Nickel Containing Patents (Class 420/584.1)
  • Patent number: 12077838
    Abstract: A non-pyrophoric AB2-type Laves phase hydrogen storage alloy and hydrogen storage systems using the alloy. The alloy has an A-site to B-site elemental ratio of no more than about 0.5. The alloy has an alloy composition including about (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0. The hydrogen storage system has one or more hydrogen storage alloy containment vessels with the alloy disposed therein.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: September 3, 2024
    Assignee: Harnyss IP , LLC
    Inventor: Baoquan Huang
  • Patent number: 12023643
    Abstract: The present invention relates, in general, to a system and method for focusing gas distribution through a series of three-dimensionally (3D) printed lattice heating elements within an electric catalyst unit in order to promote ammonia dissociation. The present invention allows gaseous ammonia to be continuously heated as it flows in series through ceramic tubes containing 3D printed lattice heating elements. The lattice structure of the heating elements provides a balance between surface area and heat dissipation, allowing the heating elements to reach a suitable temperature to perform ammonia dissociation, but which are not oversaturated with heat which could result in failure or melting of the heating elements.
    Type: Grant
    Filed: December 14, 2023
    Date of Patent: July 2, 2024
    Assignee: First Ammonia Motors, Inc.
    Inventors: James L. Wall, II, David Gwynn Kapp, II
  • Patent number: 10058439
    Abstract: Methods of manufacturing a medical article that include radial deformation of a polymer tube are disclosed. A medical article, such as an implantable medical device or an inflatable member, may be fabricated from a deformed tube.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 28, 2018
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Bin Huang, Jonathan P. Durcan
  • Publication number: 20150086412
    Abstract: A heat-resistant, austenitic cast steel having excellent machinability comprising by mass 0.4-0.55% of C, 1-2% of Si, 0.5-1.5% of Mn, 18-27% of Cr, 8-22% of Ni, 1.5-2.5% of Nb, 0.01-0.3% of N, 0.1-0.2% of S, and 0.02-0.15% of Al, the balance being Fe and inevitable impurities, a machinability index I represented by the following formula: I=100×S+75×Al+0.75×Mn?10×C?2×Nb?0.25×Cr?0.15×Ni?1.2×N, wherein each element symbol represents % by mass of each element in the cast steel, meeting the condition of ?3.0?I?+14.0, and an exhaust member made thereof.
    Type: Application
    Filed: May 9, 2013
    Publication date: March 26, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Kana Morishita, Kenichi Inoue, Susumu Katsuragi, Masahide Kawabata, Tomonori Sakuta
  • Patent number: 8906171
    Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 9, 2014
    Assignee: Sandvik Intellectual Property
    Inventors: Ulrika Magnusson, Guocai Chai
  • Patent number: 8815146
    Abstract: An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of ??-Ni3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 26, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Yukinori Yamamoto, Govindarajan Muralidharan, Michael P. Brady
  • Publication number: 20140227550
    Abstract: A ternary magnetic braze alloy and method for applying the braze alloy in areas having limited access. The magnetic braze alloy is a nickel-based braze alloy from the perminvar region of the Ni, Fe, Co phase diagram. The braze alloy includes, by weight percent 8-45% Fe, 0-78% Co, 2.0-4.0% of an element selected from the group consisting of B and Si and combinations thereof, and the balance Ni. The nickel-based braze alloy is characterized by a brazing temperature in the range of 1850-2100° F. The nickel-based braze alloy is magnetic below its Curie temperature.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yan CUI, Dechao LIN, Srikanth Chandrudu KOTTILINGAM, Brian Lee TOLLISON
  • Patent number: 8801877
    Abstract: An austenitic heat resistant alloy, which comprises by mass percent, C: over 0.02 to 0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 28 to 38%, Ni: over 40 to 60%, Co?20% (including 0%), W over 3 to 15%, Ti: 0.05 to 1.0%, Zr: 0.005 to 0.2%, Al: 0.01 to 0.3%, N?0.02%, and Mo<0.5%, with the balance being Fe and impurities, in which the following formulas (1) to (3) are satisfied has high creep rupture strength and high toughness after a long period of use at a high temperature, and further it is excellent in hot workability. This austenitic heat resistant alloy may contain a specific amount of one or more elements selected from Nb, V, Hf, B, Mg, Ca, Y, La, Ce, Nd, Sc, Ta, Re, Ir, Pd, Pt and Ag. P?3/{200(Ti+8.5×Zr)} . . . (1), 1.35×Cr?Ni+Co?1.85×Cr . . . (2), Al?1.5×Zr . . . (3).
