Including Solid, Extended Surface, Fluid Contact Reaction Means; E.g., Inert Raschig Rings, Particulate Absorbent, Particulate Or Monolithic Catalyst, Etc. Patents (Class 422/177)
  • Patent number: 10422263
    Abstract: An exhaust system for an internal combustion engine, especially for the internal combustion engine of a vehicle, includes an exhaust gas duct (12) carrying an exhaust gas stream (A) and a reactant release arrangement (18) for releasing a reactant ® into the exhaust gas stream (A). A bypass flow generation arrangement (25) generates a bypass flow (M) surrounding the reactant stream ® that is released from the reactant release arrangement (18).
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: September 24, 2019
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Gerd Gaiser
  • Patent number: 10399034
    Abstract: The high temperature titanium-catalyst comprises a body, the body having a hot gas inlet and a hot gas outlet. The body comprises an array of titanium containing catalytic elements, wherein the array of titanium containing catalytic elements is arranged such that hot gas containing an amount of hexavalent chromium Cr(VI) may enter the body at the hot gas inlet, may pass through the array of titanium containing catalytic elements and may leave the body at the hot gas outlet. When the titanium-catalyst is in use, Cr(VI) in the hot gas containing an amount of Cr(VI) reacts with titanium oxide in a surface layer of the titanium containing catalytic elements, whereby the Cr(VI) is reduced to trivalent chromium Cr(III) thus reducing the amount of Cr(VI) in the hot gas containing an amount of Cr(VI).
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: September 3, 2019
    Assignee: Bosal Emission Control Systems NV
    Inventor: Yves De Vos
  • Patent number: 10392980
    Abstract: Methods and systems are provided for a diesel oxidation catalyst. In one example, the diesel oxidation catalyst comprises a washcoat with different catalytically active portions for reacting with one or more of carbon containing compounds and NOx. The diesel oxidation catalyst is located upstream of a particulate filter in an exhaust passage.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: August 27, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Douglas Allen Dobson
  • Patent number: 10369519
    Abstract: The invention relates to a process for removing mercury from flue gases from combustion plants, wherein the process comprises providing an adsorbent based on carbon, producing an aqueous suspension comprising the adsorbent, introducing the suspension into the flue gas stream from the combustion plants into the dry gas phase of the flue gas which is undersaturated with water vapor and loading the adsorbent with mercury over a predetermined reaction path, keeping the mercury-laden adsorbent out of the flue gas stream and landfilling or regenerating the mercury-laden adsorbent.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: August 6, 2019
    Assignee: RWE POWER AKTIENGESELLSCHAFT
    Inventors: Peter Moser, Knut Stahl
  • Patent number: 10365201
    Abstract: A CPU of an analysis apparatus performs a fluid analysis and derives transient distribution information that represents an accumulation distribution of a particulate layer on an inflow-side inner circumferential surface of a honeycomb structure at a time point after a short time interval ?t (step S130). The CPU then repeatedly performs a fluid analysis by taking into account the transient distribution information derived previous time to repeatedly derive transient distribution information (steps S130 to S150) and then derives post-transient-analysis distribution information that represents the accumulation distribution of the particulate layer at a later time point (step S160).
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 30, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Satoshi Sakashita, Kazuya Mori, Naoki Yoshida, Shingo Sokawa, Kenji Suzuki
  • Patent number: 10352214
    Abstract: A gaseous emissions treatment assembly has a honeycomb ceramic substrate body with a plurality of cells for passage of exhaust gases. Respective lengths of metal wire are located in a number of the cells. An induction heating coil is mounted adjacent the substrate body for generating a varying electromagnetic field, thereby inductively to heat the lengths of wire and thereby to heat the substrate body.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 16, 2019
    Assignee: ADVANCED TECHNOLOGY EMISSION SOLUTIONS INC.
