And Contact Regenerating Means Or Means For Cleaning An Internal Surface Of The Reaction Chamber Patents (Class 422/178)
  • Patent number: 7678344
    Abstract: Process and device for regeneration of a used absorbent from a desulfurization zone or from the desulfurization of a gas containing sulfur oxides, comprising regeneration simultaneously with filtering of the absorbent, in a reducing atmosphere, wherein partial combustion of a regeneration gas is also carried out upstream from regeneration, the products of the partial combustion being mixed with the used absorbent prior to the regeneration-filtration stage. The absorbent may be, e.g., solid absorbents based on magnesium oxide. The regeneration gas may be hydrogen sulfide and/or a hydrocarbon. For example, H2S can be partially combusted and the products of the partial combustion, including H2S, H2, SO2 and sulfur, mixed with the used absorbent prior to the regeneration-filtration stage.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 16, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Etienne Lebas, Gérard Martin, Christian Streicher
  • Patent number: 7678348
    Abstract: A Selective Catalytic Reduction (SCR) catalytic converter that does not require the injection of a reducing agent, and, particularly, to an open-flow type or wall-flow type SCR catalytic converter that does not require the injection of a reducing agent, which includes a front portion, in which first supports supporting modified catalyst components are applied on the inner surfaces of porous partition walls, a middle portion, in which second supports supporting ammonia synthesis catalyst components are applied on the inner surfaces of porous partition walls, and a rear portion, in which third supports supporting SCR reducing catalyst components are applied on the inner surfaces of porous partition walls. The catalytic converter can improve a reduction rate of NOx without requiring the injection of an ammonia reducing agent from the outside.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: March 16, 2010
    Assignee: Heesung Catalysts Corporation
    Inventors: Hyun-sik Han, Jae-ho Bae, Eun-seok Kim
  • Publication number: 20100061906
    Abstract: A catalytic reactor (16) is provided for purposes of effecting therewith the removal of nitrogen oxides from a process gas (F) that includes at least two catalyst bed segments (48, 50, 52), each of which is provided with a closing device (60, 62, 64). The catalytic reactor (16) is operative for causing said process gas (F) to flow through a first catalyst bed segment (48). Said process gas (F) is at a first temperature at which the sulphur trioxide that is entrained in said hot process gas is at least partially precipitated out on to the catalytic material that said first catalyst bed segment (48) embodies. Periodically said closing device (60) is operated in order to thereby isolate said first bed segment (48) from the flow therethrough of said hot process gas (F). A regeneration system (34, 36, 38) is also provided that is operative for purposes of causing a regenerating gas to flow through the first bed segment (48).
    Type: Application
    Filed: September 5, 2008
    Publication date: March 11, 2010
    Inventors: John Buschmann, Lawrence Joseph Czarnecki, Mou Jian, Frederic Zenon Kozak
  • Patent number: 7673448
    Abstract: A self-cleaning diesel exhaust particulate filter system is disclosed wherein burn-off of collected particulate matter is accomplished at normal exhaust gas temperatures, the filter system being provided with a catalyst mixture of a co-formed ceria-zirconia composite and, optionally, a base metal oxide, the presence of which allows regeneration of filters at temperatures that are readily achieved in diesel exhaust systems, including operating conditions that are at low load where lower exhaust temperatures exist.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: March 9, 2010
    Assignee: BASF Catalysts LLC
    Inventors: Kenneth E. Voss, Kevin Hallstrom, Ramesh M. Kakwani, Shiang Sung
  • Patent number: 7670404
    Abstract: This structure (11) comprises first and second filtering elements (15A, 15B) extending essentially parallel to a longitudinal axis (X-X?) of the structure (11) between an admission region (21) of the gases into the structure (11) and an evacuation region (23) of the gases from the structure, and comprises a seal (17) for joining these elements (15A, 15B). The seal (17) comprises at least one downstream pat (43) which has a thermal mass per unit length greater than the thermal mass per unit length of an upstream part (41) of the seal (17). The invention is for use in particulate filters for the exhaust gases of a motor vehicle diesel engine.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: March 2, 2010
