Plate Design Or Structure Patents (Class 422/503)
  • Patent number: 10746169
    Abstract: A miniature pneumatic device includes a miniature fluid control device and a miniature valve device. The miniature fluid control device includes a gas inlet plate, a resonance plate, a piezoelectric actuator and a gas collecting plate. The length and width of the gas collecting plate are between 4 mm and 10 mm. A first chamber is formed between the resonance plate and the piezoelectric actuator. After a gas is fed into the gas inlet plate, the gas is transferred to the first chamber through the resonance plate and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve device includes a valve film and a gas outlet plate. After the gas is transferred from the miniature fluid control device to the miniature valve device, the valve opening of the valve film is correspondingly opened or closed and the gas is transferred in one direction.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: August 18, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10710077
    Abstract: A method for handling, in a microfluidic system, microdrops which include samples, including the steps of forming, in an oil, microdrops of an aqueous solution containing a sample, the oil and/or the aqueous solution containing a sample including a gelling agent; trapping the microdrops by means of surface-tension traps pre-arranged in a trapping area; and at least partially gelling the oil in the trapping area and/or at least partially gelling the trapped microdrops.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: July 14, 2020
    Assignees: ECOLE POLYTECHNIQUE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Charles Baroud, Gabriel Amselem, Sébastien Sart, Raphaël Tomasi
  • Patent number: 10702613
    Abstract: The present invention provides a method for the purification of 227Th from a mixture comprising 227Th and 223Ra, said method comprising: i) preparing a first solution comprising a mixture of 227Th and 223Ra ions dissolved in an aqueous solution of first mineral acid; ii) loading said first solution onto a strong base anion exchange resin; iii) eluting 223Ra from said strong base anion exchange resin using a second mineral acid in an aqueous solution; iv) optionally rinsing said strong base anion exchange resin using a first aqueous medium; v) eluting 227Th from said strong base anion exchange resin using a third mineral acid in an aqueous solution whereby to generate a second solution comprising 227Th. The invention further provides a purified 227Th solution, a corresponding pharmaceutical formulation and methods of treatment of neoplastic disease.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 7, 2020
    Assignee: BAYER AS
    Inventors: Dimitrios Mantzilas, Jan Roger Karlson, Judit Tjelmeland Østby, Janne Olsen Frenvik
  • Patent number: 10661277
    Abstract: A microfluidic device includes a substrate, a microchannel, a plurality of spaced-apart pillars, and a porous nanofiber structure. The substrate has a substrate top surface. The microchannel is indented downwardly from the substrate top surface. The pillars are disposed in the microchannel. Each of the pillars has a pillar top surface that is lower in level than the substrate top surface. The porous nanofiber web structure is formed in the microchannel, and includes a first web portion residing in a space formed among the pillars.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 26, 2020
    Assignee: NATIONAL TAIWAN NORMAL UNIVERSITY
    Inventors: Tien-Li Chang, Chi-Huang Huang, Cheng-Ying Chou
  • Patent number: 10646873
    Abstract: A multi-well plate lid includes a well-side surface to cover a plurality of wells of a multi-well plate. The well-side surface includes two or more regions with different adhesive strengths to the multi-well plate.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: May 12, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Hiroki Somada, Satoshi Izumi, Takahiko Matsumoto, Daisuke Takagi
  • Patent number: 10632467
    Abstract: A cartridge has a container with at least one well, protrusions distributed on the container base side, and a flat polymer film having a lower surface and a hydrophobic upper surface kept at a distance (d) to the container base side by the protrusions. The container and the film are reversibly attachable to a liquid droplet manipulation instrument so that the lower surface of the film abuts at least one electrode array of the instrument. The container enables displacement of at least one liquid droplet from a well onto the hydrophobic upper surface of the flat polymer film and above the electrode array. The liquid droplet manipulation instrument has a control unit with a voltage control and an electrode selector for individually selecting each electrode of the electrode array and for providing the selected electrode with a voltage.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 28, 2020
    Assignee: TECAN TRADING AG
    Inventor: Marc N. Feiglin
  • Patent number: 10598593