    Inventors: Robin Crawford, John Douglas
  • Patent number: 10336313
    Abstract: A vehicle and a control method thereof are provided. The vehicle includes an engine, a catalytic converter including catalyst for purifying exhaust gas discharged from the engine and a sensing unit that is disposed between the engine and the catalytic converter. The sensing unit outputs an electrical signal in response to sensing of gas and a controller starts the engine based on the electrical signal output from the sensing unit and a mileage of the vehicle.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: July 2, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Jeong Ki Huh
  • Patent number: 10335736
    Abstract: An exhaust gas purification material according to the present invention is provided with a particulate filter 10 that traps particulate matter in exhaust gas and contains an SCR catalyst for adsorbing ammonia and reducing NOx in the exhaust gas. A maximum allowable adsorption amount of ammonia adsorbable by the filter 10 differs between an upstream portion 10a of the filter 10 including an exhaust gas inlet-side end 10c, and a downstream portion 10b of the filter 10 including an exhaust gas outlet-side end 10d. The SCR catalyst contained in the upstream portion 10a and the SCR catalyst contained in the downstream portion 10b are qualitatively different. A ratio (B/A) of a maximum allowable adsorption amount of ammonia A in the upstream portion 10a and a maximum allowable adsorption amount of ammonia B in the downstream portion 10b satisfies the relationship 1.1?(B/A)?2.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: July 2, 2019
    Assignee: CATALER CORPORATION
    Inventors: Makoto Tsuji, Hiroto Imai, Shintaro Kobayashi
  • Patent number: 10333119
    Abstract: A lead-acid battery comprises a flame arrestor plug (1) for controlled venting of gases from the battery through the vent hole (3), wherein the flame arrestor plug has a valve element (5) for controlling the venting of gas from the vent hole and a plug portion (4) which is adjacent to or in contact with the battery casing (2) around the vent hole and which, together with the battery casing, defines a flow path through which gases released through the valve element can escape from the battery, at least a portion of the flow path being of sufficiently narrow cross-section to prevent propagation of a flame along the flow path.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 25, 2019
    Assignee: EH EUROPE GMBH
    Inventors: Ken Partington, Liam Warburton
  • Patent number: 10328627
    Abstract: An extrusion apparatus including a die and a mask are provided such that no slots feed directly into the longitudinal skin forming gap between the mask and the die. In a method of forming a die adapted to improve skin uniformity of extruded cellular ceramic substrates a slotted block of die material is provided including central slots adapted to form a cellular matrix of the substrate and peripheral slots located outwardly of the central slots designed to be covered by a skin former mask and adapted to extrude peripheral batch material. An arcuate skin former is cut corresponding to a target shrinkage so as to intersect the slotted block such that skin flow from tangent slots at 90 degree positions of the die is limited to the peripheral batch material.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: June 25, 2019
    Assignee: Corning Incorporated
    Inventor: Michael James Lehman
  • Patent number: 10316739
    Abstract: The invention proposes a method for the purification of exhaust gases which are generated by a diesel engine with a charging turbine, and a special device for carrying out said method. The device comprises, in the flow direction of the exhaust gas, a dosing device for a reducing agent from a reducing agent reservoir (2), an SCR catalytic converter (3), an oxidation catalytic converter (4) and a diesel particle filter (5). The system is particularly suitable for the purification of the exhaust gases of diesel vehicles in which engines with a turbocharger (charging turbine (1)) and an exhaust-gas recirculation device are used, which engines generate exhaust gases which, in addition to carbon monoxide, hydrocarbons and particles, have nitrogen oxides with an NO2/NOX ratio of between 0.3 and 0.7.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: June 11, 2019
    Assignee: UMICORE AG & CO. KG
    Inventors: Paul Spurk, Marcus Pfeifer, Hendrik-David Noack
  • Patent number: 10293328
    Abstract: A nitrogen oxide (NOx) reduction catalyst that includes a transition metal tungstate having the formula: MWO4 wherein M is selected from the group consisting of Mn, Fe, Co, Ni, and Cu. The catalyst may be utilized in various environments including oxygen rich and oxygen deficient environments.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 21, 2019
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hongfei Jia, Charles A. Roberts, Mitsuru Sakano, Keiichi Minami, Torin C. Peck, Paul T. Fanson
  • Patent number: 10287938
    Abstract: A method for a vehicle comprises responsive to installation of a new exhaust particulate filter, doping fuel with an ash-producing additive, and combusting the doped fuel to produce ash, wherein the ash deposits as an ash coating on the new exhaust particulate filter. In this way, a filtration efficiency of an exhaust particulate filter can be increased quickly as compared to a filter with no deposited ash coating, inexpensively as compared to conventional methods using membranes, and with a lower back pressure drop as compared to conventional methods.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 14, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: James Robert Warner, Timothy Brian Chanko, William Charles Ruona, Giovanni Cavataio, Douglas Allen Dobson
  • Patent number: 10287937