    Assignee: Saint-Gobain Centre de Recherches Et d'Etudes Europeen
    Inventors: Sébastien Bardon, Anthony Briot, Vincent Gleize
  • Patent number: 7670568
    Abstract: A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 2, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, David N. Thompson, Raymond P. Anderson
  • Patent number: 7666240
    Abstract: A honeycomb filter includes a plurality of honeycomb fired bodies each having a longitudinal direction and a plurality of cells which are divided by cell walls and which extend in the longitudinal direction in substantially parallel with each other, each of the cells having one end sealed; and an adhesive material binding the plurality of honeycomb fired bodies. The plurality of honeycomb fired bodies includes outer peripheral honeycomb fired bodies each having a first outer wall and positioned at an outermost periphery of the honeycomb filter; and inner honeycomb fired bodies surrounded by the outer peripheral honeycomb fired bodies. Each of the inner honeycomb fired bodies has a second outer wall thinner than the first outer wall.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: February 23, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Masafumi Kunieda
  • Patent number: 7662204
    Abstract: A vehicle exhaust gas purification device has a multipart outer housing (10) including a tube (12) and end walls (14) that have been reshaped into funnels. The tube (12) and the end walls (14) are fitted into each other and brazed, soldered or welded to each other.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 16, 2010
    Assignee: Emcon Technologies LLC
    Inventors: Erich Forster, Peter Kroner, Otto Steinhauser
  • Patent number: 7658779
    Abstract: The invention relates to a honeycomb monolithic element for the filtration of particles, characterized in that the peripheral channels forming part of the outer wall of said element are configured to help in the formation of an outer wall whose inner face is substantially flat over the whole length of the element and in that said flat wall also has an increased thickness at the corners, so that, on a cross section, the ratio R of the thickness Ec of the wall, measured along the bisecting line of the angle at a corner of the element, over the minimal thickness Emin of said wall is greater than 1.5.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: February 9, 2010
    Assignee: SAINT-GOBAIN Centre de Recherches et d'Etudes European
    Inventors: Francisco Jose Carranza, David E. Woolley, Andrew K. Leighton
  • Publication number: 20100018850
    Abstract: An aspect of the present disclosure is directed to a system for removing particulate matter from an exhaust stream. The system may include an ionization device configured to ionize particles of an exhaust stream. The system may further include an electromagnetic field generating device configured to deflect the ionized particles onto an inner-surface of an exhaust passageway, the inner-surface of the exhaust passageway being coated with a substance for lowering activation energy for a reaction of the ionized particles. The system may further include a regeneration means configured to remove particles from the exhaust passageway.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 28, 2010
    Inventors: Atanu Adhvaryu, Herbert Florey Martins DaCosta
  • Patent number: 7648547
    Abstract: A honeycomb filter for purifying exhaust gases that is free from occurrence of cracks and coming-off of plugs and is superior in durability upon its use. The honeycomb filter includes a columnar body made of porous ceramics, which has a number of through holes placed in parallel with one another in the length direction with wall portion interposed therebetween, designed so that predetermined of the through holes are filled with plugs at one end of the columnar body, while the through holes not filled with the plugs at the one end are filled with plugs at the other end of the columnar body, and part of or the entire wall portion functions as a plug for collecting particles. A bending strength F? (MPa) of the honeycomb filter and a length L (mm) of the plug in the length direction of the through hole satisfy the relationship of F?×L?30.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: January 19, 2010
    Assignee: Ibiden Co., Ltd.
