With Coagulometer For Agglutination, Clotting, Or Prothrombin, Or For Particle (e.g., Cell, Etc.) Counting, Or Volume Or Characteristics Determination Patents (Class 422/73)
  • Patent number: 10822636
    Abstract: The invention relates to the field of blood clotting diagnosis and relates to a kinetic method for determining the fibrinogen concentration in a human plasma sample according to the Clauss method.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare Diagnostics Products GmbH
    Inventors: Dirk Greis, Norbert Zander
  • Patent number: 10816559
    Abstract: Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device. In some embodiments, the blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 27, 2020
    Assignee: CA CASYSO AG
    Inventors: Michael Gorin, Robert S. Hillman, Cory Lee McCluskey, Hubert Martin Schwaiger
  • Patent number: 10788502
    Abstract: The present invention addresses a problem in which, when examining blood properties in measurements of thrombus formation capacity and platelet function or the like, measurement data is changed as a result of sedimentation of blood in reservoirs during measurement. An erythrocyte membrane ion transport inhibitor, such as disodium 4,4?-dinitrostilbene-2,2?-disulfonate (DNDS) or 4,4?-diisothiocyanatostilbene-2,2?-disulfonic acid (DIDS), is used to inhibit erythrocyte sedimentation, and accurate measurement data is obtained.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: September 29, 2020
    Assignee: FUJIMORI KOGYO CO., LTD.
    Inventors: Kazuya Hosokawa, Tomoko Wada
  • Patent number: 10775369
    Abstract: Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 15, 2020
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Samuel K. Sia
  • Patent number: 10746749
    Abstract: The present invention relates to ellagic acid formulations for performing coagulation assays that are highly stable for long term storage and reduce assay time. Particularly, aspects of the present invention are directed to a composition and method of preparing ellagic acid in a highly soluble format for use in a coagulation assay. For example, the ellagic acid may be solubilized in one or more of sodium hydroxide, methanol, a polyether compound, particularly polyethylene glycol, polyethylene oxide, or polyoxyethylene, and a cyclodextrin guest-host complex.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 18, 2020
    Assignee: Abbott Point of Care Inc.
    Inventors: Gordon Bruce Collier, Paul Willis Johns, Smitha R K Sutrala, Dan Wang, Katrina Petronilla Di Tullio
  • Patent number: 10676774
    Abstract: A method for determining the bacterial charge in a liquid or semi-liquid product, including: preparing a quantity of liquid or semi-liquid product to be analyzed; keeping that quantity of liquid or semi-liquid product at a preset measuring temperature (Tm) and deriving values (?) representing an angle of electrical impedance of the liquid or semi-liquid product at predetermined time instants; deriving an indication of the presence of a bacterial charge in the liquid or semi-liquid product as a function of the time trend of the values (?) representing the angle of the electrical impedance.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 9, 2020
    Assignee: ALI GROUP S.R.L.—CARPIGIANI
    Inventors: Andrea Cocchi, Roberto Lazzarini
  • Patent number: 10662408
    Abstract: This disclosure relates to methods for sorting sperm cells in a microfluidic chip. In particular, various steps are incorporated to align and orienting sperm in flow channels, as well as, to determining sperm orientation and measure relative DNA content for analysis and/or sorting.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2020
    Assignee: Inguran, LLC
    Inventors: Johnathan Charles Sharpe, Nemanya Sedoglavich, Blair Morad, Donald Francis Perrault, Jr.
