Automated System With Sample Fluid Pressure Transport Means Patents (Class 422/81)
  • Patent number: 6790652
    Abstract: A method and apparatus for screening an array of test compounds for bioactivity by contacting an array of test compounds with a detector layer capable of detecting bioactivity, and detecting a detector layer response. The detector layer is comprised of physiologically viable cells. The method and apparatus allow a large number of test compounds to be simultaneously assayed in parallel without the need for complex fluidic devices.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: September 14, 2004
    Assignee: BioImage A/S
    Inventors: Bernard Robert Terry, Kurt Marshall Scudder, Per Olaf Gunnar Arkhammer, Ole Thastrup
  • Patent number: 6787106
    Abstract: An analysis device, preferably in the form of a floating buoy, is disclosed for the analysis of fluids, such as waste water. The device has a main body portion and a removable cartridge containing consumable ingredients for use in analysis.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: September 7, 2004
    Assignee: ABB Automation Limited
    Inventors: Sean Crispian Keeping, Dieter Binz, Albrecht Vogel
  • Patent number: 6786235
    Abstract: This invention relates to an apparatus comprising a switchable, 3-way valve device that delivers a constant flow rate stream of solution mixture to a chemical analysis instrument. The dilution valve is capable of mixing two input streams of solutions, at any dilution ratio from 0% to 100%, into a single output stream solution mixture. The dilution valve contains a switchable gate inside the 3-way T-junction, and the switching of this gate is controlled by pulsed width modulation of the power supply. This invention also relates to methods involved in the delivery of solution mixtures to chemical analysis instruments, including on-line calibration from a single standard solution, on-line dilution from a single sample solution, and on-line standard addition from a single standard solution and a single sample solution.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: September 7, 2004
    Inventor: Dong C. Liang
  • Publication number: 20040168529
    Abstract: Methods and systems for determining a dissolution profile of a sample material, and for solubilization screening of a library defined by an array comprising multiple sample materials are disclosed. The methods and systems are particularly advantageous for sampling and evaluation of very small samples, and can be advantageously applied in connection with evaluation of drug candidates.
    Type: Application
    Filed: April 14, 2003
    Publication date: September 2, 2004
    Inventors: Eric D. Carlson, Miroslav Petro, Son Hoai Nguyen
  • Patent number: 6773673
    Abstract: A radioactive material such as an unstable isotopic gas is provided to a receiving chamber (1) directly from a source to form a purified or enriched bubble. The bubble is passed to a fluid handling set for preparation of the reagent or other delivery system. In an exemplary embodiment trace amounts of nitrogen-13 are concentrated in a receiving chamber and passed into a small bubble of carrier gas. The carrier gas is then delivered into a fluid handling set. The fluid handling set connects to a pressure syringe (50) and a passive syringe (60), and further includes a plurality of flushable valves (22-27) interconnected as a closed unit by tubing (21) to form a switchable or finite state flow network in which the pressure syringe may back flush the tubing, mix the isotope in a delivery liquid, and transfer the mixed liquid to an output for diagnostic imaging or other use.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: August 10, 2004
    Assignee: The General Hospital Corporation
    Inventors: Dominick Layfield, José Venegas
  • Patent number: 6770482
    Abstract: In one exemplary embodiment, the present invention is directed to a method that comprises providing a reaction substrate having a plurality of substrate reservoirs adapted to receive a reactant system at least partially embodied in a liquid. A thermal unit maintains the reactant system at a first temperature. A head plate is disposed adjacent to the reaction substrate to form a sealed and pressurized headspace above the substrate reservoirs. The head plate is maintained at a second temperature higher than the first temperature. A second reactant may be introduced as a gas into the headspace above the plurality of substrate reservoirs.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: August 3, 2004
    Assignee: General Electric
    Inventors: William Patrick Flanagan, Roger Neal Johnson, William Guy Morris
  • Patent number: 6764648
    Abstract: A substrate with a plurality of microchannels is movably deployed with other movable objects that will load sample into the microchannels, stimulate molecular migration, read the results of the migration, remove and replace the substrate, and prepare for a new run. The other objects include a gripper for engaging and moving the substrate, an electrode array of fine wires suitable for fitting into the microchannels for electromigration, and a scanning detector for reading migration results. A sequence of automatic operations is established so that one substrate after another may be moved into position, loaded with sample, stimulated for molecular migration, read with a beam, and then removed and replaced with a fresh substrate.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: July 20, 2004
    Assignee: Amersham Biosciences (SV) Corp.