    Inventor: Kazushige Ohno
  • Patent number: 7648550
    Abstract: Disclosed are ceramic honeycomb articles, which are composed predominately of a crystalline phase cordierite composition. The ceramic honeycomb articles possess a microstructure characterized by a unique combination of relatively high total porosity of less than 54%, and relatively narrow pore size distribution having a d10 pore diameter of not less than 8 ?m, a d90 pore diameter of not greater than 35 ?m, and a value of df=(d50?d10)/d50 of less than 0.50. The articles exhibit high thermal durability and high filtration efficiency coupled with low pressure drop across the filter. Such ceramic articles are particularly well suited for filtration applications, such as diesel exhaust filters or DPFs. Also disclosed are methods for manufacturing the ceramic articles of the present invention.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 19, 2010
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Isabelle Marie Melscoet-Chauvel, Gregory Albert Merkel
  • Patent number: 7645427
    Abstract: There is provided a honeycomb structure usable in a filter for trapping/collecting particulates included in exhaust gas and in which ashes deposited inside can be removed without requiring any special mechanism or apparatus or without detaching the filter from an exhaust system. The honeycomb structure includes: a plurality of through channels 9 separated by porous partition walls 7 and extending in the axial direction of the honeycomb structure; and plugging portions 11 for plugging one end of each of predetermined through channels 9a and an opposite end of each of the rest of through channels 9b in a checkered flag pattern, alternately. In the honeycomb structure, at least one slit 15 per through channel is formed in the vicinity of the plugging portions 11 of the partition walls 7 surrounding the respective through channels 9b.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: January 12, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shogo Hirose, Toshio Yamada
  • Patent number: 7611681
    Abstract: A gas stream containing e.g. molecular hydrogen is used for the regeneration of a catalyst for NOx and SO2 removal from the flue gas of a gas turbine. In order to reduce the consumption of regeneration gas, the gas inlet is located between the SCOSOx catalyst (2) and the SCONOx catalyst (3). The regeneration gas leaves the catalyst chamber upstream of the SCOSOx catalyst and is recycled. For the regeneration of the SCONOx catalyst and to keep SO2 containing gas from entering the SCONOx catalyst, a second regeneration gas inlet is located downstream of the SCONOx catalyst. The regeneration gas entering the catalyst chamber through this port passes the SCONOx (3) and the SCOSOx catalyst (2). The direction of the flow in the SCONOx catalyst can also be reversed. In another example, regeneration gas outlets are located both upstream of the SCOSOx and downstream of the SCONOx catalyst. But, only the regeneration gas from the SCONOx catalyst is recycled.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 3, 2009
    Assignee: Alstom Technology Ltd
    Inventor: Gisbert Kaefer
  • Publication number: 20090263302
    Abstract: An process for efficiently deacidizing a gaseous mixture is described. The process utilizes a self-concentrating absorbent that absorbs an acid gas at reduced overall energy costs for the deacidizing operation.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 22, 2009
    Inventor: Liang Hu
  • Patent number: 7601306
    Abstract: A diesel engine particulate filter (DPF) comprising a case cylinder with a filter space formed by the inner retention cylinder and outer retention cylinder which traverse the radial symmetry of the case cylinder. In filter space, the low temperature exothermic catalyst granules group component of precious metals, such as platinum, coexist with a mixture of medium temperature exothermic catalyst carried by granules group filter of foaming stone grains made of base metals, such as nickel and cobalt. Exhaust flow travels from the inner space of the inner side retention cylinder to the filter space where particulate matter (PM) is trapped. PM burned by the medium temperature exothermic catalyst functions by the rise in exhaust temperature obtained from the low temperature exothermic catalyst where hydrocarbon (HC) is burned. As a result, a DPF (1) that burns PM even when the exhaust temperature is low can be realized, without using an electric heater.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: October 13, 2009
    Assignee: Lenz Environmental Resources Co., Ltd.
    Inventor: Shinichiro Sakurai
  • Patent number: 7595033
    Abstract: A process and device for purifying flue gases in refuse incineration plants during regeneration of a catalyst which serves for reducing nitrogen oxides, by, in a first step, removing acidic pollutant gases from the flue gas in a wet or dry manner, in a second step adding ammonia for reducing nitrogen oxides to the flue gas purified in the first step, in a third step feeding the flue gas admixed with the ammonia to a catalyst, where the catalyst is heated at a controlled heat-up rate for regeneration, which leads to liberation of ammonia, where the amount of ammonia added in the second step and the heat-up rate in the third step are controlled by the amount of a pollutant gas selected from the group of ammonia, and which the purified flue gas contains.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 29, 2009
    Assignee: Von Roll Umwelttechnik AG
    Inventors: Ruedi Frey, Sandrine Person
  • Publication number: 20090238742
    Abstract: The proposed invention is directed to a solvent based flue gas processing system for removing CO2 from a flue gas stream. A catalyst is provided to increase the efficiency of the solvent in capturing CO2 from the flue gas stream or in regenerating the solvent.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Zheng Liu, Naresh B. Handagama
  • Publication number: 20090238731
    Abstract: A solvent based flue gas processing system for removing CO2 from a flue gas stream is provided in which a catalyst coated on a support structure is provided. The catalyst selected is capable of retaining CO2, at least for a period of time, thereby increasing the residence time of CO2 and solvent.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Zheng Liu, Naresh B. Handagama
  • Publication number: 20090232861
    Abstract: The present disclosure provides a method and apparatus for extracting carbon dioxide (CO2) from a fluid stream and for delivering that extracted CO2 to controlled environments for utilization by a secondary process. Various extraction and delivery methods are disclosed specific to certain secondary uses, included the attraction of CO2-sensitive insects, the ripening and preservation of produce, and the neutralization of brine.