  • Patent number: 10633645
    Abstract: The present disclosure relates to the generation of an activated platelet product in which one or more of the presence or absence of clots, the timing of clot formation (if present), and/or the mechanical strength of clots (if present) is controlled by the presence or concentration of calcium ions during the activation process. In certain embodiments, the calcium ion concentration is controlled in the presence of pulsed electric fields or a chemical activator (e.g., thrombin) as part of the activation process.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventors: Vasile Bogdan Neculaes, Andrew Soliz Torres, Steve Lambert Klopman
  • Patent number: 10583439
    Abstract: A microfluidic chip having a micro channel for processing a sample is provided. The micro channel may focus the sample by using focusing fluid and a core stream forming geometry. The core stream forming geometry may include a lateral fluid focusing component and one or more vertical fluid focusing components. A microfluidic chip may include a plurality micro channels operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 10, 2020
    Assignee: CYTONOME/ST, LLC
    Inventors: Erin Koksal, Johnathan Charles Sharpe, Kristopher Scott Buchanan, Blair D. Morad
  • Patent number: 10578605
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: March 3, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Patent number: 10544391
    Abstract: This disclosure relates to methods for sorting sperm cells in a microfluidic chip. In particular, various steps are incorporated to align and orienting sperm in flow channels, as well as, to determining sperm orientation and measure relative DNA content for analysis and/or sorting.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 28, 2020
    Assignee: Inguran, LLC
    Inventors: Johnathan Charles Sharpe, Nemanya Sedoglavich, Blair Morad, Donald Francis Perrault, Jr.
  • Patent number: 10545143
    Abstract: Silica particles having a thiol group on a surface thereof, and satisfying the following conditions (a) to (c): (a) a particle diameter is 20 to 1,000 nm; (b) a density of the thiol group on the surface of the silica particles is 0.002 to 0.2 piece/nm2; and (c) a ratio (B/A) in terms of an amount B (piece/particle) of the thiol group existing on the surface of the silica particles to an amount A of sulfur elements in the silica particles (the number of sulfur elements derived from thiol per silica particle) is 0.10 to 0.60.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: January 28, 2020
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masataka Nishida, Nobumitsu Yamanaka, Kazutomi Miyoshi, Michio Ohkubo
  • Patent number: 10513679
    Abstract: A cell detection device and a cell detection method is provided with which it is possible to efficiently acquire images of cells to be measured. Cell detection device comprises flow cell through which a measurement specimen that contains particles is caused to flow, particle detector for detecting the particles in the measurement specimen supplied to flow cell, particle sorter for sorting particles that satisfy a detection condition and other particles on the basis of the result of detection performed by particle detector, specimen supply part for supplying, to flow cell, an image-capture specimen that includes detection-condition-satisfying particles that have been sorted by particle sorter, and particle-image-capture part for capturing images of the particles in the sorted image-capture specimen supplied to flow cell.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 24, 2019
    Assignee: SYSMEX CORPORATION
    Inventors: Seiichiro Tabata, Masatoshi Yanagida
  • Patent number: 10503868
    Abstract: The disclosure relates to devices, systems and methods for image registration and annotation. The devices include computer software products for aligning whole slide digital images on a common grid and transferring annotations from one aligned image to another aligned image on the basis of matching tissue structure. The systems include computer-implemented systems such as work stations and networked computers for accomplishing the tissue-structure based image registration and cross-image annotation. The methods include processes for aligning digital images corresponding to adjacent tissue sections on a common grid based on tissue structure, and transferring annotations from one of the adjacent tissue images to another of the adjacent tissue images.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 10, 2019
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Srinivas Chukka, Anindya Sarkar, Quan Yuan
  • Patent number: 10481168
    Abstract: Provided are devices, systems and methods for evaluation of hemostasis. In some embodiments, an apparatus is disclosed comprising a housing; a plurality of test chambers located in the housing, the plurality of test chambers including chambers configured for measurements via a system that interrogates one or more viscoelastic properties of test samples in the test chambers, wherein the one or more viscoelastic properties is used to characterize dynamics of coagulation and/or fibrinolysis.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: November 19, 2019
    Assignee: HemoSonics LLC
    Inventors: Francesco Viola, William F. Walker, Gregory V. Browne, Robert S. Magyar, Bjarne Hansen, Christopher G. Denny
  • Patent number: 10458976
    Abstract: Early warning of changing health and robustness is given by tracking of ease of morphological changes in blood cells obtained by comparing intensities in a first scattered light intensity angular distribution and intensities in a second scattered light intensity angular distribution, with the light being scattered by blood cells into very narrowly forward scattered light intensity angular range.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 29, 2019
    Assignee: Satish DESHPANDE
    Inventor: Satish Deshpande
  • Patent number: 10449539
    Abstract: A fluid-containing cartridge for a tissue processing apparatus includes a body defining a plurality of discrete fluid passageways, and a plurality of fluid-containing wells that are disposed on the body, wherein each fluid passageway of the body defines a fluid path between one of the fluid-containing wells and a fluid exit port that is configured to dispense fluid onto a laboratory slide.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: October 22, 2019
    Assignee: RUSHABH INSTRUMENTS, INC.
