With Particulate Product Collecting Surface And Means Mechanically Removing Product Therefrom Patents (Class 422/152)
  • Patent number: 11698028
    Abstract: An exhaust energy recovery system (EERS) and associated methods for an engine are disclosed. An embodiment of an EERS, for example, includes an inlet duct that is configured to divert exhaust gas from an exhaust duct of the engine into the recovery system and an outlet duct configured to return the exhaust gas to the exhaust duct downstream of the inlet duct. The recovery system is configured to heat components or fluids associated with engine to operating temperatures. The recovery system may be part of a mobile power system that is mounted to a single trailer and includes an engine and a power unit such as a high pressure pump or generator mounted to the trailer. Methods of operating and purging recovery systems are also disclosed.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: July 11, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Joseph Foster
  • Patent number: 11642640
    Abstract: A method of using a feedstock gas reactor is described. A hydrocarbon, such as methane, is chemical decomposed in the feedstock gas reactor using heat of combustion generated from the combustion of a combustible gas. A mixed product stream is extracted from the feedstock gas reactor. The mixed product stream comprises hydrogen, carbon, and water. At least a portion of the one or more combustion product gases are vented from the combustion chamber. At least some of the carbon is activated using the vented one or more combustion product gases. At least some of the activated carbon is recycled to the feedstock gas reactor.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: May 9, 2023
    Assignee: Ekona Power Inc.
    Inventors: Christopher Edwin John Reid, Kenneth William Kratschmar, David Aaron Leboe
  • Patent number: 11624321
    Abstract: An exhaust energy recovery system (EERS) and associated methods for an engine are disclosed. An embodiment of an EERS, for example, includes an inlet duct that is configured to divert exhaust gas from an exhaust duct of the engine into the recovery system and an outlet duct configured to return the exhaust gas to the exhaust duct downstream of the inlet duct. The recovery system is configured to heat components or fluids associated with engine to operating temperatures. The recovery system may be part of a mobile power system that is mounted to a single trailer and includes an engine and a power unit such as a high pressure pump or generator mounted to the trailer. Methods of operating and purging recovery systems are also disclosed.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: April 11, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Joseph Foster
  • Patent number: 11572623
    Abstract: A substrate processing apparatus includes processing parts performing substrate processing on target substrates, respectively, substrate mounting tables mounting the target substrates thereon in the respective processing parts, gas introducing members introducing processing gases into processing spaces, a common exhaust mechanism evacuating the processing spaces at once and further performing pressure control for the processing spaces at once, and a pressure measuring part configured to selectively monitor a pressure in any one of the plurality of processing spaces by using a pressure gauge.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 7, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Yohei Midorikawa
  • Patent number: 10648075
    Abstract: A system for chemical vapor infiltration and densification may comprise a reaction chamber and a plurality of conduits fluidly coupled to an exhaust outlet of the reaction chamber. A first set of conduits of the plurality of conduits may define a first flow path and a second set of conduits of the plurality of conduits may define a second flow path. The second flow path may be fluidly coupled to an inlet of the reaction chamber. A hydrogen extraction component may be in fluid communication with a least one of the first set of conduits or the second set of conduits.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: May 12, 2020
    Assignee: GOODRICH CORPORATION
    Inventor: Tod Policandriotes
  • Patent number: 10267270
    Abstract: A gas turbine system includes a turbine combustor, a turbine, an exhaust gas compressor, an exhaust gas recirculation (EGR) system, a carbon black recovery system, and a carbon black production controller. The carbon black production controller monitors data corresponding to a parameter of the carbon black. The carbon black production controller is also configured to adjust, based on the data, the fuel provided to the turbine combustor while maintaining a ratio of the fuel to the oxidant within a predetermined range to adjust the parameter of the carbon black.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 23, 2019
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, William N. Yunker, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 8138106
    Abstract: An odor-inhibiting fiber having a cellulosic fiber and an odor-inhibiting formulation. The odor-inhibiting formulation may contain an odor-inhibiting agent, such as a biocide, an enzyme, a urease inhibitor. The odor-inhibiting formulation also may contain a liquid carrier such as a hydrophobic or hydrophilic organic liquid, or a mixture of a hydrophobic and hydrophilic organic liquid. The cellulosic fiber is impregnated with the odor-inhibiting formulation to produce fiber having odor-inhibiting characteristics. The resultant odor-inhibiting fiber is useful in making absorbent articles with odor-inhibiting characteristics. The fiber of the embodiments prevents odor by inhibiting bacteria growth and ammonia production, especially when used in an absorbent article such as a diaper or adult incontinence device.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 20, 2012
    Assignee: Rayonier TRS Holdings Inc.