    Type: Application
    Filed: February 19, 2009
    Publication date: September 17, 2009
    Inventors: ALLEN B. WRIGHT, Klaus S. Lackner
  • Publication number: 20090217648
    Abstract: An exhaust treatment device and a method of conditioning the device that include a reactive compound capable of undergoing an endothermic reaction are described. A method of manufacturing the device is also disclosed.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventor: Patrick David Tepesch
  • Publication number: 20090142239
    Abstract: An exhaust purification apparatus of an internal combustion engine purifying exhaust gas by removing SOx from the exhaust gas is provided. In the exhaust purification apparatus provided with sulfur oxide trapping material for trapping sulfur oxides exhausted from an internal combustion engine, aggregates of the sulfur oxide trapping material (41) are arranged able to contact the exhaust gas in spaces (44) separated by partitions comprised of a porous material (42) having permeability.
    Type: Application
    Filed: July 21, 2006
    Publication date: June 4, 2009
    Inventors: Kohei Yoshida, Shinya Hirota, Takamitsu Asanuma
  • Patent number: 7521031
    Abstract: A method for treating exhaust gas includes: adsorbing target components in the exhaust gas with an adsorbent (5); introducing a nitrogen gas with an oxygen concentration of 10 vol % or less and a purity of 90 vol % or more into the adsorbent (5); and applying (6, 7, 8) nonthermal plasma to the adsorbent (5). After the adsorbent (5) adsorbs the target components in the exhaust gas, the nitrogen gas is introduced into the adsorbent (5), and then an electric discharge is generated so that the nonthermal plasma of the nitrogen gas is applied to the adsorbent (5) and causes desorption of the target components and regeneration of the adsorbent (5). This method can remove the target components effectively from oxygen-containing exhaust gas by using nitrogen gas plasma with high activity as a result of ionization of a nitrogen gas and combining adsorption, desorption by the nitrogen gas plasma, and nitrogen plasma treatment.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 21, 2009
    Assignee: Osaka Industrial Promotion Organization
    Inventors: Masaaki Okubo, Toshiaki Yamamoto, Tomoyuki Kuroki
  • Patent number: 7501102
    Abstract: A catalytic reactor or heat exchanger includes a monolith defining a plurality of leaves, the monolith having a generally annular cross-section. The monolith is disposed within a generally cylindrical outer tube, and around a corrugated inner tube. The reactor includes a device for urging the monolith radially outward, so as to maintain contact between the monolith and the outer tube. Such device may include a coned washer, or it may be defined by a folded flap that is integral with the inner tube. In either case, the reactor compensates for metal creep, and virtually insures continued contact between the monolith and the outer tube.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 10, 2009
    Assignee: Catacel Corp.
    Inventors: William A. Whittenberger, David A. Becker, Sudipta Chattopadhyay, L. Amanda Suffecool
  • Patent number: 7501111
    Abstract: Claus sulfur recovery plants that include one or more single-stage or multi-stage compact tubular Claus catalytic reactor-heat exchanger units are disclosed. In some instances, these new or improved Claus plants additionally include one or more compact heat exchanger containing cooling tubes that are filled with a heat transfer enhancement medium. The new compact tubular Claus catalytic reactor-heat exchanger units and HTEM-containing heat exchangers are also disclosed. A process for recovering sulfur from a hydrogen sulfide-containing gas stream, employing the new tubular Claus catalytic reactor-heat exchanger unit, and in some instances a HTEM-containing heat exchanger, are also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: March 10, 2009
    Assignee: Conoco Phillips Company
    Inventors: Alfred E. Keller, Sriram Ramani, Joe D. Allison, Steven E. Lusk, Nathan A. Hatcher, Larry D. Swinney, Rebecca S. Shaver
  • Publication number: 20090035200
    Abstract: An apparatus for low-temperature NOx-reduction is disclosed, which is useful in boiler installations used at electric-generating plants. The apparatus employs one or a plurality of moving-bed reactors wherein a moving bed of common base-metal catalyst is used for selective catalytic reduction of NOx present in flue gas. The moving bed permits continuous introduction of fresh or regenerated catalyst, thus obviating the conventional problems of sulfur-poisoning and consequent reduction in catalytic activity with such catalysts. Due to the lower activation energies of such catalysts, an SCR utilizing the moving-bed reactors disclosed herein can be located downstream of the air heater, further improving electric-generating efficiency. Methods for low-temperature NOx reduction are also disclosed.