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: August 12, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Semba, Hirokazu Okada, Masaaki Igarashi
  • Publication number: 20140131338
    Abstract: Various embodiments of a metal cored wires, hardband alloys, and methods are disclosed. In one embodiment of the present invention, a hardbanding wire comprises from about from about 16% to about 30% by weight chromium; from about 4% to about 10% by weight nickel; from about 0.05% to about 0.8% by weight nitrogen; from about 1% to about 4% by weight manganese; from about 1% to about 4% by weight carbon from about 0.5% to about 5% by weight molybdenum; from about 0.25% to about 2% by weight silicon; and the remainder is iron including trace elements. The hardband alloy produced by the metal cored wire meets API magnetic permeability specifications and has improved metal to metal, adhesive wear resistance compared to conventional hardband alloys.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Postle Industries, Inc.
    Inventor: Christopher J. Postle
  • Publication number: 20130315659
    Abstract: A braze alloy composition is disclosed, containing nickel, about 5% to about 40% of at least one refractory metal selected from niobium, tantalum, or molybdenum; about 2% to about 32% chromium; and about 0.5% to about 10% of at least one active metal element. An electrochemical cell that includes two components joined to each other by such a braze composition is also described. A method for joining components such as those within an electrochemical cell is also described. The method includes the step of introducing a braze alloy composition between a first component and a second component to be joined, to form a brazing structure. In many instances, one component is formed of a ceramic, while the other is formed of a metal or metal alloy.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 28, 2013
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Raghavendra Rao Adharapurapu, Mohamed Rahmane
  • Publication number: 20130295375
    Abstract: The invention relates to a spray powder with a superferritic iron-based compound for the thermal coating of a substrate, wherein the spray powder includes, apart from impurities, a chemical list from the list of chemical elements consisting of C, Mn, Cr, Mo, Ni, Nb, P, S, Si, Fe, Al, O, and Zr. In accordance with the invention, the spray powder has the following chemical composition: C at a maximum up to 0.7% by weight, Mn at a maximum up to 0.7% by weight; Ni at a maximum up to 0.5% by weight, Nb at a maximum up to 1.2% by weight, Pat a maximum up to 0.1% by weight, S at a maximum up to 0.1% by weight, Si at a maximum up to 0.2% by weight, Cr in the range from 20% to 40% by weight, Mo in the range 2.0% to 6% by weight, and a ceramic component Al2O3/ZrO2 up to a maximum of 50% by weight, with the remainder being Fe, and otherwise a total of a maximum of 0.4% by weight of further chemical components being contained as impurities.
    Type: Application
    Filed: April 9, 2013
    Publication date: November 7, 2013
    Inventors: Peter Ernst, Alexander Barth
  • Publication number: 20130294964
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 7, 2013
    Applicant: HAYNES INTERNATIONAL, INC.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Patent number: 8568901
    Abstract: An alloy for use as a welding overlay for boiler tubes in a low NOx coal-fired boiler comprising in % by weight: 36 to 43% Cr, 0.2 to 5.0% Fe, 0-2.0% Nb, 0-1% Mo, 0.3 to 1% Ti, 0.5 to 2% Al, 0.005 to 0.05% C, 0.005 to 0.020% (Mg+Ca), 0-1% Mn, 0-0.5% Si, less than 0.01% S, balance substantially Ni and trace additions and impurities. The alloy provides exceptional coal ash corrosion resistance in low partial pressures of oxygen. The alloy also increases in hardness and in thermal conductivity at service temperature over time. The increased hardness improves erosion resistance of the tubes while the increased thermal conductivity improves the thermal efficiency of the boiler and its power generation capabilities.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: October 29, 2013
    Assignee: Huntington Alloys Corporation
    Inventors: Samuel D. Kiser, Brian A. Baker
  • Publication number: 20130266477
    Abstract: An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of ??—Ni3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: UT-BATTELLE, LLC
    Inventors: Yukinori YAMAMOTO, Govindarajan MURALlDHARAN, Michael P. BRADY
  • Patent number: 8512485
    Abstract: A alloy and a process of forming a alloy are disclosed. The alloy has a predetermined grain boundary morphology. The alloy includes by weight greater than about 0.06 percent carbon, up to about 0.0015 percent sulfur, less than about 16 percent chromium, between about 39 percent and about 44 percent nickel, between about 2.5 percent and about 3.3 percent niobium, between about 1.4 percent and about 2 percent titanium, up to about 0.5 percent aluminum, up to about 0.006 percent boron, up to about 0.3 percent copper, up to about 0.006 percent nitrogen, and greater than about 0.5 percent molybdenum.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Ganjiang Feng, George A. Goller, Raymond Joseph Stonitsch, Jason R. Parolini, Shan Liu
  • Patent number: 8506883
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.4% silicon, 0.2% to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 13, 2013
    Assignee: Haynes International, Inc.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Patent number: 8486204
    Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 16, 2013
    Assignee: Shin Zu Shing Co., Ltd.
    Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
  • Publication number: 20130160466
    Abstract: It is an objective of the invention to provide an Ni-based forged alloy having good large ingot formability and good hot formability as well as high mechanical strength at high temperature. There is provided an Ni-based forged alloy comprising: 0.001 to 0.1 mass % of C; 0.001 to 0.01 mass % of B; 16 to 22 mass % of Cr; 0.5 to 1.5 mass % of Al; 0.1 to 6.0 mass % of W; 3.5 to 5.5 mass % of Nb; 0.8 to 3.0 mass % of Ti; 16 to 20 mass % of Fe; 2.0 mass % or less of Mo; and the balance including Ni and unavoidable impurities, in which: a segregation parameter Ps defined by a formula of “Ps (mass %)=1.05[Al concentration (mass %)]+0.6[Ti concentration (mass %)]?0.8[Nb concentration (mass %)]?0.3[Mo concentration (mass %)]” satisfies a relationship of “Ps??3.0 mass %”; and total amount of W and Mo is 1.75 atomic % or less.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: HITACHI, LTD.
    Inventor: Hitachi, Ltd.
  • Patent number: 8431072
    Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: April 30, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Yukinori Yamamoto, Michael P. Brady
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Publication number: 20130004786
    Abstract: Provided in one embodiment includes a multi-fully alloyed powder that provides a wear- resistant and corrosion-resistant coating on a substrate when applied by a thermal spraying process. The coating exhibits desirable hardness, toughness, and bonding characteristics in a highly dense coating that is suitable for a wide range of temperatures. The embodiment provides a method of forming a coating, the method comprising: providing a substrate; and disposing onto the substrate a coating, comprising: a powder-containing composition comprising an alloy, the alloy comprising a solid solution comprising nickel, and a first component comprising at least one transition metal element and at least one nonmetal element.
    Type: Application
    Filed: February 1, 2011
    Publication date: January 3, 2013
    Inventors: Gerald A. Croopnick, Marcella Wilson Croopnick
  • Publication number: 20120301347
    Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Govindarajan MURALIDHARAN, Yukinori Yamamoto, Michael P. Brady
  • Patent number: 8318083
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M23C6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 27, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Roman I Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Patent number: 8313591
    Abstract: An austenitic heat resistant alloy, which contains, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: November 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Publication number: 20120286025
    Abstract: A Ni—Fe-based alloy brazing filler material is provided comprising, in mass %, Fe: 21 to 40%; Cr: 10 to 30%; P: 7 to 11%; B: 0 to 5%; Si: 0 to 4.5%; V: 0 to 5%; Co: 0 to 5%; Mo: 0 to 5%; the balance being Ni and unavoidable impurities, wherein the mass ratio of Fe to P (Fe/P) is in a range of 2.6 to 5. The present invention provides a Ni—Fe-based alloy brazing filler material having a low melting temperature and a superior corrosion resistance and comprising raw materials that are relatively easily available, for use in manufacture of stainless-steel heat exchangers or the like.