    Inventors: Preyas Shah, Sahil Shah, Eli Endres, Joseph Lessard
  • Patent number: 10379128
    Abstract: Systems, apparatuses and methods include evaluation the clotting time or strength of clotting in the presence of various clot-affecting reagents to obtain a profile of clot analysis for determination of bleeding complications. The various reagents may be included in a single cartridge for use in a blood clotting analysis device.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 13, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Charlene Yuan, Trevor Huang
  • Patent number: 10302548
    Abstract: A fluorescent particle measuring method comprising the steps of trapping a fluorescent particle included in a fluid that is to be evaluated; identifying, by a material analyzing device, a material of a fluorescent particle that has been trapped; measuring, by a fluorescent particle measuring device, a number of fluorescent particles included in the fluid; and identifying, as the material of a fluorescent particle that has been measured by the fluorescent particle measuring device, a material identified by the material analyzing device.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 28, 2019
    Assignee: Azbil Corporation
    Inventor: Norio Hasegawa
  • Patent number: 10139334
    Abstract: A particulate measurement device includes: a nozzle which discharges liquid from an opening to form a flow of the liquid; a light emitter which emits light such that the light propagates in a region where the flow of the liquid is formed; a photodetector provided outside the region to receive the light from a partial region extending along a longitudinal direction of the region; and an air flow forming unit which forms a flow of gas along a direction in which the liquid flows, on an outer periphery of the region.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: November 27, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Akitake Tamura, Kaoru Fujihara
  • Patent number: 10100278
    Abstract: A multi-channel system for classifying particles in a mixture of particles according to one or more characteristics including a common source of electromagnetic radiation for producing a beam of electromagnetic radiation and a beam splitter for producing multiple beams of electromagnetic radiation for directing multiple beams of electromagnetic radiation to each interrogation location associated with each flow channel of the multi-channel system.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 16, 2018
    Assignee: Inguran, LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Patent number: 10087440
    Abstract: An integrated “lab-on-a-chip” microfluidic device performs nucleic acid sample preparation and diagnostic analysis from test samples containing cells and/or particles. The device analyzes DNA or RNA targets, or both, from a common test sample. Dried and/or liquid reagents necessary for nucleic acid sample preparation and analysis are contained on the device, such that the device only requires addition of test sample. Clay mineral and alkaline buffer reagents are employed for overcoming the problems of nucleic acid degradation and contamination during sample preparation. The device may include a composite filter to separate plasma or serum from other blood constituents when the test sample is a blood product. The microfluidic device utilizes a plurality of microfluidic channels, inlets, valves, membranes, pumps, and other elements arranged in various configurations to manipulate the flow of the liquid sample, in particular, in order to prepare nucleic acids and perform further diagnostic analysis.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: October 2, 2018
    Assignee: Micronics, Inc.
    Inventors: Alan K. Lofquist, C. Frederick Battrell, Heather K. Bouzek
  • Patent number: 10036697
    Abstract: Disclosed is a sheath delivery system that uses a continuous flow of sheath fluid into a pressurized internal reservoir that substantially matches the outflow of sheath fluid through the nozzle of a flow cytometer. A substantially constant level of the sheath fluid is maintained. If the sheath fluid level falls below a desired level, or goes above a desired level, a dampened control system is used to reach the desired level. In addition, air pressure in the pressurized internal container is controlled so that an external sheath container can be removed and refilled with additional sheath fluid without stopping the sheath delivery system 100. Differences in pressure are detected by a droplet camera, which measures the droplet breakoff point to determine the pressure of the sheath fluid in the nozzle.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: July 31, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Daniel Nelson Fox, Nathan Michael Gaskill-Fox
  • Patent number: 9987631
    Abstract: A particle processing device includes a chamber and at least one capturing structure. The chamber is connected to a first port and a second port to provide a space between the first and second ports for flowing of a fluid having a particle. The capturing structure is provided in the chamber to form a fluidic channel, wherein the fluidic channel has a first opening and a second opening and a capturing region is formed between the first and second openings such that the capturing region has a changeable sectional shape for capturing the particle in the fluid flowing from the first port to the second port.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 5, 2018
    Assignee: NEXVIVO CO., LTD.