    Type: Application
    Filed: July 18, 2008
    Publication date: February 5, 2009
    Inventors: William Downs, Seyed B. Ghorishi, Ralph T. Bailey, Kevin J. Rogers
  • Patent number: 7485594
    Abstract: A porous mullite composition is made by forming a mixture of one or more precursor compounds having the elements present in mullite (e.g., clay, alumina, silica) and a property enhancing compound. The property enhancing compound is a compound having an element selected from the group consisting of Mg, Ca, Fe, Na, K, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, B, Y, Sc, La and combination thereof. The mixture is shaped and to form a porous green shape which is heated under an atmosphere having a fluorine containing gas to a temperature sufficient to form a mullite composition comprised substantially of acicular mullite grains that are essentially chemically bound.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: February 3, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Chandan Saha, Sharon Allen, Chan Han, Robert T. Nilsson, Arthur R. Prunier, Jr., Aleksander J. Pyzik, Sten A. Wallin, Robin Ziebarth, Timothy J. Gallagher
  • Patent number: 7441332
    Abstract: To provide a method for recovering performance of a discharge gas processing apparatus, the method being capable of recovering NOx removal performance of a deteriorated NOx removal catalyst without replacing the deteriorated NOx removal catalyst with a new catalyst and without adding a new catalyst. After a honeycomb catalyst 1 having gas conduits for feeding a gas to be treated has been placed and used in a discharge gas conduit of a discharge gas processing apparatus 10, the honeycomb catalyst 1 is rearranged such that a portion of the honeycomb catalyst 1—the portion being on the upstream side in terms of the flow of the gas to be treated and extending to cover a predetermined range is transferred from the inlet side of the discharge gas conduit.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: October 28, 2008
    Assignee: The Chugoku Electric Power Co., Inc.
    Inventors: Hiroshi Shimada, Yousuke Oka
  • Publication number: 20080257144
    Abstract: The invention relates to a method for measuring the uniformity of the deposit of soot in a particulate filter, comprising the steps consisting in measuring, simultaneously or in succession, the respective characteristic quantities of at least two gas streams each having passed through a different longitudinal portion of said filter, and then in comparing the characteristic quantities thus measured. It also relates to a method for controlling the regeneration of a particulate filter, comprising the steps consisting in measuring the uniformity of the soot deposit in said filter and in adjusting the parameters of said regeneration according to the uniformity value obtained.
    Type: Application
    Filed: October 26, 2006
    Publication date: October 23, 2008
    Applicant: SAINT GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUR
    Inventors: David Pinturaud, Caroline Tardivat, Patrick Jacques Dominique Girot
  • Publication number: 20080261801
    Abstract: An exhaust system for a lean-burn internal combustion engine with at least one NOx-absorbent disposed on a unitary monolith substrate, an injector for injecting droplets of a liquid reductant into exhaust gas upstream of the at least one substrate and a means for controlling the injection of reductant in order to regenerate the NOx-absorbent to meet a relevant emission standard. The arrangement of the system being such that droplets of the liquid reductant contact the NOx-absorbent thereby causing localised reduction of NOx.
    Type: Application
    Filed: June 16, 2005
    Publication date: October 23, 2008
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Jeremy Temple Gidney, Martyn Vincent Twigg
  • Publication number: 20080233026
    Abstract: A method and system for removing pollutants from a flue gas stream (20) by utilizing excess ammonia present in the system as a reagent for NOx removal. The method includes contacting the flue gas stream (20) with an ammonia scrubbing solution (29) and passing the flue gas stream (20) through a selective catalytic reduction system (32), wherein the selective reduction system (32) utilizes excess ammonia present in the flue gas stream (20) as a reagent to remove NOx from the flue gas stream (20).