    Abstract: An exhaust system for an engine has a volume element such as a muffler or a silencer. First and second exhaust pipes are connected as dual exhaust pipes upstream of or downstream of the volume element. The first exhaust pipe has a first length (L1). A valve is positioned in the second exhaust pipe at a distance (D) from the volume element. The distance D is a fraction of L1 such that the second pipe is a resonator for the first pipe with the valve in a closed position. A method of controlling exhaust noise includes positioning a valve in the first exhaust pipe at a distance (D) from a volume element with D being a specified fraction of a length of the second exhaust pipe, and closing the valve such that the first pipe provides a resonator for the second pipe to counteract standing wave in the second pipe.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: May 14, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Vincent Paul Solferino, Brian Schabel, Joseph Van Gilder
  • Patent number: 10286358
    Abstract: A honeycomb filter includes a plurality of cells and porous cell walls. Exhaust gas is to flow through the plurality of cells. The plurality of cells include exhaust gas introduction cells and exhaust gas emission cells. The honeycomb filter has a round cross sectional shape. Each of the exhaust gas emission cells is adjacently surrounded fully by the exhaust gas introduction cells. In the cross section, the exhaust gas introduction cells and the exhaust gas emission cells each have a polygonal shape. In the cross section, a side forming a cross sectional shape of each of the first exhaust gas introduction cells faces one of the exhaust gas emission cells, a side forming a cross sectional shape of each of the second exhaust gas introduction cells faces one of the exhaust gas emission cells.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 14, 2019
    Assignee: IBIDEN CO., LTD.
    Inventors: Shigeaki Goto, Masaki Imaeda, Hokuto Ozeki
  • Patent number: 10280822
    Abstract: Provided is an exhaust gas purifying apparatus including a first catalyst and a second catalyst that passes exhaust gas from the first catalyst, in which the temperature of the second catalyst can be increased in an early stage after an engine is started, and thus exhaust gas purification efficiency can be enhanced in an earlier stage than in conventional apparatuses. The apparatus includes an exhaust gas purifying catalyst that includes a first catalyst for purifying exhaust gas from an exhaust manifold and a second catalyst for purifying exhaust gas having passed through the first catalyst. The heat capacity of the first catalyst is lower than that of the second catalyst. The heat capacity of the second catalyst is 184 to 322 J/K under a temperature environment of 25° C., and that of the first catalyst is less than or equal to 20 J/K under a temperature environment of 25° C.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: May 7, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Norio Ishikawa
  • Patent number: 10258972
    Abstract: Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: April 16, 2019
    Assignee: BASF CORPORATION
    Inventors: Joseph A. Patchett, Joseph C. Dettling, Elizabeth A. Przybylski
  • Patent number: 10252225
    Abstract: An apparatus for aftertreatment of exhaust gas includes a housing configured to define an inner cavity; an exhaust inlet arranged to the housing for entering exhaust gas flow to the inner cavity; a mixer unit arranged in the inner cavity to dispense a reactant to the exhaust gas flow; a mixing device, located downstream of the mixer unit, to evenly mix the reactant to the exhaust gas flow. The mixing device includes: a toroidal cylinder to receive the exhaust gas flow from the mixer unit via a solid tubular element, wherein the solid tubular element is in a centric manner to a first base of the toroidal cylinder for guiding the exhaust gas flow led into the toroidal cylinder to swirl inside the toroidal cylinder; and an exhaust outlet arranged to a curved side of the toroidal cylinder, to exit the exhaust gas flow from the mixing device.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: April 9, 2019
    Assignee: PROVENTIA OY
    Inventors: Tuomas Tyni, Sauli Halonen, Jukka Kurikka
  • Patent number: 10247070
    Abstract: An aftertreatment system comprises a SCR system including a catalyst formulated to decompose constituents of an exhaust gas passing therethrough. A filter is positioned upstream of the SCR system. The filter comprises a sulfur suppressing compound formulated to reduce an amount of SOx gases included in the exhaust gas flowing through the aftertreatment system. In particular embodiments, the filter comprises a filter housing and a filter element positioned within the filter housing. The filter element comprises the sulfur suppressing compound.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: April 2, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Arvind V. Harinath, Matthew P. Henrichsen
  • Patent number: 10247077
    Abstract: A retention material for a gas processing device including a processing structure and a casing for accommodating the processing structure, the retention material including inorganic fibers and being arranged between the processing structure and the casing, wherein in a test of repeating a cycle of compressing the retention material until a bulk density of the retention material becomes a prescribed compression bulk density, followed by retaining for 10 seconds, and then releasing until a bulk density of the retention material becomes a release bulk density that is smaller by 12% of said prescribed compression bulk density; a release surface pressure of the retention material after repeating the cycle 2500 times and the compression bulk density of the retention material satisfies the relationship, P?17.10×D?1.62 wherein P is the release surface pressure (N/cm2) and D is the compression bulk density (g/cm3).