    Abstract: A micro-fluidic chip comprises a chip base, a lens, and a securing portion. The chip base has a flow cell and a micro-fluidic channel defined therein. The micro-fluidic channel is fluidly connected to the flow cell to deliver fluid to and from the flow cell, respectively via a fluid input port and a fluid output port. The lens has an apex and a base. The apex is positioned within the flow cell. The securing portion is affixed to the chip base such that the lens is sandwiched between the chip base and the securing portion. The securing portion has a circular cavity defined therein in a surface adjacent the chip base, for receiving the base of the lens. The securing portion further has separate light input and output channels to allow light in and out, respectively, of the circular cavity and the lens.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: March 24, 2020
    Assignee: HITECH ANALYTICAL AND DIAGNOSTIC SOLUTIONS, LLC
    Inventor: Reyaz Kango
  • Patent number: 10583435
    Abstract: A specimen processing cartridge includes a reservoir having a fluid inlet, an elastic diaphragm, and a fluid outlet. The reservoir is operable to receive a volume of liquid from the fluid inlet, and the fluid outlet is positioned along a fluid flow path between the reservoir and a downstream reservoir. The cartridge includes a dissolvable membrane that occludes flow through the fluid outlet when the dissolvable membrane is in a first, undissolved state, and that permits flow from the reservoir to the downstream reservoir when in a second, dissolved state. The elastic diaphragm is operable to pressurize the reservoir upon receiving the volume of liquid when the dissolvable membrane is in the first, undissolved state, and is operable to contract and propel at least a portion of the volume of liquid from the reservoir to the downstream reservoir when the dissolvable membrane is in the second, dissolved state.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: March 10, 2020
    Assignee: PARATUS DIAGONOSTICS, LLC
    Inventors: John Jacob Carrano, John Carrano
  • Patent number: 10584695
    Abstract: A miniature fluid control device includes a piezoelectric actuator and a housing. The piezoelectric actuator comprises a suspension plate, an outer frame, at least one bracket and a piezoelectric ceramic plate. The piezoelectric ceramic plate is attached on a first surface of the suspension plate and has a length not larger than that of the suspension plate. The housing includes a gas collecting plate and a base. The gas collecting plate is a frame body with a sidewall and comprises a plurality of perforations. The base seals a bottom of the piezoelectric actuator and has a central aperture corresponding to the middle portion of the suspension plate. When the voltage is applied to the piezoelectric actuator, the suspension plate is permitted to undergo the curvy vibration, the fluid is transferred from the central aperture of the base to the gas-collecting chamber, and exited from the perforations.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: March 10, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10525464
    Abstract: Microscale fluidic devices and components thereof having a fluid retention groove, as well as systems and methods related thereto. The fluid retention groove facilitates uniform bonding of microfluidic device components.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 7, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Alwin Wan, Amir Sadri, Tal Rosenzweig, Nenad Kircanski, Edmond Young
  • Patent number: 10513773
    Abstract: A process for depositing an inorganic material on a substrate, the process comprising, providing a substrate having a surface, providing a precursor mixture comprising a metal sulfonate, and delivering the precursor mixture to the surface of the substrate, wherein the surface of the substrate is at a substrate temperature of above 450° C. and is sufficient to effect decomposition of the metal sulfonate. The inorganic material may include a metal or a metal oxide. The preferred metal sulfonate is metal triflate.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: December 24, 2019
    Assignees: Pilkington Group Limited, University College London
    Inventors: Deborah Raisbeck, Simon James Hurst, Ivan P. Parkin, Claire J. Carmalt, Joe A. Manzi
  • Patent number: 10451051
    Abstract: A miniature pneumatic device includes a miniature fluid control device and a miniature valve device. The miniature fluid control device includes a gas inlet plate, a resonance plate, a piezoelectric actuator and a gas collecting plate. A first chamber is formed between the resonance plate and the piezoelectric actuator. After a gas is fed into the gas inlet plate, the gas is transferred to the first chamber through the resonance plate and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve device includes a valve plate and a gas outlet plate. After the gas is transferred from the miniature fluid control device to the miniature valve device, the valve opening of the valve plate is correspondingly opened or closed and the gas is transferred in one direction. Consequently, a pressure-collecting operation or a pressure-releasing operation is selectively performed.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: October 22, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10429629