    Inventors: David J. Roach, Robert T. Loder, Jr., Thomas M. Armstrong, Dennis W. Harris, Stevan B. Jovanovich, Richard F. Johnston
  • Patent number: 6740529
    Abstract: A diluting solution moving unit moves a diluting solution in forward and reverse directions in a flow path. A probe is connected to the flow path through a T-junction and sucks a sample. A sample syringe is connected to the flow path through a T-junction. A control unit performs controlling so that the diluting solution moving unit is driven to move the diluting solution in the flow path and the sample syringe is driven to make the probe suck the sample into the flow path to thereby dilute the sucked sample with the diluting solution and further driven so that the sample solution diluted with the diluting solution is delivered from the probe into any one of reaction containers. There can be provided a dispensing apparatus in which dilution of the sample is made in a short time and in which the accuracy of the diluting rate is improved.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: May 25, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Katsuaki Takahashi, Hajime Yamazaki
  • Patent number: 6737022
    Abstract: A system for separating an aqueous stream of mixed polynucleotides into a series of length-based polynucleotide fractions and collecting one or more of the length-based polynucleotide fractions into separate containers. The system comprises a separation column containing separation media for separating an aqueous stream of mixed polynucleotides into a series of length-based polynucleotide fractions; a container including one or more single-sample containers; an ejection chamber having a separated sample inlet for receiving the length-based polynucleotide fractions, a waste outlet for discharging uncollected sample, and a capillary-sized fraction outlet positioned to discharge a selected length-based polynucleotide fraction into a single-sample container. The system also includes means for effecting discharge of a selected length-based polynucleotide fraction into the separate container.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: May 18, 2004
    Assignee: Transgenomic, Inc.
    Inventors: John E. Sutton, Donn H. Vanden Bosch
  • Patent number: 6733730
    Abstract: What is disclosed pertains to improvement in the performance of microchannel devices by providing turns, wyes, tees, and other junctions that produce little dispersion of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. The low dispersion features are particularly suited for microfluidic devices and systems using either electromotive force, pressure, or combinations thereof as the principle of fluid transport. Such microfluidic devices and systems are useful for separation of components, sample transport, reaction, mixing, dilution or synthesis, or combinations thereof.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: May 11, 2004
    Assignee: Sandia Corporation
    Inventors: Stewart K. Griffiths, Robert H. Nilson
  • Patent number: 6730206
    Abstract: An improved microfluidics device and system for sample loading and injection are disclosed. The device includes three main channels—a separation channel, supply channel, and drain channel—for use in loading and injecting a sample from the supply channel. Pairs of peripheral channels connecting the supply channel with upstream and downstream regions of the separation channel, and connecting supply and drain channels to a downstream region of the separation channel promote fluid flow and/or ion in the channel network to effect (i) sample shaping in the separation channel, when an electrokinetic or pneumatic force is applied between the supply and drain channels, and (ii) sample pullback in the supply and drain channels, when an electrokinetic or pneumatic force is applied between opposite ends of the separation channel. The system incorporates the device, electrodes that interact with reservoirs in the device, and a control unit.
    Type: Grant
    Filed: March 17, 2001
    Date of Patent: May 4, 2004
    Assignee: Aclara Biosciences, Inc.
    Inventors: Antonio J. Ricco, Travis D. Boone
  • Publication number: 20040077102
    Abstract: This invention is to a microreactor type of reaction and analysis system. The system includes a chemical reaction chamber having internal conduits through which a chemical reactant, such as a reaction gas, can be fed. The conduits for transporting fluids such as reactant, carrier gas and balance gas are in appropriate communication such that the amount of reactant going directly to a catalyst located in the reaction chamber can be optimally controlled. The system is highly useful for studying the kinetics of a chemical reaction.