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: April 2, 2019
    Assignee: NICHIAS CORPORATION
    Inventors: Hiroki Nakamura, Nobuya Tomosue, Tadashi Sakane
  • Patent number: 10226738
    Abstract: An assembly for treating gaseous emissions includes a substrate body having a front and a rear and cells for the passage of emissions gas. Inductance heating metal is located in the substrate body and an induction heating coil is mounted adjacent the substrate body for generating a varying electromagnetic field for inductively heating the metal and thereby heating the substrate body. A greater concentration of the metal is located near the front of the substrate body than near the rear.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 12, 2019
    Assignee: ADVANCED TECHNOLOGY EMISSION SOLUTIONS INC.
    Inventors: Robin Crawford, John Douglas
  • Patent number: 10202934
    Abstract: A cylinder head for an internal combustion comprises a plurality of exhaust outlets distributed along a longitudinal axis of the cylinder head, wherein the exhaust outlets are configured to align with corresponding exhaust gas transfer tubes of the exhaust manifold and each exhaust outlet comprises a mating surface configured to receive flanges on the exhaust gas transfer tubes. The cylinder head further includes two or more abutment shoulders, each abutment shoulder associated with a different exhaust outlet and extending beyond the mating surfaces, the abutment shoulders being integral with the remainder of the cylinder head. The abutment shoulders each include an abutment surface configured to interface with the exhaust gas transfer tubes so as to restrict contraction of the exhaust manifold along a length of the exhaust manifold extending in the direction of the longitudinal axis of the cylinder head.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 12, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Patrick Murphy
  • Patent number: 10195814
    Abstract: A honeycomb structure includes a honeycomb structure body that includes a porous partition wall which defines a plurality of cells serving as through channels of fluid and extending from an inflow end face as one end face to an outflow end face as the other end face, and a circumferential wall arranged on a circumferential surface of the honeycomb structure body. The circumferential wall has a thickness of 0.5 to 4.0 mm, a gap path is formed along a surface of the circumferential wall inside the circumferential wall, the gap path has a width of 0.4 to 4.0 mm, and has a height of 50 to 99% of the thickness of the circumferential wall, and a total length of the gap path is 1000% or more of a length in the cell extending direction of the honeycomb structure body.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: February 5, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Yudai Kurimoto, Hirotaka Yamamoto, Shogo Hirose
  • Patent number: 10189017
    Abstract: Ho Honeycomb monolith structure, especially for use in mass transfer-limited processes or processes for the selective catalytic reduction (SCR) of nitrogen oxides, comprising: a plurality of cell walls defining a plurality of polygonal channels, the plurality of cell walls and channels extending in parallel along a common direction from an entrance end to an outlet end of the structure in the fluid flow direction. The transversal cross section of a polygonal channel has the shape of a convex elongated polygon, wherein at least 50% of the internal angles between two adjacent walls of the convex polygon are above 90 degrees and wherein the cell diameter ratio LL/LS is greater than 1.5.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 29, 2019
    Assignee: YARA INTERNATIONAL ASA
    Inventors: David Waller, Karl Isak Skau, Sang Baek Shin, Bent Erlend Vigeland
  • Patent number: 10180095
    Abstract: A NOx catalyst is provided that can realize a favorable NOx reduction in a broad temperature region and that can lighten the overhead involved in production.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: January 15, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Otsuki, Hiromasa Nishioka, Yoshihisa Tsukamoto, Yasumasa Notake
  • Patent number: 10143967
    Abstract: An assembly for treating gaseous emissions includes a substrate body having cells for the passages of emissions gas. Lengths of metal wire are located in selected ones of the cells and an induction heating coil is mounted adjacent the substrate body for generating a varying electromagnetic field. In this way the metal wires are heated, resulting in heating of the substrate body and heating of exhaust gas flowing in the cells. The metal wires are distributed non-uniformly through the substrate body to obtain a desired heating pattern.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 4, 2018
    Assignee: ADVANCED TECHNOLOGY EMISSION SOLUTIONS INC.