    Abstract: Methods and systems are provided to facilitate simultaneous high-resolution microscopic imaging of cells and detection of side-scattered light from such cells using an immersion objective. A container maintains a volume of an immersion oil or other immersion fluid in contact with the immersion objective and with a stage that contains a sample of the cells. The container also includes a window through which the cells can be illuminated off-axis to generate side-scattered light. The side-scattered light can then be detected through the immersion objective. The container maintains the immersion fluid in contact with an internal surface of the window to control the geometry of the optical interface between the off-axis illumination source and the immersion fluid. These systems permit high-throughput identification and imaging of cells for biological research, improvement of side-scatter cell classifiers, improved high-throughput cell sorting, and other applications.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: October 1, 2019
    Assignee: Veily Life Sciences LLC
    Inventors: Michael Brundage, Supriyo Sinha, Andrew Homyk, Saurabh Vyawahare
  • Patent number: 10414697
    Abstract: The present disclosure is directed to a nitrocellulose-based propellant composition comprising: (a) a nitrate ester based propellant comprising nitrocellulose; and (b) a stabilizer consisting of a tocopherol compound with a general formula (I), wherein: X is oxygen; R1 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, carboxylic acid, carboxylate, ester, saccharide, alkoxy-linked saccharide, alcohol, and ethers; R2 is selected from the group consisting of hydrogen methyl, benzyl carboxylic acid, benzyl carboxylate, benzylester and saccharide; R3 is selected from the group consisting of hydrogen, methyl, benzyl carboxylic acid, benzyl carboxylate, benzylester and saccharide; R4 is selected from the group consisting of methyl, benzyl carboxylic acid, benzyl carboxylate, benzylester and saccharide; and R5 is selected from the group consisting of alkyl and alkenyl.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: September 17, 2019
    Assignee: PB CLERMONT
    Inventors: Alain Dejeaifve, Rowan Dobson
  • Patent number: 10416091
    Abstract: A substrate surface defect detection device includes an optical waveguide for receiving first light and directing the received first light to a surface of a to be tested substrate, the optical waveguide having a first surface facing toward the substrate and a second surface facing away from the substrate, a microlens array disposed on the second surface of the optical waveguide, the microlens array including a plurality of microlenses arranged in an array for receiving second light from the surface of the to be tested substrate and converging the received second light to converged light, and an imaging component for receiving the converged light from the at least one microlens array for optical imaging. The substrate surface defect detection device requires significantly less time than conventional substrate surface defect detection devices.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 17, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: Qiang Wu, Wei Xiong, Xuan Li
  • Patent number: 10385838
    Abstract: A miniature fluid control device includes a gas inlet plate, a resonance plate and a piezoelectric actuator. The gas inlet plate includes at least one inlet, at least one convergence channel and a central cavity. A convergence chamber is defined by the central cavity. The resonance plate has a central aperture. The piezoelectric actuator includes a suspension plate, an outer frame and a piezoelectric ceramic plate. A gap is formed between the resonance plate and the piezoelectric actuator to define a first chamber. When the piezoelectric actuator is driven and after the gas is fed into the miniature fluid control device through the inlet of the gas inlet plate, the gas is sequentially converged to the central cavity through the convergence channel, transferred through the central aperture of the resonance plate, introduced into the first chamber, transferred downwardly through the piezoelectric actuator, and exited from the miniature fluid control device.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 20, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10379132
    Abstract: The present disclosure is directed to an auto-sampling system with syringe, valve configurations, and control logic that allow automatic, inline preparation of concentrated sulfuric acid and concentrated phosphoric acid for analytic analyzes. In implementations, the auto-sampling system includes independent syringe pumps connected to a valve system to dynamically introduce carrier, diluent, buffer, and eluent flows according to one or more modes of operation.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 13, 2019
    Assignee: Elemental Scientific, Inc.