    Type: Application
    Filed: November 26, 2010
    Publication date: November 15, 2012
    Applicants: TOKYO BRAZE CO., LTD., SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Shingo Fukumoto, Kotaro Matsu
  • Patent number: 8230797
    Abstract: The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: July 31, 2012
    Assignee: Southwest Research Institute
    Inventors: Kwai S. Chan, Narayana Sastry Cheruvu, Wuwei Liang
  • Patent number: 8137613
    Abstract: An austenitic stainless steel welded joint, whose base metal and weld metal each comprises, by mass percent, C: not more than 0.3%, Si: not more than 2%, Mn: 0.01 to 3.0%, P: more than 0.04% to not more than 0.3%, S: not more than 0.03%, Cr: 12 to 30%, Ni: 6 to 55%, rare earth metal(s): more than 0.2% to not more than 0.6%, sol. Al: 0.001 to 3% and N: not more than 0.3%, with the balance being Fe and impurities, and satisfies the formula of (Cr+1.5×Si+2×P)/(Ni+0.31×Mn+22×C+14.2×N+5×P)<1.388, in spite of having a high P content and showing the fully austenitic solidification, has excellent resistance to the weld solidification cracking. Therefore, the said austenitic stainless steel welded joint can be widely used in such fields where a welding fabrication is required. Each element symbol in the above formula represents the content by mass percent of the element concerned.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada, Masaaki Igarashi
  • Publication number: 20120051963
    Abstract: A nickel-iron-base alloy has by weight about 0.06% to about 0.09% C, about 35% to about 37% Fe, about 12.0% to about 16.5% Cr, about 1.0% to about 2.0% Al, about 1.0% to about 3.0% Ti, about 1.5% to about 3.0% W, up to about 5.0% Mo, up to about 0.75% Nb, up to about 0.2% Mn, up to about 0.1% Si, up to about 0.006% B, and balance essentially Ni. A method for making the nickel-iron-base alloy is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, George GOLLER, Joseph RAZUM, Matthew LAYLOCK
  • Publication number: 20110311390
    Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 6.0-20.0% by weight Cr, 45.0-88.5% by weight Fe, 3.0-15.0% by weight Mn and 2.0-10.0% by weight Si. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.
    Type: Application
    Filed: October 12, 2009
    Publication date: December 22, 2011
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20110248071
    Abstract: Disclosed is an austenitic welding material which contains C: 0.01 wt % or less, Si: 0.5 wt % or less, Mn: 0.5 wt % or less, P: 0.005 wt % or less, S: 0.005 wt % or less, Ni: 15 to 40 wt %, Cr: 20 to 30 wt %, N: 0.01 wt % or less, 0: 0.01 wt % or less, and the balance of Fe and inevitable impurities, wherein the content of B contained as one of the inevitable impurities in the welding material is 3 wt ppm or less, and the total content of C, P, S, N and O in the welding material is 0.02 wt % or less.
    Type: Application
    Filed: December 16, 2009
    Publication date: October 13, 2011
    Applicants: JAPAN ATOMIC ENERGY AGENCY, KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.), KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Kiyoshi Kiuchi, Ikuo Ioka, Chiaki Kato, Nobutoshi Maruyama, Ichiro Tsukatani, Makoto Tanabe, Jumpei Nakayama
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Patent number: 8002909
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charles Horace Craig
  • Publication number: 20110192127
    Abstract: A filter comprising a porous sintered stainless steel is provided. The filter includes 10-30% chromium, 5-25% nickel, 0.5-3% manganese; 1-4% silicon, and 0-3% molybdenum with the remainder being iron and inevitable impurities. The sintered steel has a density less than 80% of full density. The use of a stainless steel powder for the preparation of a filter having improved permeability at high temperatures also is described.
    Type: Application
    Filed: April 20, 2011
    Publication date: August 11, 2011
    Applicant: HÖGANÄS AB
    Inventors: Owe Mårs, Ingrid Hauer
  • Patent number: 7959854
    Abstract: A heat resistant alloy comprising, in % by weight, over 0.6% to not more than 0.9% of C, up to 2.5% of Si, up to 3.0% of Mn, 20 to 28% of Cr, 8 to 55% of Ni, 0.01 to 0.8% of Ti and 0.05 to 1.5% of Nb, the balance being Fe and inevitable impurities, the value of (Ti+Nb)/C being 0.12 to 0.29 in atomic % ratio. When the alloy further contains up to 0.5% of Zr, the value of (Ti+Nb+Zr)/C is 0.12 to 0.29 in atomic % ratio. When the alloy is heated at a temperature of at least about 800 degrees C., a fine Ti—Nb—Cr carbide or Ti—Nb—Zr—Cr carbide precipitates within grains to thereby retard creep deformation and give an improved creep rupture strength. The alloy is therefore suitable as a material for hydrogen production reforming tubes.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 14, 2011
    Assignee: Kubota Corporation
    Inventors: Makoto Takahashi, Kunihide Hashimoto, Makoto Hineno
  • Publication number: 20110088819
    Abstract: An austenitic heat resistant alloy, which comprises by mass percent, C: over 0.02 to 0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 28 to 38%, Ni: over 40 to 60%, Co?20% (including 0%), W over 3 to 15%, Ti: 0.05 to 1.0%, Zr: 0.005 to 0.2%, Al: 0.01 to 0.3%, N?0.02%, and Mo<0.5%, with the balance being Fe and impurities, in which the following formulas (1) to (3) are satisfied has high creep rupture strength and high toughness after a long period of use at a high temperature, and further it is excellent in hot workability. This austenitic heat resistant alloy may contain a specific amount of one or more elements selected from Nb, V, Hf, B, Mg, Ca, Y, La, Ce, Nd, Sc, Ta, Re, Ir, Pd, Pt and Ag. P?3/{200(Ti+8.5×Zr)} . . . (1), 1.35×Cr?Ni+Co?1.85×Cr . . . (2), Al?1.5×Zr . . . (3).