    Inventors: Young-Ho Cho, Il Doh, Hwan-Il Yoo
  • Patent number: 9983220
    Abstract: The present invention relates to an apparatus and a method for testing a function and a drug response of a platelet based on a microfluidic chip. The apparatus for test comprises a measuring device containing a blood sample and measuring aggregation and adhesion of a platelet generated by flow of the blood sample; and a fluid driving device which is connected to the measuring device and generates a oscillating shear flow of the blood sample. Therefore, activation of factors such as a platelet and von Willebrand factor (vWF) etc. can be activated uniformly and completely, and a repeatability of the platelet aggregation can be increased.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: May 29, 2018
    Assignee: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Se Hyun Shin, Chae Seung Lim
  • Patent number: 9977039
    Abstract: Provided are devices, systems and methods for evaluation of hemostasis. Also provided are sound focusing assemblies.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: May 22, 2018
    Assignee: HemoSonics LLC
    Inventors: Francesco Viola, William F. Walker, Gregory V. Browne, Robert S. Magyar, Bjarne Hansen, Christopher G. Denny
  • Patent number: 9975118
    Abstract: A cell study device, comprising, a base layer, a planar conduit defining layer, including a conduit cut out of the layer; and a planar cover layer which defines a capillary flow channel in said conduit layer, said conduit layer and said cover layer acting as side walls for said capillary flow channel, wherein said layers are formed of materials that do not interfere with cell behavior over a period of at least 5 hours when loaded with aqueous solution.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: May 22, 2018
    Assignee: Seng Enterprises Ltd.
    Inventors: Mordechai Deutsch, Assaf Deutsch
  • Patent number: 9952076
    Abstract: Apparatus and methods are described for automatically performing set-up steps for flow cytometry operations. The invention provides for the spatial determination of a flow stream and the subsequent automatic alignment of analysis devices and/or collection vessels. The automatic determination of flow stream properties provides for the automatic configuration flow cytometer parameters.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: April 24, 2018
    Assignee: Becton, Dickinson and Company
    Inventors: Pierce O. Norton, Vladimir Azersky
  • Patent number: 9849456
    Abstract: Disclosed herein is a microfluidic device comprising, at least one sample inlet for receiving biological cells in a biological fluid sample; at least one sheath flow inlet for receiving a sheath fluid; at least one curvilinear channel configured to provide the biological fluid sample substantially in an outer flow and the sheath fluid in substantially an inner separated flow; a plurality of cell traps at the periphery of the curvilinear channel, each trap configured to admit a single cell having a targeted size range from the outer flow.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: December 26, 2017
    Assignee: Clearbridge Mfluidics Pte. Ltd.
    Inventor: Swee Jin Tan
  • Patent number: 9816983
    Abstract: A sample analyzer comprising: a sample preparing section for preparing first and second measurement sample including reagent and sample; a first detector for detecting a predetermined component in the first measurement sample prepared by the sample preparing section; a second detector for detecting the predetermined component in the second measurement sample prepared by the sample preparing section; and a controller configured for performing operations, comprising: (a) controlling the first detector to detect the predetermined component in the first measurement sample prepared by the sample preparing section; (b) determining the reliability of the result detected by the first detector; (c) controlling the sample preparing section to prepare the second measurement sample from the same sample when the result has been determined to be unreliable; and (d) controlling the second detector to detect the predetermined component in the second measurement sample, is disclosed.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 14, 2017
    Assignee: SYSMEX CORPORATION
    Inventors: Daigo Fukuma, Takaaki Nagai, Masaharu Shibata
  • Patent number: 9753024
    Abstract: An apparatus for determining blood clotting capacity comprises an actuator to cyclically move a member within a sample of blood received in a well in a tray and one of a deflection sensor and a position sensor to determine the position of the wetted member upon being acted upon by the actuator. The theoretical position of the wetted member, as determined using a known actuator force and wetted member physical data, is compared to the sensed deflection or position of the wetted member, and the resistance to movement of the wetted member caused by the blood is determined and correlated to a clotting capacity.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 5, 2017
    Assignee: Board of Regents of the University of Texas Systems
    Inventors: Brijesh S. Gill, Kevin Aroom, Charles Cox, Jr.