    Type: Application
    Filed: October 18, 2002
    Publication date: April 22, 2004
    Inventors: Nicolas P. Coute, John K. Pierce
  • Publication number: 20040062685
    Abstract: A flow cell and flow cytometer in which a nozzle at the end of a flow channel is disposed on a removable substrate held at a registered location on a flow cell. Other elements including illumination optics, light collection optics, and the flow cell may then be positioned at fixed locations and would not require subsequent periodic adjustment. The registered location for positioning the nozzle allows removal and replacement of the nozzle key with the nozzle subsequently positioned in the identical location.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Inventors: Pierce O. Norton, David R. Vrane, Shervin Javadi
  • Patent number: 6713023
    Abstract: Devices and methods are disclosed for synthesizing compounds on the surface of supports. The devices are flow devices, which include a housing comprising a housing chamber. The housing has an opening adapted for insertion of a support into the housing chamber. A sealing member is movably mounted in the housing chamber and adapted to engage the support to form a reagent chamber between a surface of the support and a surface of the sealing member. A mechanism is included for moving the sealing member within the housing chamber. The device has both an inlet and an outlet, which are both in fluid communication with the reagent chamber. In the methods of the invention a support is placed into a chamber of a device such as described above. The mechanism adapted to engage the support on a surface opposite the surface engaged by the sealing member is activated to urge the support toward the sealing member.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 30, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Jay K. Bass, John F. McEntee, Tim J. Lazaruk, Maryam Mobed-Miremadi
  • Publication number: 20040058450
    Abstract: In a method for sampling a continuous liquid flow, the liquid flow is supplied to a surface along an input flow path. The liquid flow is sampled by forming a sample droplet from a portion of the liquid flow. The sample droplet is moved along an analysis flow path to a processing area of the surface, where the sample droplet is processed. Discrete sample droplets are formed and moved using an electrowetting technique. A binary mixing apparatus and method are also provided. The apparatus comprises an array of electrodes, an electronic controller communicating with the electrodes, a sample droplet supply area communicating with the array, and an additive droplet supply area communicating with the array. The electronic controller alternately energizes and de-energizes selected electrodes to carry out droplet-to-droplet binary mixing operations to obtain one or more droplets having a target mixing ratio.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 25, 2004
    Inventors: Vamsee K. Pamula, Michael G. Pollack, Philip Y. Paik, Hong Ren, Richard B. Fair
  • Publication number: 20040053415
    Abstract: Apparatus for determining the ozone decay rate constant for an ozone-in-water solution. The apparatus includes a single ozone residual sensor, to which a sample flow is directed to measure the initial ozone residual concentration, and to which a delayed flow stream of the same solution is directed to measure the ozone residual concentration after passage of a particular time interval. The time delay of the flow stream is achieved by passing the flow stream through a chamber that includes a tubing coil through which the sample stream flows, after which the ozone residual concentration of the delayed sample stream is measured by the same ozone residual sensor. A portion of the incoming flow stream is diverted to flow through the chamber to maintain the delayed sample stream at substantially the same temperature as the incoming flow stream.
    Type: Application
    Filed: September 14, 2002
    Publication date: March 18, 2004
    Inventor: Christopher R. Schulz
  • Patent number: 6706527
    Abstract: An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 16, 2004
    Assignee: Battelle Memorial Institute
    Inventor: James E. Szecsody
  • Publication number: 20040043506
    Abstract: Disclosed herein is an apparatus that includes a body structure having a plurality of microfluidic channels fabricated therein, the plurality of microfluidic channels comprising a center channel and focusing channels in fluid communication with the center channel via a plurality of cascaded junctions. Also disclosed herein is a method that includes the step of providing a body structure having a plurality of microfluidic channels fabricated therein, the plurality of microfluidic channels comprising a center channel and focusing channels in fluid communication with the center channel via a plurality of cascaded junctions. The method also includes the steps of providing a flow of the sample fluid within the center channel, providing flows of sheath fluid in the focusing channels, and controlling or focusing the flow of the sample fluid by adjusting the rate at which the sheath fluid flows through the focusing channels and cascaded junctions, and into the center channel.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Horst Haussecker, Narayan Sundararajan
  • Patent number: 6692708
    Abstract: An apparatus for parallel processing of reaction mixtures, including a reactor block including reaction chambers for containing reaction mixtures under pressure, the reactor block further including a first sidewall, a second sidewall, and a first plurality of fluid flow paths providing fluid communication with the first sidewall and respective reaction chambers and the second sidewall and respective reaction chambers; a stirring system including a base plate defining a second plurality of flow paths, wherein respective flow paths of said second plurality of flow paths are in fluid communication with respective reaction chambers and respective fluid flow paths of said first plurality of flow paths, and the base plate also supports a plurality of stirring blade assemblies for mixing the reaction mixtures; interchangeable manifolds supported by the first sidewall and the second sidewall, the interchangeable manifolds defining a plurality of manifold inlet/outlet ports, wherein respective inlet/outlet ports of sa
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: February 17, 2004
    Assignee: Symyx Technologies, Inc.