    Type: Application
    Filed: March 20, 2007
    Publication date: September 25, 2008
    Inventor: Dennis J. Laslo
  • Publication number: 20080210084
    Abstract: It is intended to provide a volatile organic compound treatment apparatus having: an absorption treatment chamber in which absorption frames having absorbents for absorbing volatile organic compounds are aligned in a direction of a gas flow; an absorbent recovery treatment chamber that is provided with a discharge unit having a high voltage electrode, a ground electrode, and a dielectric; and a transfer mechanism for transferring the absorption frames present in an upstream of the gas flow to the absorbent recovery treatment chamber and transferring the absorption frames in the absorbent recovery treatment chamber to a downstream of the gas flow. The volatile organic compound treatment apparatus is capable of decomposing VOC without generating a large amount of harmful NOx and reduced in apparatus cost.
    Type: Application
    Filed: June 21, 2006
    Publication date: September 4, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kouji Ota, Yasutaka Inanaga, Yasuhiro Tanimura, Masaki Kuzumoto, Hajime Nakatani, Hideo Ichimura, Akio Masuda, Shigeki Maekawa, Masaharu Moriyasu
  • Patent number: 7402292
    Abstract: One embodiment of a method of operating a NOx abatement system comprises: introducing an exhaust stream to an ammonia generator in a normal flow direction, adsorbing NOx from the exhaust stream in the ammonia generator, diverting the exhaust stream around the ammonia generator, introducing hydrogen to the ammonia generator in a direction opposite the normal flow direction, and generating ammonia within the ammonia generator.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: July 22, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Mark D. Hemingway, William J. LaBarge, Haskell Simpkins
  • Patent number: 7393509
    Abstract: The present invention provides a honeycomb structure 1 comprising partition walls 2 so as to form a plurality of cells 3 extending from one end face 42 to the other end face 44, and a plug portion 4 plugging the cell 3 at the end face 42 and/or 44. In the honeycomb structure 1, the plug portion 4 has a hollow and convex shape, and at least a part of the plug portion 4 is protruding from the end face.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: July 1, 2008
    Assignee: NGK Insulators, Ltd.
    Inventor: Shinji Yamaguchi
  • Patent number: 7384612
    Abstract: An exhaust cleanup filter which, even if the exhaust temperature is low as during vehicular driving under low load, can trap PM efficiently to prevent clogging by PM buildup and which also is effective in purifying the exhaust from a diesel engine that does not use any burner or heater to remove PM. The cleanup filter is for purifying the exhaust from diesel engines and comprises particulate ceramic porous bodies that have a three-dimensional network structure, as well as artificial pores and communication channels in the interior, with some of the pores being partially exposed on the surfaces of the porous bodies.
    Type: Grant
    Filed: February 17, 2003
    Date of Patent: June 10, 2008
    Assignees: Kabushiki Kaisha Chemical Auto
    Inventors: Yasuo Ajisaka, Shigeru Kumai, Yoshitaka Kumai
  • Patent number: 7381378
    Abstract: The invention is a flue gas scrubber for removing carbon dioxide from the emissions of coal fired furnaces by induced draft of said emissions into a scrubber barrel which is positioned within the facility smoke stack. The flue gases pass through electrically charged plates and enter said scrubber barrel tangentially through a connecting duct and pass upward and through a sorbent mist containing a dissolved salt that is generated as the diffused horizontal discharge from a plurality of longitudinally aligned ejectors. The sorbent liquid from the said ejectors containing the captured effluent carbon dioxide passes upward and coalesces on the cooling surfaces of a condenser positioned in a sonic resonant field and then passes downward into a sludge basin where it is further processed to remove particulate mater and to reclaim the scrubber water.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 3, 2008
    Inventor: Edward Milton McWhorter
  • Patent number: 7378061
    Abstract: A concentric, offset, or obliquely formed spun converter assembly includes an outer shell defining an internal cavity that receives a catalyst substrate. Inner cones are positioned within the internal cavity at each end of the outer shell. Each inner cone has a tapered body portion and a transversely extending shoulder portion that abuts an outer edge of the outer shell. The shoulder portions mechanically lock the inner cones to the outer shell.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: May 27, 2008
    Assignee: EMOON Technologies LLC
    Inventor: Kevin A. Barnard
  • Patent number: 7338642