    Inventors: Daniel R. Wiederin, Nathan Saetveit
  • Patent number: 10371136
    Abstract: A miniature pneumatic device includes a miniature fluid control device and a miniature valve device. The miniature fluid control device includes a gas inlet plate, a resonance plate, a piezoelectric actuator and a gas collecting plate. A first chamber is formed between the resonance plate and the piezoelectric actuator. After a gas is fed into the gas inlet plate, the gas is transferred to the first chamber through the resonance plate and then transferred downwardly. Consequently, a pressure gradient is generated to continuously push the gas. The miniature valve device includes a valve plate and a gas outlet plate. After the gas is transferred from the miniature fluid control device to the miniature valve device, the valve opening of the valve plate is correspondingly opened or closed and the gas is transferred in one direction. Consequently, a pressure-collecting operation or a pressure-releasing operation is selectively performed.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 6, 2019
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Jia-Yu Liao, Shou-Hung Chen, Che-Wei Huang, Hung-Hsin Liao, Chao-Chih Chen, Jheng-Wei Chen, Ying-Lun Chang, Chia-Hao Chang, Wei-Ming Lee
  • Patent number: 10335787
    Abstract: An apparatus includes a device for storing a liquid sample, in which the device has a sample acceptance well, one or more storage chambers, and one or more fluidic channels fluidly coupling the sample acceptance well to the one or more storage chambers. The apparatus also includes a well plate having a plate and multiple wells formed in the plate, in which the device and the well plate are configured to be attached to one another.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: July 2, 2019
    Assignee: The General Hospital Corporation
    Inventors: Ramin Haghgooie, Robert Granier, Kenneth T. Kotz, Anne C. Petrofsky
  • Patent number: 10293340
    Abstract: This invention provides devices, systems, and methods for performing point-of-care, analysis, including multiplexed analysis, of a biological fluid analyte, such as blood. The invention includes a cartridge for collecting the biological fluid analyte. The cartridge is configured to be inserted into an assay reader, in which one or more assay reactions may be performed. The assay reader is designed to read and report the results of the one or more assay reactions.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: May 21, 2019
    Assignee: FITBIT, INC.
    Inventors: Junyu Mai, Albert Gutes-Regidor, Rifat Emrah Ozel, Javier L. Prieto
  • Patent number: 10232105
    Abstract: A liquid handling device having an upstream liquid handling structure connected to a downstream liquid handling structure by a conduit. The upstream and downstream liquid handling structures are sealed or sealable such that the conduit provides the only fluidic communication paths between the upstream and downstream liquid handling structure. The device is arranged such that a driving force causes liquid in the upstream liquid handling structure to at least partially fill the conduit to separate gas in the upstream liquid handling structure from gas in the downstream liquid handling structure. With the device set up such that the two gas volumes are separated by a liquid volume, gas pressures and liquid flow in the device can be controlled by control of the driving force. The device may be arranged for rotation about an axis of rotation to provide the driving force.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 19, 2019
    Assignee: Biosurfit, S.A.
    Inventors: Tânia Tenreiro, Nuno Reis, João Garcia Da Fonseca
  • Patent number: 10166541
    Abstract: A microfluidic device and method comprises a rotatable substrate configured to be rotated at various angular velocities in order to accomplish a series of media exchanges with a sample chamber for containing a sample. A plurality of media reservoirs and waste reservoirs are connected to the sample chamber via channels forming capillary valves in which the capillary valves have varying burst frequencies of rotation of the substrate. The substrate can then be rotated through a series of angular velocities to automate media exchanges between the sample chamber and the respective media reservoirs and waste reservoirs. A pair of media reservoirs are located radially inward of the sample chamber and a pair of waste reservoirs are located radially outward of the sample chamber in an “X” configuration such that centrifugal forces cause fluid media to open the capillary valves and flow among the sample chamber, media reservoirs and waste reservoirs.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 1, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Lawrence Kulinsky, Ling Kong
  • Patent number: 10124332
    Abstract: A reversible bonded microfluidic structure comprises an overhanging cap or gasket structure atop a continuous microfluidic channel wall. An overhanging gasket structure may reduce stress concentrations at the edge of the channel wall and can permit improved reversible adhesion of the channel wall and adjacent dry adhesive fibers. In one example, reversible adhesion of the overhanging channel wall gasket and adjacent dry adhesive fibers may approach 1 MPa in axial loading. An overhanging gasket structure of the microfluidic channel wall may comprise a single “fiber” that is continuous around the perimeter of the desired microfluidic channel shape, and may define a self-sealing gasket which will contain fluid. The overhanging gasket structure may be surrounded by further overhanging or undercut dry adhesive fibers to enhance the adhesion and help make the rest of the surface more tolerant to defects and surface roughness.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 13, 2018