    Inventors: Robin Crawford, John Douglas
  • Patent number: 10137421
    Abstract: A static mixer for mixing exhaust gases to be supplied to a selective catalytic reduction device located at the back of a boiler, includes a gas accommodation part having a first inlet and a plurality of second inlets partitioned from each other to introduce gases having different temperatures thereinto so that the gases introduced through the first inlet and the plurality of second inlets flow to a plurality of divided sections. A discharge part is provided that communicates with the gas accommodation part to collect and discharge the gases and a mixing plate part is provided, which has a plurality of unit plates disposed on the upper and lower portions of a hollow portion of the discharge part in such a manner as to have a given angle with respect to the directions of the gases discharged.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: November 27, 2018
    Assignee: Doosan Heavy Industries Construction Co., Ltd.
    Inventors: Joong Hyun Lim, Jongho Hong, Woochul Kwon, Sangrin Lee
  • Patent number: 10130913
    Abstract: There is provided an exhaust gas purification system including: a NOx storage-reduction catalyst that is provided in an exhaust system of an internal combustion engine 10 to reduce and purify NOx in exhaust gas; a deterioration degree estimation module for estimating a degree of deterioration of the NOx storage-reduction catalyst; a NOx storage amount estimation module for estimating a NOx storage amount of the NOx storage-reduction catalyst; a regeneration control unit for starting a regeneration process in which a NOx storage capacity of the NOx storage-reduction catalyst is restored when a NOx storage amount that is estimated by the NOx storage amount estimation module reaches a predetermined storage amount threshold; and a storage amount threshold correction module for correcting the storage amount threshold based on the degree of deterioration that is estimated by the deterioration degree estimation module.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 20, 2018
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka
  • Patent number: 10125649
    Abstract: An exhaust gas purification catalyst that has an excellent exhaust gas purification performance while suppressing pressure loss increases. The exhaust gas purification catalyst is provided with a substrate having a wall-flow structure and having a partition; a first catalyst layer formed, in a region of an interior part of the partition that is in contact with an entrance cell, along the extending direction of the partition from an exhaust gas inflow-side end for less than the total length Lw of the partition; and a second catalyst layer formed, in a region of an interior part of the partition that is in contact with an exit cell, along the extending direction of the partition from the exhaust gas outflow-side end for less than the total length Lw of the partition. The first catalyst layer and the second catalyst layer are configured to partially overlap with each other in the extending direction.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: November 13, 2018
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryota Onoe, Shingo Sakagami, Tsuyoshi Ito, Masahiko Takeuchi, Naoto Miyoshi, Akemi Sato
  • Patent number: 10125659
    Abstract: An exhaust gas treatment device includes a housing having a wall. The wall of the housing defines an interior chamber. A substrate is supported by the housing within the interior chamber of the housing. The substrate extends along a longitudinal axis. The substrate includes a flow through structure that allows the flow of exhaust gas to flow through the substrate. The substrate includes a catalytic composition disposed thereon for reacting with the flow of exhaust gas. The substrate includes a cavity, extending along a cavity axis, which is transverse to the longitudinal axis of the substrate. A sensor is attached to the housing. The sensor includes a probe that at least partially extends into the cavity of the substrate, for sensing a gaseous component in the flow of exhaust gas. The cavity mixes the flow of exhaust gas and directs the exhaust gas toward the probe of the sensor.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: November 13, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Luciano Nunziato Di Perna, Jianwen Li, Raffaello Ardanese, Rahul Mital, David B. Brown
  • Patent number: 10105627
    Abstract: A catalyst 20 provided for a filter body for combusting PM contains activated aluminas 21 and 22, active-oxygen-release materials 23 and 24, catalytic metal 25, and alkali earth metal 26. The alkali earth metal 26 is loaded on each of the activated aluminas 21 and 22, and the active-oxygen-release materials 23 and 24. A percentage by mass of the alkali earth metal 26, loaded on the active-oxygen-release materials 23 and 24, to the active-oxygen-release material is smaller than a percentage by mass of the alkali earth metal 26, loaded on the activated aluminas 21 and 22, to the activated alumina.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 23, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Tomoya Takizawa, Koichiro Harada, Takashi Baba
  • Patent number: 10084184
    Abstract: A nanostructured composite material includes a substrate, a porous layer including a highly structured material, and a coating including nanoparticles. A method for forming the nanostructured composite material can include forming a porous layer on a substrate, the porous layer including a highly structured material, and applying nanoparticles to the porous layer to form the nanostructured composite material.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: September 25, 2018
    Assignee: The Regents of the University of California
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Patent number: 10060845
    Abstract: System and methods for reducing secondary emissions in an exhaust stream from an internal combustion engine are disclosed. The systems and methods include a filtration device positioned downstream from an SCR catalyst of an aftertreatment system disposed in the exhaust system. The filtration device can also be used for particulate filter diagnostics and for treatment of ammonia slip.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: August 28, 2018
    Assignee: Cummins Inc.