    Abstract: A main particulate filter having a relatively large volume is arranged in an exhaust passage of an engine, and an auxiliary particulate filter having a relatively small volume is arranged in the exhaust passage upstream of the main particulate filter. The main and auxiliary particulate filters are arranged so that the open downstream ends of the single open end-type exhaust gas passages of the auxiliary particulate filter and the open upstream ends of the open upstream end-type exhaust gas passages of the main particulate filter substantially face each other, and the open downstream ends of the both open end-type exhaust gas passages of the auxiliary particulate filter and the closed upstream ends of the open downstream end-type exhaust gas passages of the main particulate filter substantially face each other. A catalyst having an oxidation function is carried on the auxiliary particulate filter.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: March 4, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichiro Nakatani, Shinya Hirota, Toshiaki Tanaka, Hiroyuki Tominaga
  • Patent number: 7332142
    Abstract: An apparatus comprises an exhaust system and an injection system. The injection system is configured to vaporize a first liquid portion of an agent into at least one bubble so as to inject a second liquid portion of the agent into the exhaust system by use of the at least one bubble for delivery of the agent to an emission abatement device of the exhaust system. An associated method is disclosed.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: February 19, 2008
    Assignee: EMCON Tehnologies Germany (Augsburg) GmbH
    Inventors: Clive D. Telford, Helmut Venghaus, Lee Watts, Andreas Mayr, Marco Ranalli, Peter Kroner, David Herranz, Gregg Speer, Stefan Schmidt, A. Steven Walleck
  • Patent number: 7326265
    Abstract: The invention concerns a method for cleaning the upstream surface (14) of a particulate filter (10) of a heat engine exhaust line, the filter (20) being arranged in a casing (12) having an outlet (22) for exhaust gases. The method comprises a step which consists in circulating a liquid flux through the particulate filter (10) from its downstream surface (18) towards its upstream surface (14) viewed from the direction of exhaust gas flow in the filter. The liquid flux circulated through the particulate filter (10) has a flow rate higher than 50 litres/minute and is distributed over the main part of the downstream surface (18) of the particulate filter.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: February 5, 2008
    Assignee: Faurecia Systemes d'Echappement
    Inventors: Jean-Philippe Zilliox, Bertrand Figueras
  • Patent number: 7306771
    Abstract: A filter catalyst for purifying exhaust gases having a catalytic layer comprising the first catalyst support 2 having an average particle diameter of 1 ?m or less, the second catalyst support 3 having an average particle diameter from 1/20 to ½ of the average pore diameter of the filter cellular walls 12 and catalytic ingredients, on the filter cellular walls 12 having an average pore diameter of from 20 to 40 ?m, and the catalytic layer having uneven surfaces is used. Since the second catalyst support hardly enters into the pore with a diameter of 20 ?m or less, it exists partly on the filter cellular walls and the inside surface of the wall. Therefore, since particles collide with the convex part of the catalytic layer, it becomes possible to collect them easily and the collecting rate for particles and the ability of the particles purification are improved.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: December 11, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Seiji Okawara
  • Patent number: 7261755
    Abstract: Within the framework of the purification of exhaust gases of mobile internal combustion engines, filter materials are subjected to particularly high thermal and dynamic conditions. As a result, it is advantageous to use filter materials together in a stable and durable composite. To this end, a heat-resistant filter layer made of a material through which a fluid can at least partially flow and which has at least one filter section and at least one edge area, is provided. A layer thickness that differs from that of the at least one filter section is provided in the at least one edge area.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: August 28, 2007
    Assignee: Emitec Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brück, Jan Hodgson
  • Patent number: 7241329
    Abstract: The invention concerns a method which consists in using a single-piece casing (1), without break; then for a first cleaning process, in cutting the casing (1) between the zone (4) containing the filter and the zone (6) containing the other element; then in cleaning the part containing the particle filter; and in assembling once more the two parts, so that the global dimensions of the casing (1) are substantially unchanged.