  • Patent number: 9638698
    Abstract: An analyte measurement system is provided having sensors with embossed test chamber channels. In one embodiment, the sensors are elongate test strips for in vitro testing, each test strip having a substrate, at least one electrode, an embossed channel in the electrode, and lidding tape covering at least a portion of the embossed channel. Methods of manufacture are also disclosed for filling the sensor channels with reagent, and for trimming the ends of the sensors to eliminate the need for a calibration code during use of the sensors with a meter.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 2, 2017
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adrian Petyt, Simon A. Hector
  • Patent number: 9599601
    Abstract: A sample testing cartridge is usable to perform a variety of tests on a visco-elastic sample, such hemostasis testing on a whole blood or blood component sample. The cartridge includes a sample processing portion that is in fluid communication with a sample retention structure. A suspension, such as a beam, arm, cantilever or similar structure supports or suspends the sample retention portion relative to the sample processing portion in a unitary structure. In this manner, the sample retention portion may be placed into dynamic excitation responsive to excitation of the cartridge and correspondingly dynamic, resonant excitation of the sample contained within the sample retention portion, while the sample processing portion remains fixed. Observation of the excited sample yields data indicative of hemostasis. The data may correspond to hemostasis parameters such as time to initial clot formation, rate of clot formation, maximum clot strength and degree of clot lysis.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 21, 2017
    Assignee: CORAMED TECHNOLOGIES LLC
    Inventors: Peter Delmenico, Carlos G. Lopez-Espina, Gabriel Raviv
  • Patent number: 9588102
    Abstract: Embodiments of the present invention encompass automated systems and methods for analyzing white blood cell parameters in an individual based on a biological sample obtained from blood of the individual. Exemplary techniques involve correlating aspects of direct current (DC) impedance, radiofrequency (RF) conductivity, and/or light measurement data obtained from the biological sample with an evaluation of white blood cell conditions in the individual.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: March 7, 2017
    Assignee: Beckman Coulter, Inc.
    Inventors: Patricio Vidal, Christophe Godefroy, Phaisit Chewputtanagul, Jiuliu Lu
  • Patent number: 9535065
    Abstract: The present disclosure provides cytometric methods for the detection of rare target cells in a sample. In certain aspects, the methods and compositions may facilitate the detection of rare target cells, such as circulating tumor cells (CTCs), in a biological sample such as blood. Aspects of the methods include contacting the sample with first and second binding members that specifically bind to a marker of the rare target cell, and cytometrically assaying the sample for the presence of cells comprising bound first and second binding members to detect the rare target cell in the sample. Also provided are systems, compositions, and kits for practicing the subject methods.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: January 3, 2017
    Assignee: Becton, Dickinson and Company
    Inventors: Hrair Kirakossian, Edward Goldberg, Diether Recktenwald
  • Patent number: 9517474
    Abstract: Embodiments of the present disclosure provide for devices, methods for separating particles, and the like. In general, embodiments of the present disclosure include non-uniform magnetic field-assisted processes and devices for the separation of particles (e.g., cells) within a magnetic fluid. Under non-uniform magnetic fields, particles such as cells can experience the generated magnetic field direction to produce a magnetic buoyancy force, analogous to buoyancy force, as magnitude of the force is proportional to the volume of cell. This force can be used to spatially separate cells of different sizes. In some embodiments, devices for separating particles are provided having a magnetic device configured to direct a non-uniform magnetic force onto the magnetic fluid and the particles; and a plurality of outlets, wherein the non-uniform magnetic force causes the types of particles to be separated and flow into different outlets.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 13, 2016
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Leidong Mao, Taotao Zhu, Mark A. Eiteman
  • Patent number: 9494604
    Abstract: A method of characterizing the coagulation or sedimentation dynamics of a fluid such as whole blood, a blood fraction, or blood plasma is provided. The method includes illuminating a sample of the fluid with a beam of coherent light; acquiring a time series of images of a speckle pattern generated by interaction between the sample and the spatially coherent light beam; and processing the time series of images. The processing step includes calculating a function representative of the variation in the speckle pattern between two or more images of the series. The invention also provides a device for implementing such a method.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: November 15, 2016
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Patrick Pouteau, Magalie Faivre, Philippe Peltie, Anne Planat-Chretien
  • Patent number: 9494525
    Abstract: Provided is technology for blood clotting reactions capable of analyzing a blood clotting reaction with a high degree of precision, by precisely detecting and removing noise, regardless of the location where the noise is generated in the light intensity data. This automated analyzer approximates, with an approximation curve, time series data for transmitted light intensity or scattered light intensity of light emitted onto a sample, and, in this process, removes abnormal data points that deviate from the approximation curve (see FIG. 2).