    Inventors: Aleksey Yezerets, Z. Gerald Liu, Krishna Kamasamudram, Neal W. Currier
  • Patent number: 10052586
    Abstract: A processing apparatus equipped with a catalyst-supporting honeycomb structure, which is characterized in that corrugated plate-like glass fiber papers having a functional catalyst supported thereon and flat plate-like glass fiber papers having the same functional catalyst supported thereon are alternately laminated without being bonded to each other, to form a catalyst-supporting honeycomb structure, and this catalyst-supporting honeycomb structure is packed in a casing.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 21, 2018
    Assignee: Hitachi Zosen Corporation
    Inventors: Susumu Hikazudani, Naoe Hino, Seigo Yamamoto, Kana Shimizu
  • Patent number: 10046271
    Abstract: An air cleaner for a fuel cell system includes a housing, a first filter, and a second filter. The first filter is arranged inside the housing and collects dust contained in air. The second filter is arranged side by side with the first filter in an air flowing direction inside the housing and adsorbs impure gas contained in air. The first filter includes a filtering member, which has nonwoven fabric and filter paper adhered to the nonwoven fabric. The filter paper is located on a downstream side in the air flowing direction of the nonwoven fabric and has a higher packing density than the nonwoven fabric. The second filter includes a base member having a honeycomb structure with through-holes and adsorbent, which is provided on inner surfaces of the through-holes and adsorbs the impure gas.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: August 14, 2018
    Assignee: TOYOTA BOSHOKU KABUSHIKI KAISHA
    Inventor: Kimiko Yoshida
  • Patent number: 10016956
    Abstract: A Cu/ceramic bonded body according to the present invention is formed by bonding a copper member made of copper or a copper alloy and a ceramic member made of AlN or Al2O3 using a bonding material containing Ag and Ti, in which a Ti compound layer made of a Ti nitride or a Ti oxide is formed at a bonding interface between the copper member and the ceramic member, and Ag particles are dispersed in the Ti compound layer.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: July 10, 2018
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Nobuyuki Terasaki, Yoshiyuki Nagatomo
  • Patent number: 10012122
    Abstract: An exhaust gas treatment system for an internal combustion engine includes an exhaust gas pathway configured to receive exhaust gas from the internal combustion engine, a first ammonia injector configured to inject ammonia into the exhaust gas pathway at a first rate, and a first treatment element positioned downstream of the first ammonia injector. A second ammonia injector is positioned downstream of the first treatment element. The second ammonia injector is configured to inject ammonia into the exhaust gas pathway at a second rate. A controller is configured to estimate an amount of particulate present in the exhaust gas and adjust at least one of the first rate or the second rate based on the estimate.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: July 3, 2018
    Assignee: DEERE & COMPANY
    Inventors: Shyan-Cherng Huang, Taner Tuken, Thomas M. Harris
  • Patent number: 10010871
    Abstract: Provide is a new carrier for exhaust gas purification catalyst which exhibits excellent catalytic activity, particularly catalytic activity at a low temperature. Proposed is a carrier for exhaust gas purification catalyst composed of particles which contain a silicate or phosphate containing one kind or two or more kinds among the elements belonging to Group 1 and Group 2 in the periodic table.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 3, 2018
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Sumio Kato, Masataka Ogasawara, Hironori Iwakura, Takahito Asanuma, Takashi Wakabayashi, Yunosuke Nakahara
  • Patent number: 10012124
    Abstract: An exhaust gas aftertreatment device for an internal combustion engine comprises a housing, first and second catalytic substrates arranged inside the housing such that the first catalytic substrate is arranged upstream of the second catalytic substrate, and a reductant injector arranged in between the first and second catalytic substrates. Further, the first and second catalytic substrates are arranged such that a fluid flow direction through the exhaust gas aftertreatment device is angled. A flow redirecting wall is arranged downstream of the first catalytic substrate such that the fluid flow between the first and second catalytic substrates at least partially passes an outer circumference of the first catalytic substrate before reaching the second catalytic substrate. The redirecting wall is inclined to an outlet surface of the first catalytic substrate and the reductant injector is arranged at the redirecting wall at a position distant from the outlet surface.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 3, 2018