    Inventor: William H. Chandler, Jr.
  • Patent number: 6691047
    Abstract: A method of calibrating a pump that is subject to variations in flow rate based on inlet pressure variations, such as a peristaltic pump found in medical instruments. The pressure at the inlet of the pump is measured and recorded during prior uses of the pump. A mean or average inlet pressure is derived from the measurements, either directly or indirectly from the measurements of using regression techniques, as a way of forecasting the inlet pressure during the next use of the pump. The pump is then calibrated at an inlet pressure that is set or adjusted to match the mean or average inlet pressure. The calibration is thus accurately performed for the pump, and is independent of the absolute accuracy of the inlet pressure sensor.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: February 10, 2004
    Assignee: Aksys, Ltd.
    Inventor: Chris N. Fredericks
  • Patent number: 6689323
    Abstract: Liquids are transferred from a plurality of wells or depots having openings arranged in a selected format to one or more receptacles, by displacing liquid contained in each well so that a convex meniscus swells from the opening, and contacting the receptacle with the swollen meniscus to draw a portion of the liquid into the receptacle. According to the invention, the liquid transfer is effected directly from the depot to the corresponding receptacle without contact between depots and receptacles, and without interposition of any transfer device between depots and receptacles.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: February 10, 2004
    Assignee: Agilent Technologies
    Inventors: William D. Fisher, Richard P. Tella, Michael P. Caren
  • Publication number: 20040002166
    Abstract: Systems and methods are disclosed that use a nebulizer for remote aerosol generation and then transport the aerosol by way of, for example, an argon gas stream through tubing. By transporting the chemical to be analyzed in aerosol form, transport time is reduced from about 30 minutes to less than one minute, using a relatively small amount of sample, and enabling the accurate, remote analysis of a variety of chemicals, including relatively high pH chemicals.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Inventor: Daniel R. Wiederin
  • Publication number: 20030236591
    Abstract: A process and system for purifying an impure gas to produce a purified gas in a gas purification system and protecting the system from damage by a) passing a portion of a first gas stream into a reactor vessel, which exits as a second purified gas stream; b) combining a portion of the second purified gas stream with another portion of the first gas stream to form a combined gas stream; and c) passing the combined gas stream into a sensing device to regulate the flow of the first and second gas streams into the reactor vessel.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 25, 2003
    Inventors: John Fredric Billingham, Jerry Michael Mahl
  • Publication number: 20030235919
    Abstract: A multi-analyte diagnostic system for use with a computer. The diagnostic system includes a flow analyzer including a co-planar light source-optical detector array, the flow analyzer being communicatable with the computer. The diagnostic system also includes a memory medium readable by the computer and storing computer instructions. The instructions include the following steps. A biological sample is run through the flow analyzer. The identity and quantity of at least one analyte of interest in the biological fluid is determined substantially simultaneously to the sample-running step.
    Type: Application
    Filed: May 21, 2003
    Publication date: December 25, 2003
    Inventor: Van S. Chandler
  • Publication number: 20030235926
    Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 25, 2003
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen
  • Publication number: 20030232449
    Abstract: A device and a method for diluting a sample are disclosed. A sample is first diluted by a porous tube type diluter configuration. Then the diluted flow is further diluted by a ejector type diluter configuration. Further a heat exchange based on serrature heat exchange elements inside said porous tube type diluter configuration is disclosed.