    Type: Grant
    Filed: May 28, 2001
    Date of Patent: July 10, 2007
    Assignee: Faurecia Systems d'Echappement
    Inventor: Thomas Weber
  • Patent number: 7220390
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 22, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7210288
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: May 1, 2007
    Assignee: DaimlerChrysler AG
    Inventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
  • Patent number: 7204965
    Abstract: A filter catalyst is for purifying exhaust gases emitted from internal combustion engines and including particulates, and includes a wall-flow honeycomb structure and an upstream-side straight honeycomb structure. The wall-flow honeycomb structure includes inlet cells clogged on the downstream side of the exhaust gases, outlet cells neighboring the inlet cells and clogged on the upstream side of the exhaust gases, filter cellular walls demarcating the inlet cells and the outlet cells and having pores, and a catalytic layer formed on the surface of the filter cellular walls and/or the surface of the pores of the filter cellular walls. The upstream-side straight honeycomb structure is disposed on the upstream side of the exhaust gases with respect to the wall-flow honeycomb structure, is provided integrally with the wall-flow honeycomb structure, and includes upstream-side straight cells in which the exhaust gases flow straight, and upstream-side cellular walls demarcating the upstream-side straight cells.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: April 17, 2007
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Seiji Okawara, Mamoru Nishimura, Mikio Ishihara
  • Patent number: 7153334
    Abstract: Carbonaceous material is removed from a catalyst within an autothermal reformer by introducing an isolated oxidant stream into the autothermal reformer prior to introduction of hydrocarbon fuel into the reformer. A hydrocarbon stream is introduced into the autothermal reformer following removal of the carbonaceous material. A concurrent supply of the hydrocarbon stream and the oxidant stream to the autothermal reformer is maintained such that an exothermic reaction driven by the oxidant stream provides heat to an endothermic reaction driven by water vapor in the hydrocarbon stream. In accordance with 37 CFR 1.72(b), the purpose of this abstract is to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract will not be used for interpreting the scope of the claims.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 26, 2006
    Assignee: General Motors Corporation
    Inventors: Suzanne Rose Ellis, Jessica Grace Reinkingh, Jullian Elaine Bailie, David Wails, Michael Ian Petch
  • Patent number: 7118608
    Abstract: A self-powered, personally wearable air purifier includes a sequence of packed bed filter media packets having filter media therein of specifically targeted types that will absorb those ambient air pollutants that have been identified as being particularly dangerous to human health. A HEPA filter is included for the removal of particulate matter that will have adhered thereto many of such pollutants. Media types can be selected to meet different environmental circumstances, including normal highway or city center air, or terrorist attacks of chemical, biological or “dirty bomb” types as on a battlefield or similar environments. Shoulder straps and a chest strap are provided for wearing the apparatus on a user's back, or other means such as a shoulder pouch can also be employed. Emergency substitution of filter media using thermal insulation from the clothing of the user is available upon depletion of the normal media material.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: October 10, 2006
    Inventor: William S. Lovell
  • Patent number: 7118802
    Abstract: A two-layer ceramic composite material, wherein the first predominantly load-bearing layer is an oxidic, carbon-free fiber-reinforced ceramic layer which is made by a colloidal process. The second predominantly thermally insulating layer is an oxide-ceramic foam. The colloidal process produces carbon-free oxide ceramics which, because of their high purity, have low dielectric losses in the entire usage temperature range. In addition, the colloidal process provides a simple and cost-effective production method.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 10, 2006
    Assignee: LFK-Lenkflugkoerpersysteme
    Inventors: Reinhard A. Simon, Helmut E. A. Knabe, Wolfgang Schäfer, Walter D. Vogel, Wilhelm Wulbrand, Wilhelm Hager, Kurt Lindner, Paul Hennig
  • Patent number: 7033548
    Abstract: System for removal of targeted pollutants, such as oxides of sulfur, oxides of nitrogen, mercury compounds and ash, from combustion and other industrial process gases and processes utilizing the system. Oxides of manganese are utilized as the primary sorbent in the system for removal or capture of pollutants. The oxides of manganese are introduced from feeders into reaction zones of the system where they are contacted with a gas from which pollutants are to be removed. With respect to pollutant removal, the sorbent may interact with a pollutant as a catalyst, reactant, adsorbent or absorbent. Removal may occur in single-stage, dual-stage, or multi-stage systems with a variety of different configurations and reaction zones, e.g., bag house, cyclones, fluidized beds, and the like. Process parameters, particularly system differential pressure, are controlled by electronic controls to maintain minimal system differential pressure, and to monitor and adjust pollutant removal efficiencies.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: April 25, 2006
    Assignee: Enviroscrub Technologies Corporation
    Inventors: Kathleen S. Pahlman, legal representative, Steve C. Carlton, Ray V. Huff, Charles F. Hammel, Richard M. Boren, Kevin P. Kronbeck, Joshua E. Larson, Patrick A. Tuzinski, Steve G. Axen, John E. Pahlman, deceased