    Inventor: Daniel Elliot Sameoto
  • Patent number: 9962699
    Abstract: An automatic analyzer cartridge, spinnable about a rotational axis, has fluid and aliquoting chambers, a metering chamber connected to a vent that is nearer to the rotational axis than the metering chamber, first and second ducts connecting the fluid and aliquoting chambers, and the metering and aliquoting chambers, respectively. Metering chamber side walls taper away from a central region, wherein capillary action next to the walls is greater than in the central region. Fluid flows to the metering chamber using capillary action via the second duct that has an entrance and exit in the aliquoting and metering chambers, respectively; the exit being closer to the rotational axis than the entrance. A downstream fluidic element connects to the metering chamber via a valve. A fluidic structure receives and processes a biological sample into the processed biological sample and has a measurement structure that enables measurement of the processed biological sample.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: May 8, 2018
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christoph Boehm, Sascha Lutz, Juergen Spinke
  • Patent number: 9844780
    Abstract: Provided is an allergen detecting apparatus that can combine with an allergen microarray chip, and the apparatus comprises a microfluidic chip and a clamping unit. The allergen microarray chip can be any commercial chip and a reaction region of the microfluidic chip is configured to fit tightly with a microarray region of the allergen microarray chip allowing a sample or a reagent to contact with a protein allergen disposed on the microarray region. The present invention also provides a platform comprising a control system configured to automatically perform the mixing/binding reactions of the antibody/antigen in the apparatus of the present invention to achieve a faster, more cost-effective, and accurate detection of allergens.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: December 19, 2017
    Assignee: National Tsing Hua University
    Inventors: Gwo-Bin Lee, Wen-Yen Huang
  • Patent number: 9821311
    Abstract: A system for isolating cells in at least one of single-cell format and single-cluster format, comprising a reservoir, including a reservoir inlet and a reservoir outlet, configured to receive a biological sample and to receive at least one fluid, a manifold configured to receive and deliver the biological sample and the at least one fluid from the reservoir into a biological sample substrate, the manifold comprising a broad surface comprising a central region configured to receive the biological sample substrate, a set of openings configured to enable fluid flow transmission across the biological sample substrate, a manifold inlet configured to transmit flow from the reservoir the first subset of openings, a manifold outlet configured at a downstream end of the broad surface and coupled to the second subset of openings, the manifold outlet configured to transmit waste fluid from the manifold.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: November 21, 2017
    Assignee: DeNovo Sciences, Inc.
    Inventors: Kalyan Handique, Kyle Gleason, Austin Payne, Priyadarshini Gogoi, Christopher Siemer, Yi Zhou, Saedeh Javdani Sepehri
  • Patent number: 9791374
    Abstract: A micro-fluidic chip comprises a chip base, a hemispherical or curved lens, and a securing portion. The chip base has a flow cell and a micro-fluidic channel defined therein. The micro-fluidic channel is fluidly connected to the flow cell to deliver fluid to and from the flow cell, respectively via a fluid input port and a fluid output port. The lens has an apex and a base. The apex is positioned within the flow cell. The securing portion is affixed to the chip base such that the lens is sandwiched between the chip base and the securing portion. The securing portion has a circular cavity defined therein in a surface adjacent the chip base, for receiving the base of the lens. The securing portion further has separate light input and output channels to allow light in and out, respectively, of the circular cavity and the lens.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 17, 2017
    Assignee: HITECH ANALYTICAL AND DIAGNOSTIC SOLUTIONS, LLC
    Inventor: Reyaz Kango
  • Patent number: 9790548
    Abstract: The present invention relates to methods and devices for amplifying nucleic acid, and, in particular, amplifying so as to generate products on a surface without the use of emulsions. In a preferred embodiment, a plurality of groups of amplified product are generated on the surface, each group positioned in different (typically predetermined) locations on said surface so as to create an array.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: October 17, 2017
    Assignee: Intelligent Biosystems Inc.