    Type: Application
    Filed: June 18, 2002
    Publication date: December 18, 2003
    Inventors: Pirita Mikkanen, Tuomas Koskinen
  • Patent number: 6663833
    Abstract: An assay device for the detection of analyte in a sample, methods and immunoassay formats for performing an assay with or without the device, and methods for manufacturing the device are provided. The device is a continuous liquid flow channel having a proximal and a distal end, with a detection membrane in fluid communication with the distal end of the flow channel. Interspersed between the assay buffer and detection membrane, and continuous with the liquid flow channel, are a sample delivery means, one or more reservoirs containing the reagents necessary for conducting the assay, and, optionally, mixing or incubation reservoirs for combining the sample and reagents. The geometry of the liquid flow channel regulates the flow rate of the liquids through the channel, thereby controlling incubation, mixing and reaction time. The preferred detection membrane is an immunochromatographic test strip containing immobilized reagents.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: December 16, 2003
    Assignees: Strategic Diagnostics Inc., Bayer AG
    Inventors: James W. Stave, George B. Teaney, III, Werner Kroll
  • Patent number: 6660527
    Abstract: A fluid transfer and mixing collection assembly includes a base and a test media, an inlet check valve, and an outlet check valve carried by the base. A bladder containing a fluid and a flexible member are carried by the base between the check valves and are separated by a membrane. The flexible member is depressable to cause a pointed member extending from the flexible member to rupture the membrane, releasable to draw a sample fluid into an interior of the flexible member through the inlet check valve to mix with the fluid from the bladder, and depressable again to pump the mixed fluids out of the interior of the flexible member through the outlet check valve and be transferred to the test media.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 9, 2003
    Inventor: David Karl Stroup
  • Publication number: 20030222007
    Abstract: The present invention relates to an autosampler device useful in high pressure liquid chromatography (HPLC), and more particularly to a device useful for the automated introduction of small sample volumes into a HPLC system. Methods of analyzing low abundant protein samples using such a device are also included.
    Type: Application
    Filed: April 11, 2003
    Publication date: December 4, 2003
    Inventors: Ming Gu, Wenjeng Li, John W. Allen
  • Patent number: 6656428
    Abstract: The present invention relates to cost effective analytical instruments for determining the presence or amount of an analyte in a sample. The analytical instruments utilize an assay cartridge which has a sample receiving port and a rotatable carousel containing a plurality of reagent wells. Each reagent well includes a piston element for delivery of reagent to a test surface. The instrument is capable of indexing the assay cartridge to deliver sample and reagents to a test surface in a predetermined and flexibile manner, thus providing an assay protocol which is specific to the type of sample under analysis. The invention also relates to components, features, disposables, reagent delivery systems, accessories, and methods for using such instruments. Appropriate applications include infectious disease testing, cancer detection and monitoring, therapeutic drug level monitoring, allergy testing, environmental testing, food testing, diagnostic testing of human and veterinary samples, and off-line process testing.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: December 2, 2003
    Assignee: Thermo Biostar, Inc.
    Inventors: David D. Clark, Jeffrey W. Steaffens, John Dorson, Ian Wells, Alan J. Fujii, James E. Maynard, James Baker, John Zeis, Charles Bickoff, Richard D. McEachern, Kunio Kohga, Andrew Ghusson, John C. Balsavich, Jr.
  • Publication number: 20030211539
    Abstract: The disclosed synthesis system is based on the idea of designing a synthesis and treatment procedure, substrates and anchor groups which enable biomolecules to be simultaneously produced in an entirely automatic manner. By using a pipetting robot to dispense the reagents, the reaction column can be arranged in a format suitable for subsequent treatment. For a pipetting robot to carry out even water-sensitive or air-sensitive synthesis protocols, certain structural measures must be taken. The operation principle of the automaton and the synthesis sequence are described below as an example of a possible solution. The automaton can work with conventional substrates and reagents. Handling, however, is simplified by new, specially adapted substrates and anchor groups. A special, simultaneous purification and aliquot portioning process improves product quality and makes the device easier to use.
    Type: Application
    Filed: December 5, 2002
    Publication date: November 13, 2003
    Inventors: Ronald Frank, Stefan Matysiak, Olaf Schreuer, Heinrich Gausepohl, Andre Rosenthal
  • Publication number: 20030210607
    Abstract: An on-chip chemical compound dilution system for providing dilution of a chemical compound in a microfluidic application includes at least one sample well for providing a selected chemical compound to be diluted, a dilution well for providing a diluent for diluting the chemical compound, a network of channels for carrying the chemical compound and diluent, a first syringe pump for effecting dilution, a second syringe pump, a detector and a plurality of valves for selectively controlling the flow of liquid through the channels. The dilution system may be a multiple-stage dilution system for precisely mixing a plurality of chemical compounds in a diluent. The dilution system allows for accurate calibration to compensate for variations due to manufacturing, thereby providing precise dilution ratios. The dilution system further enables flushing to allow re-use of the system with another chemical compound.
    Type: Application
    Filed: June 25, 2002
    Publication date: November 13, 2003
    Applicant: Coventor, Inc.
    Inventors: John Gilbert, Manish Deshpande
  • Patent number: 6641783
    Abstract: This invention relates to a high efficiency chromatographic system. More specifically, the present invention relates to a chromatographic system for determining the physicochemical properties of one or more compounds using at least two chromatographic units in eluent flow communication with one eluent analyzer via an intermediate eluent switch. The present chromatographic system allows determination of physicochemical properties through the use of multiple chromatographic units in communication with one eluent analyzer via an eluent switch.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: November 4, 2003
    Inventors: Charles Pidgeon, Jianming Yin, Nadege Rooke, Sonyuan Lin, Jeffrey Giles
  • Patent number: 6638481
    Abstract: An apparatus for drawing and supplying multiple samples for rapid processing in flow cytometry. The apparatus comprises a reciprocating valve and at least one syringe. The invention is also a method for rapidly processing multiple samples in flow cytometry using the apparatus.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: October 28, 2003
    Assignee: Science and Technology Corporation @ UNM
    Inventors: Larry A. Sklar, Bruce S. Edwards, Frederick W. Kuckuck, III
  • Publication number: 20030198999
    Abstract: An apparatus and method for synthesizing a combinatorial library comprising a plurality of chemical compounds such that the chemical composition of each compound is easily tracked. The library compounds are synthesized on solid-phase supports, which are spatially arranged in frames during synthesis according to a predetermined protocol, such that each solid-phase support passes through a series of unique spatial 2D or 3D addresses by which the chemical composition of each compound may be determined at any point during synthesis. Solid-phase supports include hollow tubular-shaped lanterns and gears.
    Type: Application
    Filed: December 11, 2002
    Publication date: October 23, 2003
    Applicant: Selecticide Corporation
    Inventors: Marcel Patek, Safar Pavel, Martin Smrcina, Eric Wegrzyniak, Peter Strop, Gary A. Flynn, Stephen A. Baum
  • Patent number: 6635415
    Abstract: The concentration of nitric oxide in a gas is determined by oxidizing NO to NO2 and then measuring the concentration of NO2 in the gas, which is proportional to the concentration of NO. Preferably, gaseous NO2 molecules diffuse through a plurality of capillary membrane fibers and undergo a chemiluminescent reaction with a reagent flowing within; the light from the reaction is measured to determine NO2 concentration. In another aspect of a preferred embodiment, gas is passed through a scrubber before the concentration of NO2 is measured, in order to substantially remove carbon dioxide and ambient NO2 from the gas without substantially affecting the concentration of nitric oxide therein.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: October 21, 2003
    Assignee: 2B Technologies, Inc.
    Inventors: Mark J. Bollinger, John W. Birks, Jill K. Robinson
  • Patent number: 6613579
    Abstract: Apparatus and method for sequential injection liquid-liquid extraction analysis. Under the control of a bidirectional precision pump, a stream-selection valve, and a microprocessor, a series of liquid zones is built up in a holding/mixing coil. The liquid zones are transferred from the holding/mixing coil to a separation cell. After phase separation into an extract and a raffinate, the extract is withdrawn from the separation cell and sent to a detector, which determines the amount of a component which was extracted from a sample by an extraction solvent. The principal advantages of this automated technology are elimination of the need for dynamic phase separation; on-line pre-extraction chemical conditioning; a substantial reduction in solvent, reagent, and sample usage; and a similar substantial reduction in waste generation.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: September 2, 2003
    Assignee: Global FIA, Inc.