    Inventors: Othman A. Hamed, Harry J. Chmielewski
  • Patent number: 8119074
    Abstract: The present invention relates to an apparatus for the continuous production of carbon nanotubes (CNT), as well as the method to carry it out. The apparatus for the CNT synthesis includes: two sets or more of tubes to synthesize in its interior the CNT; a set of nozzles for the same number of tubes that each set has, to feed to the interior of the tubes the precursory chemical compounds of the CNT; a furnace to maintain one of the sets to a suitable temperature to allow the formation of the CNT inside the tubes; a system for the detaching and collection of the CNT formed in the previous stage; and a control system, preferably a PLC (PLC by its abbreviation in English) to program the sequence of activities of the equipment.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: February 21, 2012
    Assignee: Centro de Investigacion en Materiales Avanzados, S.C
    Inventors: Alfredo Aguilar Elguezabal, Manuel Roman Aguirre, Beatriz Ortega Garcia, Gustavo Vicente Camacho Villarello
  • Patent number: 7964151
    Abstract: Provided is an apparatus for producing carbon nanotubes, that is provided with a reaction chamber and a dispersion plate. The dispersion plate is provided with a plate and a gas guiding portion provided on an edge of the plate, and a catalyst supply hole is defined in the central portion of the plate, through which metal catalysts are supplied. The gas guiding portion guides source gas to the central portion of the plate and suspends the metal catalysts discharged from the catalyst supply hole in a specific direction. Thus, the apparatus for producing carbon nanotubes can prevent loss of metal catalysts and improve space utilization.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 21, 2011
    Assignee: Semes Co., Ltd.
    Inventor: Jong-Kwan Jeon
  • Patent number: 7947245
    Abstract: A cylindrical screw feeder main body, catalyst feeding portions for introducing a catalyst into the screw feeder main body, low hydrocarbon feeding portions for introducing a low hydrocarbon into the screw feeder main body as a raw material, a screw for conveying the catalyst and nanocarbon produced by pyrolysis of the low hydrocarbon in the feeder main body, a solid matter discharging portion for discharging the catalyst and the nanocarbon conveyed by the screw out of the screw feeder main body and a gas discharging portion for discharging the unreacted low hydrocarbon and hydrogen produced by the pyrolysis of the low hydrocarbon out of the screw feeder main body are provided. Nanocarbon grown with the catalyst as top with time is continuously discharged out of the screw feeder main body while unused catalyst is being fed thereto at the same amount as that of nanocarbon, allowing efficient continuous reaction.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 24, 2011
    Assignees: National University Corporation Kitami Institute of Technology, The Japan Steel Works, Ltd., Kajima Corporation
    Inventors: Akio Tada, Satoru Nakamura, Tetsunari Nakamura, Hajime Kakihara, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Patent number: 7572413
    Abstract: An apparatus for manufacturing carbon nanotubes is provided. The apparatus includes: a reaction chamber having an inlet and a outlet; a heater for elevating an interior temperature of the reaction chamber; and a gas guiding member coupled to the inlet and configured for introducing a carbon-containing gas into the reaction chamber, the gas guiding member including a gas-exiting portion arranged in the reaction chamber, the gas-exiting portion having a cavity defined therein and a flat perforated top wall, the perforated top wall being configured for supporting a substrate thereon and defining a route allowing the introduced carbon-containing gas to flow in a direction substantially perpendicular to a main plane of the substrate.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: August 11, 2009
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Bor-Yuan Hsiao, Ching-Chou Chang, Chi-Chuang Ho
  • Patent number: 7527741
    Abstract: Means for enabling plating on sites of complex configuration, etching for fine complex pattern, etc. through reduction of the viscosity resistance brought about by walls of fine liquid channel of microreactor. In particular, a microreactor comprising a liquid inlet, a fine liquid channel and a liquid discharge zone characterized in that the liquid channel is formed of a magnetic barrier of band ferromagnet so that a magnetic liquid introduced through the inlet undergoes at least one operation of chemical reaction, mixing, extraction and absorption in the liquid channel. Further, there is provided means for plating or etching performed by causing a plating solution or an etching solution to flow through the liquid channel.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: May 5, 2009
    Inventors: Ryoichi Aogaki, Eiko Ito, Mikio Ogata
  • Patent number: 7354557
    Abstract: A smokeless porous carbon production method and its production system in which porous carbon is produced by heat treating a large amount of material, e.g. wood or bamboo, efficiently in a short time with thermal energy generated by combusting combustible gas produced by heating the material, without combusting the material completely by regulating inflow of air. The smokeless porous carbon production system comprises a sequential carbonization chamber (12) for heating a material M, e.g.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: April 8, 2008
    Inventors: Shigeo Muramatsu, Motohiro Shigyo
  • Patent number: 7112449
    Abstract: Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: September 26, 2006
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Sujeet Kumar, Craig R. Horne, Ronald J. Mosso, James T. Gardner, Shivkumar Chiruvolo, Seung M. Lim
  • Patent number: 6878360
