wt. % nitrogen, 1-40 wt. % aluminum, and 1-40 wt % oxygen.Type: ApplicationFiled: April 19, 2007Publication date: July 3, 2008Applicant: ISMAN J CorporationInventors: Toshiyuki Watanabe, Masafumi Matsushita, Toshitaka Sakurai, Kazuya Sato, Yoko Matsushita
-
Patent number: 7294214Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.Type: GrantFiled: January 8, 2003Date of Patent: November 13, 2007Assignee: Scimed Life Systems, Inc.Inventor: Charles Horace Craig
-
Patent number: 6737194Abstract: A low temperature hydrogen storage alloy which is not pyrophoric upon exposure to ambient atmosphere, particularly even after hydrogen charge/discharge cycling.Type: GrantFiled: October 10, 2002Date of Patent: May 18, 2004Assignee: Energy Conversion Devices, Inc.Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang
-
Publication number: 20040037733Abstract: A hydrogen storage alloy and its production method are disclosed, which has an extremely high effective hydrogen storage capacity in the pressure range from 0.001 to 10 MPa, and a variety of use. The alloy is principally of a body-centered cubic crystal structure, and represented by the compositional formula CraTibVcFedMeXf (M: Al etc.; X: La etc.; 30≦a≦70, 20≦b≦50, 5≦c≦20, 0≦d≦10, 0≦e≦10, and 0≦f≦10, a+b+c+d+e+f=100). The alloy contains 0.005 to 0.150 wt % of O2, and has hydrogen absorption-desorption capability of not less than 2.2% of its weight from 0 to 100° C. and from 0.001 to 10 MPa. The method includes step (a) of melting starting materials for the alloy, deoxidizing step (b) such as step (b1) of blowing Ar into the alloy melt, and casting step (c).Type: ApplicationFiled: May 13, 2003Publication date: February 26, 2004Inventor: Yutaka Oka
-
Patent number: 6652991Abstract: The addition of small amounts of CeO2 and Cr to intermetallic compositions of NiAl and FeAl improves ductility, thermal stability, thermal shock resistance, and resistance to oxidation, sulphidization and carburization.Type: GrantFiled: October 9, 2002Date of Patent: November 25, 2003Assignee: The Governors of the University of AlbertaInventors: You Wang, Weixing Chen
-
Patent number: 6562293Abstract: An article of equipment intended to be submerged in molten zinc and low percentage aluminum/zinc melts, said article containing an alloy material comprised of carbon, chromium, nickel, tungsten, molybdenum, vanadium, niobium (columbium), cobalt, boron, iron and/or zirconium, wherein vanadium is present in an amount sufficient to limit the &ggr;-region.Type: GrantFiled: November 6, 2000Date of Patent: May 13, 2003Assignee: Alphatech, Inc.Inventor: Jorge A. Morando
-
Publication number: 20030051778Abstract: A low temperature hydrogen storage alloy which is not pyrophoric upon exposure to ambient atmosphere, particularly even after hydrogen charge/discharge cycling.Type: ApplicationFiled: October 10, 2002Publication date: March 20, 2003Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang
-
Patent number: 6524405Abstract: The present invention is directed to an iron, aluminum, chromium, carbon alloy and a method of producing the same, wherein the alloy has good room temperature ductility, excellent high temperature oxidation resistance and ductility. The alloy includes about 10 to 70 at. % iron, about 10 to 45 at. % aluminum, about 1 to 70 at. % chromium and about 0.9 to 15 at. % carbon. The invention is also directed to a material comprising a body-centered-cubic solid solution of this alloy, and a method for strengthening this material by the precipitation of body-centered-cubic particles within the solid solution, wherein the particles have substantially the same lattice parameters as the underlying solid solution. The ease of processing and excellent mechanical properties exhibited by the alloy, especially at high temperatures, allows it to be used in high temperature structural applications, such as a turbocharger component.Type: GrantFiled: March 31, 2000Date of Patent: February 25, 2003Inventor: Hui Lin