    Inventor: Duane K. Wolcott
  • Patent number: 6610499
    Abstract: The invention provides methods and devices for detecting the presence of one or more target analytes in a sample employing a channel having affixed therein one or more binding partners for each target analyte. Assays are carried out by transporting the sample through the channel to each successive binding partner so that target analyte present in said sample binds to the corresponding binding partner. The sample is then transported beyond the binding partner(s), followed by detection of any target analyte bound to each binding partner. In one embodiment, binding efficiency is increased by the use of segmented transport, wherein a first bolus or bubble of a fluid that is immiscible with the sample precedes the sample during transport and a second bolus or bubble of a fluid that is immiscible with the sample follows the sample. Many configurations are possible for the device of the invention.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 26, 2003
    Assignee: The Regents of the University of California
    Inventors: Mack J. Fulwyler, Joe W. Gray
  • Patent number: 6608178
    Abstract: Antibody specific for a 5-HTOL compound. A glucuronide with 5-hydroxytryptophol (5-HTOL) characterized in that it comprises the structure of the &bgr;-glucuronide between the 5-hydroxy group of 5-HTOL and D-glucopyranosiduronic acid. An immunoassay and a diagnostic method utilizing the ummunoassay wherein a 5-hydroxytryptophol (5-HTOL) compound is determined by the use of an antibody specific for a 5-HTOL compound is used.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 19, 2003
    Assignee: Alco Dia A.B.
    Inventors: Ragnhild Brandt, Olof Beck, Anders Helander, Rose-Marie Jonsson, Eric Unger, Stefan Borg, Eva Akerblom
  • Publication number: 20030152485
    Abstract: A flow cell comprises a flow cell head which partly surrounds an inner pipe defining a supply pipe and an outer pipe defining a discharge pipe. The inner pipe defines an end portion, the outer pipe defines an end portion and the inner and the outer pipe are arranged concentrically in the area of their end portions. The end portion of the outer pipe is hold by a press fit in the flow cell head.
    Type: Application
    Filed: February 13, 2002
    Publication date: August 14, 2003
    Inventors: Hans-Heinrich Trutnau, Mark Siemer
  • Publication number: 20030152486
    Abstract: An ion-exchange membrane has a mesh structure with microscopic pores in which water can infiltrate. When the ion-exchange membrane is incorporated in the sensor body, the one side of the membrane comes in contact with the sample solution and the other side thereof comes in contact with the internal solution. The water in the internal solution gradually migrates to the side of the sample flow path permeating through the membrane. When the sensor is used for extended periods of time, therefore, the sensor performance often decreases due to a decrease in the electric conductivity between the internal electrode and the ion-exchange membrane.
    Type: Application
    Filed: September 19, 2002
    Publication date: August 14, 2003
    Inventors: Kotaro Yamashita, Koichi Tayama, Noriko Yoshioka, Yasuhisa Shibata
  • Patent number: 6605471
    Abstract: The present invention relates to a method for determining at least one parameter of samples of physiological liquids, to test devices which may be used in the method, to a holder comprising a plurality of such test devices, and to a measuring apparatus adapted to accommodate the holder and to be used in the method and to a system comprising the apparatus and the holder.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: August 12, 2003
    Assignee: Radiometer Medical A/S
    Inventors: Finn C. Lundsgaard, Henrik Kagenow, Willy Andersen, Peter Aage Frischauf
  • Publication number: 20030143115
    Abstract: Disclosed are a closed heat-decomposing appliance comprising a heating section with one side closed and other side having common ground portion, screw portion or O-ring-mounted portion and a closed introducing section that allows to connect to this heating section and common ground portion, screw portion or O-ring via O-ring-mounted portion and has cock or valve as a mechanism for closing and introducing the absorbing liquid to absorb the testing components from outside after heat-decomposition, or has packing or septum to introduce the absorbing liquid with needle pipe as well, and a pretreatment method of sample using this appliance.
    Type: Application
    Filed: December 7, 1998
    Publication date: July 31, 2003
    Inventors: NORIYUKI TANIMOTO, YOSHIMITSU TADA, HIDEO MORINAKA, TADASHI OKADA
  • Patent number: 6599736
    Abstract: The configurable microreactor network of the invention comprises a substrate in which a plurality of overpassing channels are arranged. Said channels are optionally interconnectable via connecting channel arrangements. Between said channels, microreactors are arranged which are connected with the channels. Here, too, channel-connecting arrangements are employed. Said channel-connecting arrangements comprise a plurality of connecting channels in which blocking elements can be positioned or inserted in any other way or activated. The arrangement and/or state of the blocking elements allows the highest possible integration density to be reached respectively for each of a series of specified degrees of (re-) configuration flexibility (the necessity of which depends on the application type).