    Type: Application
    Filed: December 13, 2010
    Publication date: April 21, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hiroyuki SEMBA, Hirokazu OKADA, Masaaki IGARASHI
  • Publication number: 20110041967
    Abstract: Alloys, formed by a eutectic transformation of the type Fe25-35 Ni15-25 Mn30-40 Al10-20 MO-5, are disclosed. M is selected from chromium, molybdenum, carbon and combinations thereof. The alloys have high strength and ductility. The alloys are prepared from readily available transition metals, and can be used in applications where properties similar to steel are necessary or advantageous.
    Type: Application
    Filed: February 13, 2009
    Publication date: February 24, 2011
    Applicant: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Ian Baker, Yifeng Liao
  • Publication number: 20110008714
    Abstract: Corrosion resistant, manganese-stabilized austenitic stainless steels with a low nickel content are used in bipolar plates, methods for fabricating the bipolar plates, and polymer electrolyte membrane (PEM) fuel cells comprising the bipolar plates. The bipolar plates are formed from high-manganese austenitic stainless steels comprising, in weight percents, 4.0 to 35 manganese, 0.5 to 1.5 nickel, 17 to 20 chromium, 0.2 to 0.5 nitrogen, up to 0.075 carbon, 0.5 to 1.0 silicon, up to 0.1 aluminum, 0 to 0.005 sulfur, and balance iron and incidental impurities. The steels exhibit suitable corrosion resistance, electrical contact resistance, and mechanical properties for high-corrosion applications such as use in bipolar plate materials for PEM fuel cells. The bipolar plates may comprise a solid plate of the steel, optionally coated with a highly electrically conductive material.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 13, 2011
    Inventors: Mahmoud H. Abd Elhamid, Arianna T. Morales
  • Publication number: 20100303669
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 2, 2010
    Applicant: Ut-Battelle, LLC
    Inventors: Roman I. Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Patent number: 7815848
    Abstract: A corrosion resistant alloy is provided which includes, in percent by weight: (a) 16 to 24% Ni; (b) 18 to 26% Cr; (c) 1.5 to 3.5% Mo; (d) 0.5 to 1.5% Si; (e) 0.001 to 1.5% Nb; (f) 0.0005 to 0.5% Zr; (g) 0.01 to 0.6% N; (h) 0.001 to 0.2% Al; (j) less than 0.2% Ti; and (k) less than 1% Mn, trace impurities, and the balance Fe. Articles, such as flexible automotive exhaust couplings, including the present alloys are also provided.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 19, 2010
    Assignee: Huntington Alloys Corporation
    Inventors: James Roy Crum, Nathan Charles Eisinger, Stephen Mark Gosnay, Gaylord Darrell Smith
  • Patent number: 7785427
    Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Shell Oil Company
    Inventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
  • Patent number: 7780798
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 24, 2010
    Assignees: Boston Scientific Scimed, Inc., CRS Holdings, Inc.
    Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
  • Patent number: 7749431
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, is used as a container or other device for high-pressure hydrogen gas, and consists of, by mass %, C: not more than 0.04%, Si: not more than 1.0%, Mn: 7 to 30%, Cr: 15 to 22%, Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the relationship, 2.5Cr+3.4Mn?300N. The weld metal of the welded joint of the container or other device made of the said stainless steel satisfies the relationship, ?11?Nieq?1.1×Creq??8.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: July 6, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Patent number: 7731895
    Abstract: An austenitic stainless steel improved in creep strength, creep ductility, weldability and also hot workability. The steel, consisting of, by mass %, C: 0.05-0.15%, Si: not more than 2%, Mn: 0.1-3%, P: 0.05-0.30%, S: not more than 0.03%, Cr: 15-28%, Ni: 8-55%, Cu: 0-3.0%, Ti: 0.05-0.6%, REM: 0.001-0.5%, sol. Al: 0.001-0.1%, N: not more than 0.03%, and the balance being Fe and incidental impurities. This steel may contain one or more of Mo, W, B, Nb, V, Co, Zr, Hf, Ta, Mg and Ca. It is preferable that REM is Nd.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: June 8, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hirokazu Okada, Masaaki Igarashi, Kazuhiro Ogawa, Yasutaka Noguchi
  • Publication number: 20100132598
    Abstract: The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Kwai S. CHAN, Narayana Sastry CHERUVU, Wuwei LIANG
  • Publication number: 20100116382
    Abstract: An austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, comprising: C: 0.005 wt % or less; Si: 0.5 wt % or less; Mn: 0.5 wt % or less; P: 0.005 wt % or less; S: 0.005 wt % or less; Ni: 15.0 to 40.0 wt %, Cr: 20.0 to 30.0 wt %, N: 0.01 wt % or less; O: 0.01 wt % or less; and the balance of Fe and inevitable impurities, wherein the content of B included in the inevitable impurities is 3 wt ppm or less.
    Type: Application
    Filed: April 24, 2008
    Publication date: May 13, 2010
    Applicants: Japan Atomic Energy Agency, Kobelco Research Institute, Inc., Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Kiyoshi Kiuchi, Ikuo Ioka, Chiaki Kato, Nobutoshi Maruyama, Ichiro Tsukatani, Makoto Tanabe, Jumpei Nakayama
  • Publication number: 20100062279
    Abstract: An austenitic stainless steel welded joint, whose base metal and weld metal each comprises, by mass percent, C: not more than 0.3%, Si: not more than 2%, Mn: 0.01 to 3.0%, P: more than 0.04% to not more than 0.3%, S: not more than 0.03%, Cr: 12 to 30%, Ni: 6 to 55%, rare earth metal(s): more than 0.2% to not more than 0.6%, sol. Al: 0.001 to 3% and N: not more than 0.3%, with the balance being Fe and impurities, and satisfies the formula of (Cr+1.5×Si+2×P)/(Ni+0.31×Mn+22×C+14.2×N+5×P)<1.388, in spite of having a high P content and showing the fully austenitic solidification, has excellent resistance to the weld solidification cracking. Therefore, the said austenitic stainless steel welded joint can be widely used in such fields where a welding fabrication is required. Each element symbol in the above formula represents the content by mass percent of the element concerned.
    Type: Application
    Filed: July 14, 2009
    Publication date: March 11, 2010
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada, Masaaki Igarashi
  • Publication number: 20090285717
    Abstract: Iron-nickel-chromium-silicon alloy having (in % by weight) 34 to 42% nickel, 18 to 26% chromium, 1.0 to 2.5% silicon, and additives of 0.05 to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.01 to 0.14% carbon, 0.01 to 0.14% nitrogen, max. 0.01% sulfur, max. 0.005% B, remainder iron and the usual impurities resulting from the production process.
    Type: Application
    Filed: January 15, 2008
    Publication date: November 19, 2009
    Inventor: Heike Hattendorf
  • Patent number: 7601230
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 13, 2009
    Assignee: Scimed Life Systems, Inc.
    Inventor: Charles Horace Craig
  • Patent number: 7575712
    Abstract: The invention concerns a ferromagnetic alloy whereof the chemical composition comprises, in wt. %: 32.5%?Ni?72.5%; 5%?Cr?18%; 0.01%?Mn?4%; C?1%; optionally one or more elements selected among Mo, V, Co, Cu, Si, W, Nb and Al, the total contents of said elements being not more than 10%, the remainder being iron and impurities resulting from preparation, the chemical composition further satisfying the following relationships: Cr?1.1Ni+23.25?0%; 45Cr+11Ni?1360; Ni+3Cr?60% if Ni?37.5; Cr?7.5 if Ni?37.5. The invention also concerns the use of said alloy for making heating elements for induction heated cooking appliances.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: August 18, 2009
    Assignee: Imphy Alloys
    Inventors: Herve Fraisse, Thierry Waeckerle, Yves Grosbety, Lucien Coutu
  • Publication number: 20090155119
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.4% silicon, 0.2% to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 18, 2009
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar