Resistance Or Conductivity Patents (Class 422/82.02)
  • Patent number: 8298488
    Abstract: A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: October 30, 2012
    Assignee: Sandia Corporation
    Inventors: Patrick R. Lewis, Ronald P. Manginell, David R. Wheeler, Daniel E. Trudell
  • Patent number: 8298486
    Abstract: Objects of the present invention is to provide a piezoelectric resonator having high frequency stability and a sensing sensor using the piezoelectric resonator. In the present invention, a piezoelectric resonator 1 has: a first oscillation area 105 which is provided in a piezoelectric piece 100 and from which a first oscillation frequency is taken out; a second oscillation area which is provided in an area 105 different from the first oscillation area 106 via an elastic boundary area 107 and from which a second oscillation frequency is taken out; and excitation electrodes 101 to 103 provided on one surface side and another surface side of the oscillation areas 105, 106 across the piezoelectric piece 100, and a frequency difference between the first oscillation frequency and the second oscillation frequency is not less than 0.2% nor greater than 2.2% of these oscillation frequencies.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Shigenori Watanabe, Takeru Mutoh, Mitsuaki Koyama
  • Patent number: 8298828
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 30, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8298484
    Abstract: The present invention relates to an analyzer (1) which includes a placement part (11) for placing an analysis piece, and a photometric measurer (7) for photometric measurement of the analysis piece (2). In the analyzer (1), the placement part (11) holds the analysis piece (2) in such a way that a row of reagent pad (20) on the analysis piece (1) lie in right-and-left directions (D3, D4). The photometric measurer (7) is farther from a front than the placement part (11). The analysis piece (2) placed on the placement part (11) is conveyed from front toward rear (Direction D1), with the row of reagent pads (20) laid in right-and-left directions (D3, D4), toward the photometric measurer (7).
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: October 30, 2012
    Assignee: ARKRAY, Inc.
    Inventors: Yasumitsu Takagi, Hisakazu Sugie, Toshiyuki Otsuki, Norimasa Nishida, Yoshikiyo Hongo
  • Patent number: 8298487
    Abstract: An electrochemical sensor with a capillary channel is formed by placing a sacrificial insert and electrodes on a sensor base and applying plastic material. After the plastic material is cured, the sacrificial is removed leaving a capillary channel in the sensor. The inserts may be removed by a tool including a clamp for clamping and holding each insert stationary and a sliding block to which the sensor is secured.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: October 30, 2012
    Assignee: Bayer HealthCare LLC
    Inventors: Allen J. Brenneman, Frank W. Wogoman
  • Patent number: 8293194
    Abstract: The present invention relates to an analyzing device to be used by inserting an analytical instrument 2 comprising a plurality of terminal portions 25A to 28A therein, the device including a plurality of terminals 42 and 43 having a shape of a flat spring to be in contact with the plurality of terminal portions 25A to 28A, and a disposal mechanism for disposing of the analytical instrument 2 after completing an analysis. Contact portions 46 and 47 in the plurality of terminals 42 and 43 having a flat-spring shape to be in contact with the plurality of terminal portions 25A to 28A are placed to be in non-parallel with a direction orthogonal to a disposal direction D1 of the analytical instrument 2 in planar view. The portions 46 and 47 in the plurality of terminals 42 and 43 having the flat-spring shape are preferably placed so as to have a symmetrical or substantially symmetrical positional relationship relative to a center line L1 of the analytical instrument 2 extending along the disposal direction D1.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 23, 2012
    Assignee: Arkray, Inc.
    Inventors: Hideki Nishimura, Yasushi Dobuchi
  • Publication number: 20120261256
    Abstract: This invention has two synergistic elements for simultaneous use in point-of-care or field analyses of diverse substances important to clinical medicine and other applications. The first element is a sample holder in which are stored the several reagents need for quantification of target molecules. The onboard storage of reagents in a water soluble plastic obviates the need for purchase, storage, measuring and mixing of the required reagents prior to analyses. The second part of the invention is a compact hand-held analyzer made of modern miniature optical components, into which the holder is inserted right after it is loaded with a sample by capillary action. The combination of the holder and analyzer permits analyses that are ten times faster than those done with current analyzers, and equally accurate. Analyses can be performed by diverse people, who require only a few minutes of training in the use of the entire invention.
    Type: Application
    Filed: February 22, 2012
    Publication date: October 18, 2012
    Inventors: Chia-Pin CHANG, David J. Nagel
  • Patent number: 8287810
    Abstract: A membrane strip biosensor device using a fluid mobile conductive composition of ferromagnetic particles bound to a conductive polymer bound to a capture reagent is described. The biosensor device is designed to detect analytes at low concentrations in near real-time with an electronic data collection system and can be small. The device can be used to detect pathogens, proteins, and other biological materials of interest in food, water, and environmental samples.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 16, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Patent number: 8283184
    Abstract: In a method for measurement of very small local magnetic fields, in particular of local magnetic stray fields produced by magnetic beads, at least one magnetoresistive element is used. The element includes a hard-magnetic reference layer and a soft-magnetic sensor layer, whose magnetization can be rotated to a parallel position or an antiparallel position with respect to the reference layer magnetization, and whose output signal which can be tapped off is dependent on the position of the sensor layer magnetization with respect to the reference layer magnetization.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: October 9, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Manfred Rührig
  • Patent number: 8277628
    Abstract: Disclosed are a method and apparatus that use an electric field for improved biological assays. The electric field is applied across a device having wells, which receive reactants, which carry a charge. The device thus uses a controllable voltage source between the first and second electrodes, which is controllable to provide a positive charge and a negative charge to a given electrode. By controlled use of the electric field charged species in a fluid in a fluid channel are directed into or out of the well by an electric field between the electrodes. The present method involves the transport of fluids, as in a microfluidic device, and the electric field-induced movement of reactive species according to various assay procedures, such as DNA sequencing, synthesis or the like.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 2, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mostafa Ronaghi, Tarun Khurana, Juan G. Santiago
  • Patent number: 8277731
    Abstract: To shorten the time required for an oscillation frequency to stabilize in a sensing device sensing a substance to be sensed by using the fact that a natural frequency of a piezoelectric resonator changes when the substance to be sensed is adsorbed by an adsorption layer formed on the piezoelectric resonator. A sensing device includes: an oscillator circuit 4 oscillating a quartz-crystal resonator 12; and an intense excitation circuit that is formed by the oscillator circuit 4 including a series circuit of a resistor 52 and a third transistor 53 of PNP type and that intensely excites the quartz-crystal resonator 12 connected to the oscillator circuit 4 for a period of time preset by a one-shot circuit 22 by supplying the quartz-crystal resonator 12 with high power equal to or more than twice regular power supplied at the time of the measurement of the substance to be sensed, to stabilize the oscillation of the quartz-crystal resonator 12.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 2, 2012
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Tomoya Yorita, Junichiro Yamakawa, Shigenori Watanabe, Mitsuaki Koyama
  • Publication number: 20120237400
    Abstract: The present invention is a reagent preparation apparatus, comprising: a reagent preparation unit configured to prepare a reagent for processing a sample; a measuring unit configured to measure a property of the reagent prepared by the reagent preparation unit; a waste section configured to discard the prepared reagent when a measurement result by the measuring unit does not meet a predetermined condition; and a controller configured to control a reagent preparation operation of the reagent preparation unit, wherein the controller controls the reagent preparation unit to stop the reagent preparation operation when a number of times of discarding a reagent has reached a predetermined plurality of times.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 20, 2012
    Inventors: Yutaka Ikeda, Noriyuki Nakanishi
  • Patent number: 8268242
    Abstract: A hydrogen sensor includes a substrate, a hydrogen absorbing member, a power source, an ammeter, and a processing unit. The hydrogen absorbing member is positioned on the substrate, and includes a carbon nanotube yarn and a hydrogen absorbing film coated on the carbon nanotube yarn. The ammeter measures an electric current. The hydrogen absorbing member and the ammeter are connected in series to the power source. The processing unit is electrically coupled to the ammeter to obtain a hydrogen concentration according to the electric current.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 18, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Tai-Hsu Chou
  • Patent number: 8268245
    Abstract: A method for determining analytes in a liquid is provided comprising applying a liquid volume to be examined to a substrate of a transport plane; moving the liquid volume to be examined on the substrate of the transport plane to a site of examination; contacting the liquid volume to be examined with at least one sensory element, wherein the sensory element is located in a detection plane opposite to the substrate of the transport plane; and determining an analyte in the liquid volume to be examined by the sensory element, wherein the liquid volume is only in contact with the substrate of the transport plane during the step of moving the liquid volume to be examined on the substrate of the transport plane to a site of examination. The application also concerns a device for determining analytes in a liquid corresponding to the method according to the invention.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 18, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Hans-Peter Wahl
  • Patent number: 8268629
    Abstract: A system and method for characterizing a liquid hydrocarbon fuel having unknown or variable composition is described and shown herein.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 18, 2012
    Assignee: dTEC Systems L.L.C.