    Inventors: Steven Gordon, Daniel Stetson
  • Patent number: 9707562
    Abstract: A system for isolating cells in at least one of single-cell format and single-cluster format, comprising a reservoir, including a reservoir inlet and a reservoir outlet, configured to receive a biological sample and to receive at least one fluid, a manifold configured to receive and deliver the biological sample and the at least one fluid from the reservoir into a biological sample substrate, the manifold comprising a broad surface comprising a central region configured to receive the biological sample substrate, a set of openings configured to enable fluid flow transmission across the biological sample substrate, a manifold inlet configured to transmit flow from the reservoir the first subset of openings, a manifold outlet configured at a downstream end of the broad surface and coupled to the second subset of openings, the manifold outlet configured to transmit waste fluid from the manifold.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 18, 2017
    Assignee: DeNovo Sciences, Inc.
    Inventors: Kalyan Handique, Kyle Gleason, Austin Payne, Priyadarshini Gogoi, Christopher Siemer, Yi Zhou, Saedeh Javdani Sepehri
  • Patent number: 9709562
    Abstract: A lateral flow device for use in a mainframe or point-of-care clinical analyzer, in which the lateral flow device includes a planar support having at least one sample addition area and at least one reaction area disposed thereon. The sample addition area and reaction area are fluidly interconnected to one another and form at least one lateral fluid flow path. The lateral flow device is sized for retention within a storage cartridge of the analyzer defined by a hollow interior and having a plurality of lateral flow assay devices retained in stacked relation therein.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 18, 2017
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Raymond F. Jakubowicz, Randy K. Bower, Joseph J. Dambra, Zhong Ding, James E. Robinson, Dale R. Ryan, David A. Tomasso
  • Patent number: 9671399
    Abstract: A lateral flow device for use in a mainframe or point-of-care clinical analyzer, in which the lateral flow device includes a planar support having at least one sample addition area and at least one reaction area disposed thereon. The sample addition area and reaction area are fluidly interconnected to one another and form at least one lateral fluid flow path. The lateral flow device is sized for retention within a storage cartridge of the analyzer defined by a hollow interior and having a plurality of lateral flow assay devices retained in stacked relation therein.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: June 6, 2017
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Raymond F. Jakubowicz, Randy K. Bower, Joseph J. Dambra, Zhong Ding, James E. Robinson, Dale R. Ryan, David A. Tomasso
  • Patent number: 9650626
    Abstract: A nucleic acid extractor reducing the possibility of cross contamination and a gene analysis apparatus having a nucleic acid amplification function and a detection function are provided. The nucleic acid extractor has a kit for nucleic acid extraction using silica-coated magnetic beads under the presence of a chaotropic agent, and includes a magnet cover 52 accommodating a magnet 42 in the inside and separating the magnet 42 and a reaction container 2, a wall part 53 covering the outside of the reaction container 2 in a state of accommodating at least a portion of the magnet cover 52 in the reaction container, and a upper portion 54 covering a space above the reaction container 2 in a state of accommodating at least a portion of the magnet cover 52 in the reaction container. Scattering of liquid and aerosol can be prevented and the possibility of cross contamination can be reduced.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 16, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makiko Takahashi, Kohshi Maeda, Yasunori Shoji, Muneo Maeshima
  • Patent number: 9625420
    Abstract: A sensing sensor includes a wiring board, a piezoelectric resonator, a channel forming member, a channel, an effluent channel, a capillary member, and an absorbing member. The effluent channel is disposed at a downstream side of the channel. The effluent channel is configured to discharge the sample solution inside of the channel by capillarity. The capillary member is disposed at a downstream side of the effluent channel in contact with the sample solution flowing through an inside of the effluent channel. The capillary member is configured to cause the sample solution to flow through by the capillarity. The absorbing member is disposed at a downstream side of the capillary member. The absorbing member is configured to absorb the sample solution flowing through the capillary member.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 18, 2017
    Assignee: NIHON DEMPA KOGYO CO., LTD.
    Inventor: Hiroyuki Kukita
  • Patent number: 9579830
    Abstract: An integrated fluidic chip includes a substrate defined by a lateral surface area greater than 28 square inches. The integrated fluidic chip also includes a first elastomeric layer having a mold surface and a top surface. The mold surface of the first elastomeric layer is joined to a portion of the substrate. The first elastomeric layer includes a plurality of first channels extending normally from the substrate to a first dimension inside the first elastomeric layer. The integrated fluidic chip further includes a second elastomeric layer having a mold surface and a top surface. The mold surface of the second elastomeric layer is joined to at least a portion of the top surface of the first elastomeric layer.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: February 28, 2017
    Assignee: Fluidigm Corporation
    Inventor: David S. Cohen
  • Patent number: 9535001
    Abstract: To enable accurate counting the number of cultured cells without pulling apart cell clusters even if cells are aggregated densely to form three-dimensional cell clusters. An image of cultured cells is acquired, and from this image, an image of cell clusters and an image of individual cells are separated. Based on each of the image of cell clusters and the image of individual cells, the number of cells in the cell cluster and the number of individual cells are calculated.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: January 3, 2017
    Assignee: TOYO SEIKAN GROUP HOLDINGS, LTD.
    Inventors: Masahiro Kuninori, Ryo Suenaga, Kyohei Ota
  • Patent number: 9498776
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: November 22, 2016
    Assignee: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Patent number: 9410194
    Abstract: A composition comprising a thermostable DNA polymerase; and a PCR inhibitor blocking agent, wherein the PCR inhibitor blocking agent is present in an amount effective to enhance tolerance of an assembled PCR to a PCR inhibitor.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: August 9, 2016
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christopher Trinh, Tom Xu, Yating Shi, Ferrier Le, Claire Marjoribanks
  • Patent number: 9409175
    Abstract: A mixing apparatus includes: a mixing container with a discharge port for discharging mixed liquid; a filter paper covering the discharge port to temporarily retain the liquid; a receiving unit with a waste liquid collecting portion for receiving a first liquid discharged from the discharge port through the filter paper, and a measuring portion for receiving a second liquid subjected to treatment different from treatment for the first liquid; and an operation portion for enabling selection between a first receiving state in which the waste liquid collecting portion receives the first liquid and a second receiving state in which the measuring portion receives the second liquid, and also for controlling the movement of the first liquid or the second liquid.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: August 9, 2016
    Assignee: ARKRAY, Inc.
    Inventors: Takashige Tanaka, Junichi Oka, Daisuke Matsumoto, Hitoshi Okai
  • Patent number: 9409168
    Abstract: The present invention provides a microfluidic device which is molded with a die and has a specimen inlet part. The microfluidic device has the specimen inlet part. The specimen inlet part has an inlet channel for introducing a specimen into the flow channel, wherein the inlet channel has a diameter which continuously and gradually increases as the inlet channel approaches the flow channel, or has a diameter which is constant in the vicinity of an inlet port and then continuously and gradually increases as the inlet channel approaches the flow channel.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 9, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yuichi Miyoshi, Daigo Kobayashi, Hirotomo Taniguchi
  • Patent number: 9389228
    Abstract: A lateral flow device for use in a mainframe or point-of-care clinical analyzer, in which the lateral flow device includes a planar support having at least one sample addition area and at least one reaction area disposed thereon. The sample addition area and reaction area are fluidly interconnected to one another and form at least one lateral fluid flow path. The lateral flow device is sized for retention within a storage cartridge of the analyzer defined by a hollow interior and having a plurality of lateral flow assay devices retained in stacked relation therein.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: July 12, 2016
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Raymond F. Jakubowicz, Randy K. Bower, Joseph J. Dambra, Zhong Ding, James E. Robinson, Dale R. Ryan, David A. Tomasso
  • Patent number: 9340818
    Abstract: Provided is a diagnostic apparatus. The diagnostic apparatus includes a microfluidic chip including first and second measurement parts for respectively measuring an amount of hemoglobin and an active degree of an enzyme within a blood sample. The second measurement part of the microfluidic chip analyzes the active degree of the enzyme within the blood sample using voltammetry.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: May 17, 2016
    Assignee: ACCESS BIO, INC.