    Abstract: Disclosed is an apparatus for production of vapor-phase growth carbon fibers. The apparatus can continuously produce these carbon fibers for a long time without blocking a furnace of tubular reactor of the apparatus. Also disclosed is a process for production of carbon fibers by means of the apparatus, a device for preventing deposition of carbon fibers on an inside of a furnace of tubular reactor, and vapor-phase growth carbon fibers produced in the apparatus. The vapor-phase growth carbon fibers include carbon nanofibers and/or carbon nanotubes. The apparatus includes a furnace of tubular reactor, at an end of which a feedstock-supplying nozzle is provided, and a discharge pipe inserted in the furnace of tubular reactor, the top end of which faces the opening of the nozzle and the bottom end discharges the carbon fibers.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: April 12, 2005
    Assignee: Nikkiso Company Limited
    Inventors: Takashi Ohsaki, Fumio Kawamura
  • Publication number: 20040071626
    Abstract: A reactor for producing carbon black comprising, in the following order from upstream to downstream, a) a combination combustion/reaction section, wherein the combustion/reaction section comprises at least one inlet for introducing a combustion feed and at least one inlet for introducing a carbonaceous feedstock, b) a choke section, wherein the choke section comprises at least one inlet for introducing a carbonaceous feedstock and wherein the choke section converges to a downstream end, c) a quench section, wherein the cross section of the quench section is equal to or larger than the downstream end of the choke section and smaller than the cross section of the combustion/reaction section, and d) a breeching section. Also disclosed is a method for producing carbon black. Further disclosed is a simplified carbon black plant for producing tread and/or carcass type carbon black.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 15, 2004
    Inventors: Thomas Dale Smith, Alan Charles Berg, Luciano Di Feliciantonio
  • Patent number: 6485693
    Abstract: A process for producing carbon black comprising reacting a reaction stream formed by a prior carbon black forming process with an oxidant and a carbon black yielding feedstock to produce carbon black and cooling, separating and recovering the carbon black. The process advantageously reduces the amount of fuel needed to produce carbon black. Also disclosed is an apparatus for practicing the process.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: November 26, 2002
    Assignee: Cabot Corporation
    Inventor: Allan C. Morgan
  • Patent number: 5639429
    Abstract: The production of fibers is carried out by allowing a gas mixture containing a gaseous hydrocarbon or an appropriate gas to pass through a substrate (generally a steel sheet) arranged facing the direction of the gas stream and situated in a furnace wherein the gas reaches a temperature of 1.000.degree. C. approximately. The schematized device is comprised of the corresponding gas reservoirs, that is to say the hydrocarbon gas and the carrying and activating gas, a mixing and preheating chamber, the furnace at the outlet of which are collected or burnt the inflammable gases and the grid from the surface of which, duly activated, the carbon fibers may grow. The gist of the invention is that the gas goes through the substrate situated facing the flow, so that said flow of gas is parallel to the direction of the fiber growth. The maximum length of the fibers is set by the distance between the substrate and a substrate or mask situated at the other extremity of the chamber.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: June 17, 1997
    Assignee: Consejo Superior Investigaciones Cientificas
    Inventor: Antonio Madronero de la Cal
  • Patent number: 5415585
    Abstract: A decompression apparatus comprises an exhaust line connected to a processing unit, an exhaust device connected to the exhaust line, whereby the processing unit is exhausted through the exhaust line, and an ambience in the processing unit can be set under a negative pressure, a main valve in the exhaust line for opening and closing the exhaust line, a bypass line having one end portion, connected to that portion of the exhaust line which is situated nearer to the processing unit than the main valve, and the other end portion connected to that portion of the exhaust line which is situated on the exhaust side of the main valve, the exhaust flow quantity of the bypass line per unit time being lower than that of the exhaust line, a sub-valve in the bypass line for opening and closing the bypass line, and a control unit adapted to close the main valve and the sub-valve as the pressure in the processing unit is increased from the negative pressure to the normal pressure and to open only the sub-valve to keep the ex
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: May 16, 1995
    Assignees: Tokyo Electron Limited, Tokyo Electron Tohoku Limited
    Inventor: Katsusin Miyagi
  • Patent number: 5304366
    Abstract: A process and apparatus is described for the production of purified fullerenes using a non-reactive gas to collect and transport impure fullerenes from an evaporation zone to a heated filter zone in which solid impurities may be filtered out of the mixture. If one or more condensed fullerenes are present in the gas stream entering the filter zone, such condensed fullerenes may be vaporized in the filter zone and carried to a condensation zone in which one or more vaporized fullerenes may be recovered. When more than one vaporized fullerene is present in the gas entering either the filter zone or the condensation zone, a temperature gradient may be used to permit separation and recovery of purified portions of different fullerenes.
    Type: Grant
    Filed: December 24, 1991
    Date of Patent: April 19, 1994
    Assignee: SRI International
    Inventors: Donald C. Lorents, Ripudaman Malhotra