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 29, 2003
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: John Simpson McCaskill, Thomas Maeke, Patrick Wagler
  • Patent number: 6592821
    Abstract: Methods and systems for particle focusing to increase assay throughput and sensitivity in microscale systems are provided. The invention includes methods for providing substantially uniform flow velocity to flowing particles in microfluidic devices. Methods of sorting members of particle populations, such as cells and various subcellular components are also provided. Integrated systems in which particles are focused and/or sorted are additionally included.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: July 15, 2003
    Assignee: Caliper Technologies Corp.
    Inventors: H. Garrett Wada, Anne R. Kopf-Sill, Marja Liisa Alajoki, J. Wallace Parce, Benjamin N. Wang, Andrea W. Chow, Robert S. Dubrow, Yevgeny Yurkovetsky, Javier Anibal Farinas
  • Patent number: 6592827
    Abstract: There is provided an automated sampling system for taking polymer samples from a fluidized bed, gas phase reaction system which utilizes at least one volatile, hazardous monomer. The sampling system provides minimal sample-to-sample variability, improved reactor control and polymerization operability which minimizing potential exposure or release of the volatile, hazardous monomers.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: July 15, 2003
    Assignee: Univation Technologies LLC
    Inventors: Daniel Paul Zilker, Jr., Christopher Scott Hunnisett, Donald Robert Fields, Kiu Hee Lee
  • Patent number: 6582963
    Abstract: A reference T-sensor system is provided for detecting the presence and/or measuring the concentration of analyte particles in a sample stream. The system includes: a) a laminar flow channel; b) three or more inlets in fluid connection with the laminar flow channel for respectively conducting into the laminar flow channel (1) an indicator stream which may include an indicator substance which indicates the presence of analyte particles by a detectable change in property when contacted with the analyte particles, (2) the sample stream, and (3) a reference stream, which can be a control stream and/or an internal standard stream; c) wherein the laminar flow channel has a depth and/or width sufficiently small to allow laminar flow of the streams and a length sufficient to allow particles of the analyte to diffuse into the indicator stream to form a detection area; and (d) an outlet for conducting the streams out of the laminar flow channel preferably to form a single mixed stream.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: June 24, 2003
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Mark R. Holl, Diane Zebert, Margaret Kenny, Caicai Wu
  • Patent number: 6576194
    Abstract: The present invention provides an apparatus and method for storing a particle-containing liquid. The storage apparatus comprises a microfluidic convoluted flow channel having a plurality of particle capture regions. The storage channel is preferably an isotropic spatially periodic channel. Sedimented particles can be resuspended following storage. This invention further provides a microfluidic analysis cartridge having a convoluted storage channel therein. The sample analysis can use optical, electrical, pressure sensitive, or flow sensitive detection. A plurality of analysis channels can be included in a single cartridge. The analysis channels can be joined to reagent inlets for diluents, indicators or lysing agents. A mixing channel can be positioned between the reagent inlet and the analysis region to allow mixing and reaction of the reagent. The cartridge can include additional valves and pumps for flow management.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: June 10, 2003
    Assignee: University of Washington
    Inventors: Mark R. Holl, Floyd Edwards, Robert J. Morff, Gerald L. Klein
  • Patent number: 6572823
    Abstract: An apparatus and method are provided for handling a solution. The apparatus comprises a housing and a vial assembly positioned within an enclosure of the housing. The vial assembly maintains at least one vial within the enclosure of the housing. A valve manifold extends within the enclosure of the housing for connection to the vial. A rotation mechanism, also extending within the enclosure of the housing, is operatively connected to the vial assembly for rotating the vial assembly.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: June 3, 2003
    Assignee: Bristol-Myers Squibb Pharma Company
    Inventors: John J. Donahue, Joseph Haepers
  • Patent number: RE38281
    Abstract: A method and apparatus for dispensing precise quantities of reagents is disclosed including a positive displacement syringe pump in series with a dispenser, such as an aerosol dispenser or solenoid valve dispenser. The pump is controlled by a stepper motor or the like to provide an incremental quantity or continuous flow of reagent to the dispenser. The pump and dispenser are operated in cooperation with one another such that the quantity and/or flow rate of liquid dispensed by the dispenser can be precisely metered substantially independently of the particular operating parameters of said dispenser to attain a desired flow rate, droplet size or mist quality, droplet frequency and/or droplet velocity.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 21, 2003
    Assignee: Biodot, Inc.
    Inventor: Thomas C. Tisone