    Inventors: Jaean Jung, Jae-Kyoung Choi, Won-Jung Kim, Tae-Hee Koo, Min-A Park
  • Patent number: 9128300
    Abstract: A cover for a substrate including: a body defining a cavity, for positioning over the substrate to form a reaction chamber; and a projection extending from the body to define a fluid reservoir, when the cover is fitted to the substrate, the fluid reservoir being in fluid communication with the cavity.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 8, 2015
    Assignee: LEICA BIOSYSTEMS MELBOURNE PTY LTD
    Inventors: Andrew McLellan, George Goris, Chester Henderson, Jonathan McKinlay
  • Patent number: 9089819
    Abstract: Methods and devices for isolating and sorting nanoparticles are disclosed herein. Nanopores of a desired size can be formed in silicon dioxide membranes and used as filters to separate nanoparticles. Devices are also provided herein for sorting nanoparticles with multiple filters having various sized nanopores.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 28, 2015
    Assignee: California Institute of Technology
    Inventors: Sameer Walavalkar, Aditya Rajagopal, Axel Scherer, Thomas A. Tombrello
  • Patent number: 9039997
    Abstract: The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: May 26, 2015
    Assignee: Fluidigm Corporation
    Inventors: David Cohen, Andrew May, Martin Pieprzyk, Brian Fowler, Kim Huat Lee, Jun Yan, Ming Fang Zhou, Seng Beng Ng
  • Patent number: 9039973
    Abstract: The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: May 26, 2015
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Michael W. L. Watson, Mohamed Abdelgawad, Mais Jebrail, Hao Yang, Aaron R. Wheeler
  • Publication number: 20150136604
    Abstract: This disclosure provides an integrated and automated sample-to-answer system that, starting from a sample comprising biological material, generates a genetic profile in less than two hours. In certain embodiments, the biological material is DNA and the genetic profile involves determining alleles at one or a plurality of loci (e.g., genetic loci) of a subject, for example, an STR (short tandem repeat) profile, for example as used in the CODIS system. The system can perform several operations, including (a) extraction and isolation of nucleic acid; (b) amplification of nucleotide sequences at selected loci (e.g., genetic loci); and (c) detection and analysis of amplification product. These operations can be carried out in a system that comprises several integrated modules, including an analyte preparation module; a detection and analysis module and a control module.
    Type: Application
    Filed: September 29, 2014
    Publication date: May 21, 2015
    Inventors: William D. NIELSEN, Richard J. BELCINSKI, Gregory BOGDAN, David EBERHART, Omar EL-SISSI, Stevan B. JOVANOVICH, Michael RECKNOR, Ezra VAN GELDER, David W. WYRICK
  • Patent number: 9034279
    Abstract: There is provided a bio-chip, including a fixing plate having a plurality of guide grooves formed in one surface thereof, a first substrate having a plurality of support plates inserted into the guide grooves, and a plurality of pillars protruded from one surface of the respective support plates, and having a biomaterial disposed thereon.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 19, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Woo Lee, Bo Sung Ku
  • Patent number: 9034277
    Abstract: A microfluidic cartridge having a microfluidic channel may have at least one surface that has been roughened, etched or otherwise treated to alter its surface characteristics. In some instances, a microfluidic cartridge may have a microfluidic channel that is configured to provide even distribution of a lysing reagent across the channel. The surface may be roughened or etched using a laser, an abrasive, application of a solvent or in any other suitable manner.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: May 19, 2015
    Assignee: Honeywell International Inc.
    Inventors: Alex Gu, Mark Washa
  • Patent number: 9028776
    Abstract: The invention provides structures and methods that allow polymers of any length, including nucleic acids, to be stretched into a long, linear conformation for further analysis.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: May 12, 2015
    Assignee: Toxic Report LLC
    Inventors: Robert H. Meltzer, Joshua W. Griffis
  • Patent number: 9029158
    Abstract: Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 12, 2015
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Siyang Zheng, Jeffrey Chun-Hui Lin, Harvey Kasdan