    Assignee: Volvo Car Corporation
    Inventors: Peter Sandberg, Marie Stenfeldt
  • Patent number: 9993772
    Abstract: A catalytic article having a flow-through substrate having an inlet, an outlet, and an axial length; an SCR zone containing a first SCR catalyst; and an oxidation zone containing (a) an ASC zone and a DOC zone or (b) a mixed ASC and DOC zone, where the oxidation zone contains an ammonia oxidation catalyst and a DOC catalyst, the SCR zone is positioned on the substrate from the inlet end and extends less than the axial length of the substrate from the inlet, the DOC zone or the mixed ASC and DOC zone is position on the substrate from the outlet end, and when the DOC zone is present, the ASC zone is located between the SCR zone and the DOC zone. In other catalytic articles, the ASC zone further comprises a DEC catalyst. Methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced, are also described.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: June 12, 2018
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Lee Gilbert, Colin Newman, Andrew Newman, Mikael Larsson
  • Patent number: 9970327
    Abstract: The invention relates to a device and a method for separating dirt particles from the working medium of a turbine (10). The turbine (10) comprises at least one rotor (11) which is arranged in a housing (17). A swirl generator (20) is provided that sets the working medium and the dirt particles in a spiral-shaped rotational movement along a principal axis (22) by means of the geometry of the swirl generator (20) and thereby separates the dirt particles from the working medium. The swirl generator (20) is designed in such a way that the working medium experiences a reversal of the speed component parallel to the principal axis (22) within the swirl generator (20).
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: May 15, 2018
    Assignee: Robert Bosch Gmbh
    Inventors: Andreas Wengert, Hans-Christoph Magel, Nadja Eisenmenger, Frank Ulrich Rueckert
  • Patent number: 9945279
    Abstract: A honeycomb structure includes: a honeycomb structure body including a plurality of cells defined by a partition wall and serving as a through channel of fluid; and a plugging portion to alternately plug open end parts of the plurality of cells on one side as an inflow side of the exhaust gas and open end parts on the other side as an outflow side of the exhaust gas. The partition wall is loaded, on the side of the outflow cells, with an oxidation catalyst made of a transition metal oxide at least including Fe and Mn to oxidize NO gas or an oxidation catalyst made of a transition metal oxide loaded at CeO2 and at least including Fe and Mn to oxidize NO gas. The loading amount of the oxidation catalyst is 5.0 g/L or more and 50 g/L or less.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: April 17, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Yunie Izumi, Kenji Morimoto
  • Patent number: 9937489
    Abstract: Catalyst articles having a first zone containing a first SCR catalyst and a second zone containing an ammonia slip catalyst (ASC), where the ammonia slip catalyst contains a second SCR catalyst and an oxidation catalyst, and the ASC has DOC functionality, where the first zone is located on the inlet side of the substrate and the second zone is located in the outlet side of the substrate are disclosed. The catalytic articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases, in reducing the amount of ammonia slip and in oxidizing organic residues. Exhaust systems containing the catalyst articles and methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced and hydrocarbon are oxidized by the ASC catalyst, are also described.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 10, 2018
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Mikael Larsson
  • Patent number: 9926824
    Abstract: A catalytic converter apparatus for use in an exhaust system of an internal combustion engine includes a housing having a gas inlet and a gas outlet, and at least one catalytic substrate element disposed in the housing. The at least one substrate element is divided into a plurality of zones or sections, the zones at least partially separated from one another to inhibit heat flow. The zones can be at least partially separated with walls. The walls can include insulating material for reducing the mobility of heat radially outwardly. Each of the zones defines a generally separate flow passage connecting the inlet and outlet in fluid communication. The apparatus can heat more rapidly from a cold start compared with conventional catalytic converters.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 27, 2018
    Assignee: Vida Fresh Air Corp.