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: November 15, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shinji Tarumi, Chie Yabutani, Akihisa Makino, Chihiro Manri, Satoshi Mitsuyama
  • Patent number: 9447467
    Abstract: The present invention relates to a method of enriching fetal nuclei from a sample. Enriched fetal nuclei can be used in a variety of procedures including, detection of a trait of interest such as a disease trait, or a genetic predisposition thereto, gender typing and parentage testing.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 20, 2016
    Assignee: GENETIC TECHNOLOGIES LIMITED
    Inventors: Richard Allman, Debbie Mantzaris, Eduardo Vom, Craig Matthew Lewis
  • Patent number: 9435725
    Abstract: A device for measuring permeability of a material sample, the device comprising: an input tank (1) configured to store fluid and to supply the fluid to a sample tank (2) positioned below the input tank (1) and configured to hold the material sample, such as to allow the fluid from the input tank (1) to permeate through the material sample; a receptacle (25) positioned under the sample tank (2) to collect drops of fluid permeated through the material sample; and a device (3) for measuring the mass of the drops collected in the receptacle (25) and coupled with a controlling and monitoring device (11) configured to store data on measured mass and measurement times.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 6, 2016
    Assignee: AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA STASZICA W KRAKOWIE
    Inventors: Adam Pilat, Anetta Undas, Michal Zabczyk
  • Patent number: 9423393
    Abstract: An analytical test cartridge is provided. The analytical test cartridge can be used for medical analyses of liquid samples removed from a patient, for example blood. The analytical test cartridge is configured to provide for titration experiments. An example of a titration experiment that can be performed with the arrangement, is titration of heparin with protamine. Methods of assembly and use are provided.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: August 23, 2016
    Assignee: International Technidyne Corporation
    Inventor: Kee Van Sin
  • Patent number: 9387476
    Abstract: A flow cell including inlet and outlet ports in fluid communication with each other through a flow channel that extends therebetween. The flow channel includes a diffuser region and a field region that is located downstream from the diffuser region. The field region of the flow channel directs fluid along reaction sites where desired reactions occur. The fluid flows through the diffuser region in a first flow direction and through the field region in a second flow direction. The first and second flow directions being substantially perpendicular.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: July 12, 2016
    Assignee: Illumina, Inc.
    Inventors: Helmy A. Eltoukhy, Tarun Khurana, Behnam Javanmardi, Poorya Sabounchi, Majid Aghababazadeh
  • Patent number: 9389175
    Abstract: Device and process to approximate somatic cell count (SCC) of untreated mammalian milk by the two variable equation SCC=f (FSL, FAT) with a forward scattered light factor (FSL) being obtained by detecting light scattered by the milk into an angular range within, and less than, the angular range 0.0 to 0.5 degrees away from the central axis of incident light, with a proxy (FAT) for the fat content of the milk, which may be obtained by detecting light attenuation of the milk sample, and with the function (f) being obtained by calibration of the device using reference milk samples.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: July 12, 2016
    Assignee: DESHPANDE, Satish
    Inventor: Satish Deshpande
  • Patent number: 9383298
    Abstract: A well plate (1) for holding samples of a bodily fluid during analysis thereof, typically in an analytical apparatus, includes a plate (2) having a plurality of first wells (3) extending downwardly therefrom for holding a sample during optical analysis of the sample, and a plurality of second wells (4) for holding samples during mechanical analysis of the samples. A plurality of holding wells (8) are provided for initially receiving and holding samples of the bodily fluid to be analysed so that samples of relatively accurate size can be pipetted from the holding wells (8) to the first and second wells (3,4).