    Inventors: Stefano Plati, Michael Decesare, Sarry Al-Turk, Amanda Sistilli, Gregory Kiyoshi Koyanagi, Voislav Blagojevic
  • Patent number: 9901892
    Abstract: An article including a metal substrate, an anti-coking catalyst layer and an alumina barrier layer disposed between the metal substrate and the anti-coking catalyst layer is provided. A process for making the article is also provided.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: February 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Minghu Guo, Chuan Lin, Yanfei Gu, Wen-Qing Peng, Lawrence Bernard Kool, Hong Zhou, Zhaohui Yang
  • Patent number: 9889406
    Abstract: An apparatus may have a selective catalytic reduction NOx catalyst including a high-temperature catalyst layer having high capability of reducing NOx at high temperatures and a low-temperature catalyst layer having higher capability of reducing NOx at low temperatures than that of the high-temperature catalyst layer. The low-temperature catalyst layer may be arranged closer to a catalyst substrate than the high-temperature catalyst layer. A supply valve may add an addition quantity of reducing agent for reducing NOx to exhaust gas flowing into the selective catalytic reduction NOx catalyst. A controller may comprise at least one processor configured to control addition of the reducing agent by the supply valve such that the reducing agent concentration in a reducing agent atmosphere formed in the exhaust gas flowing into the selective catalytic reduction NOx catalyst is higher when the temperature of the selective catalytic reduction NOx catalyst is in a specific low temperature range.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: February 13, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Itoh, Hiromasa Nishioka, Yoshihisa Tsukamoto, Hiroshi Ohtsuki, Yasumasa Notake
  • Patent number: 9885268
    Abstract: Insulation system for thermoacoustic insulation of a component to be insulated, such as an exhaust gas component, comprising a fiber molded part having a surface facing away from the component to be insulated, where the surface facing away is at least in part jacketed with a cladding, and having an insulation surface facing the component to be insulated, where the fiber molded part is applied to the component to be insulated such that at least one cavity is formed between a portion of the insulation surface of the fiber molded part and the component to be insulated.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 6, 2018
    Assignee: Isolite GMBH
    Inventor: Michael Knoll
  • Patent number: 9868088
    Abstract: Catalyst washcoats with improved porosity and methods for making the washcoats are provided. The process comprises incorporation of an oil-in-water macroemulsion into the catalyst slurry prior to washcoating the carrier substrate, and calcining the washcoated carrier substrate to remove the oil-in-water macroemulsion. Also provided are catalyst articles comprising the washcoat and methods for abatement of exhaust gas emissions.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 16, 2018
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Esra Cinar, Chunjuan Zhang, Pascaline Harrison Tran
  • Patent number: 9856775
    Abstract: An assembly unit 1 of an exhaust system has at least one and particularly two connection funnels 2 made of cast material and a pipe 3. The at least one connection funnel 2 has a pipe socket 21 and at least one bracket 22. The bracket 22 is arranged outside of the pipe socket 21. A connection section 31 of the pipe 3 is fastened to the bracket 22 of the at least one connection funnel. The pipe socket 21 extends beyond the connection section 31 of the pipe 3 into the interior of the pipe 3 and is spaced apart from an inner wall of the pipe 3 by at least the simple wall thickness of the pipe 3.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 2, 2018
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Philippe Leisten
  • Patent number: 9835104
    Abstract: An exhaust purification system comprising an exhaust purification catalyst, a downstream side air-fuel ratio sensor, and a control device performing air-fuel ratio control for controlling an air-fuel ratio of exhaust gas and abnormality diagnosis control for diagnosing the downstream side air-fuel ratio sensor. In the air-fuel ratio control, the control device alternately and repeatedly switches the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst between a rich air-fuel ratio and a lean air-fuel ratio. In the abnormality diagnosis control, the control device judges that the downstream side air-fuel ratio sensor has become abnormal when the air-fuel ratio of the exhaust gas is made the rich air-fuel ratio by the air-fuel control and the output air-fuel ratio of the downstream side air-fuel ratio sensor changes from an air-fuel ratio richer than a predetermined lean judged air-fuel ratio to an lean air-fuel ratio.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 5, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuntaro Okazaki, Kenji Suzuki, Hiroshi Miyamoto, Yuji Miyoshi