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 5, 2016
    Assignee: Tcoag Ireland Limited
    Inventors: Ronan Patrick O'Caoimh, James Walsh, Brendan Kevin Farrell, Rory Peter Nealon, Josef Georg Hubert Wiehe
  • Patent number: 9372185
    Abstract: A MEMS-based system and a method are described for separating a target particle from the remainder of a fluid stream. The system makes use of a unique, microfabricated movable structure formed on a substrate, which moves in a rotary fashion about one or more fixed points, which are all located on one side of the axis of motion. The movable structure is actuated by a separate force-generating apparatus, which is entirely separate from the movable structure formed on its substrate. This allows the movable structure to be entirely submerged in the sample fluid.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: June 21, 2016
    Assignees: Owl Biomedical, Inc., Innovative Micro Technology
    Inventors: John S Foster, Daryl W. Grummitt, Jaquelin K. Spong, Kimberley L. Turner, John C. Harley
  • Patent number: 9359677
    Abstract: A method for inhibiting corrosion comprises the steps of providing a fluid; adding a corrosion inhibitor comprising at least one amphiphilic chemical to the fluid; and monitoring micelles presence in the fluid. A method for determining the amount of corrosion inhibitor that is sufficient to inhibit corrosion, a method for monitoring the activity of an amphiphilic chemical and a system for inhibiting corrosion in a conduit are also disclosed.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: June 7, 2016
    Assignee: Lux Assure Limited
    Inventors: Cameron Mackenzie, Vjera Magdalenic, Artin Moussavi, Michael Joosten, Mohsen Achour, David J. Blumer
  • Patent number: 9354243
    Abstract: In some embodiments, the invention provides methods for detecting fibrinolysis or hyperfibrinolysis in a blood sample from a patient. The method includes subjecting a first portion of a blood sample comprising reduced platelet function to viscoelastic analysis in the absence of an inhibitor of fibrinolysis to obtain a coagulation characteristic of the first portion at a time point; and subjecting a second portion of the blood sample comprising reduced platelet function to viscoelastic analysis in the presence of an inhibitor of fibrinolysis to obtain a coagulation characteristic of the second portion at the time point; wherein a difference between the coagulation characteristic of the first portion and the coagulation characteristic of the second portion indicates fibrinolysis or hyperfibrinolysis in the blood sample.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 31, 2016
    Assignees: Haemonetics Corporation, The Regents of the University of Colorado, a body corporate
    Inventors: Michael P. Chapman, Ernest E. Moore, Katherine M. Norem
  • Patent number: 9297816
    Abstract: In one embodiment, a device for measuring blood coagulation includes a substrate having a surface, an optical waveguide provided on the surface of the substrate, the waveguide having a tip, and means for spatially separating objects from the tip of the waveguide.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 29, 2016
    Assignee: University of South Florida
    Inventor: Anna Pyayt
  • Patent number: 9285311
    Abstract: An optical system for performing scattering and absorbance assays in clinical diagnostics comprises a light source for emitting collimated light parallel to an optical axis in an optical path, a sample holding unit comprising at least one sample holding position located in the optical path and an optical detector for measuring light transmitted through a sample located in a sample holding position. The optical system further comprises an adjustable light angle selector adjusted to prevent light transmitted through the sample and diverging from the optical axis with an angle greater than a certain value from reaching the detector when a scattering assay is performed, and wherein the light angle selector is adjusted to allow light transmitted through the sample and diverging from the optical axis with an angle smaller than a certain value to reach the detector when an absorbance assay is performed.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 15, 2016
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Rik Harbers
  • Patent number: 9272280
    Abstract: Provided are devices, systems and methods for evaluation of hemostasis. Also provided are sound focusing assemblies.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: March 1, 2016
    Assignee: HemoSonics LLC
    Inventors: Francesco Viola, William F. Walker, Gregory V. Browne, Robert S. Magyar, Bjarne Hansen, Christopher G. Denny, Karen Platt