    Inventors: Thomas Coleman, Frederick Wolf, James E Bruya
  • Patent number: 8263409
    Abstract: An apparatus for estimating or supervising one or more internal mechanical properties of a metal alloy object with a known chemical composition based on the resistivity of the metal alloy object. The apparatus includes a device for measuring the resistivity of the metal alloy object, and a computation unit adapted to calculate the content of dissolved alloying elements in the metal alloy object based on the measured resistivity and the known chemical composition of the metal alloy, and based thereon to calculate at least one internal mechanical property of the metal alloy object.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 11, 2012
    Assignee: ABB AB
    Inventors: Sten Linder, Lennart Thegel
  • Patent number: 8262995
    Abstract: The invention concerns a pluggable data transfer module and a method that can be used to transfer data from an analytical system to a data processing unit in a galvanically decoupled manner. This invention is particularly suitable for medical fields of application in which recently it has become more and more desirable to process analytical data of a patient.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: September 11, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Udo Manser, Dieter Schaefer, Michael Schabbach, Peter Kuenstler
  • Patent number: 8262998
    Abstract: The invention describes a detection device that comprise nanostructures and which detection mechanism is based on the quantum confinement effects. The analyte species are sensed by measuring charge or/and energy transfer between the species and the nanostructures, which will be proportional to the overlap between the density of states distribution in the nanostructures and the density of states distribution in the targeted analyte species.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 11, 2012
    Inventors: Branislav Vlahovic, Vanja Vlahovic
  • Patent number: 8257651
    Abstract: In one embodiment the present invention provides a blood analyte meter that is user-friendly and easy to use. In accordance with an embodiment of the present invention an analyte measurement device, for use with a test strip for determining the amount of an analyte in a sample, displays a hierarchy of information or options to a user. The hierarchy of information or options may include, among other information or options, subroutines that are performable by the processor of the device, stored data related to past tests performed by the user, and alarm features of the device. A user scrolls through and selects individual options or pieces of information by rotating and translating a rotatable user interface around and along an axis of rotation.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 4, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Joseph Flaherty, Timothy Golnik
  • Patent number: 8252236
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 28, 2012
    Assignees: Bioengineering Laboratories, LLC, Arkray, Inc., Ultizyme International Ltd.
    Inventors: Wakako Tsugawa, Koji Sode
  • Patent number: 8252598
    Abstract: Methods and systems of detecting analytes using a microcantilever system are generally described. The microcantilever system generally includes micro- or nano-sized elements that can be electrostatically driven to resonance. Utilizing the disclosed devices and methods, direct electronic detection of the resonant frequency, changes of the resonant frequency, and associated phase signal of a micro- or nano-sized element can be utilized to measure the presence of a targeted analyte. The detection system of the present invention utilizes a non-contact microcantilever device. That is, the surface of the microcantilever (e.g., the surface of the resonating beam) does not bond or otherwise attach to an analyte or other chemical. Thus, the microcantilever device, including the resonating beam, can be kept in pristine condition during and even after repeated use.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: August 28, 2012
    Assignee: University of South Carolina
    Inventors: Goutam Koley, Muhammad Qazi, Thomas Vogt, Sangmoon Park
  • Patent number: 8252237
    Abstract: A substance detection sensor comprises an insulation layer (2) having flexibility, two electrodes (3A, 3B) so disposed on the insulation layer as to be opposite to each other at a space therebetween and connected to an electric resistance detector, and a conductive layer (4) which is so formed on the insulation layer as to span the two electrodes and to be electrically connected to the two electrodes. The swelling ratio of the conductive layer (4) is changed according to the type and/or the quantity of a specific substance.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: August 28, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Toshiki Naito, Hiroshi Yamazaki, Toshihiko Omote
  • Publication number: 20120214224
    Abstract: Values of clinical properties are normally measured by taking a sample from a patient, mixing an aliquot with a reagent, placing the mixture into a selected instrument, and measuring a property. If another property is required, another measurement sequence must be created. This can be efficient on a large scale, for example in a centralized laboratory, but is inefficient on a small scale. It is shown that by using measurement systems based on manipulation of flowing streams, clinical assays can be performed by a hand held device. This flow based system allows complex assays to be performed in remote locations with automated portable instruments that can be flexible enough to conduct a wide variety of assays.
    Type: Application
    Filed: January 6, 2012
    Publication date: August 23, 2012
    Inventor: Eugene Y. Chan
  • Patent number: 8241569
    Abstract: This invention relates to lead-free piezoelectric ceramic films and a method of making thereof. Specifically, the invention is directed to a method for fabricating lead-free piezoelectric free standing films having enhanced piezoelectric properties. The films may be used for a number of applications including incorporation in microelectronic devices such as energy harvesting devices and sensor technologies.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: August 14, 2012
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Huidong Li
  • Patent number: 8241913
    Abstract: A multiple-gate field-effect transistor includes a fluid in a top gate, two lateral gates, and a bottom gate. The multiple-gate field-effect transistor also includes a patterned depletion zone and a virtual depletion zone that has a lesser width than the patterned depletion zone. The virtual depletion zone width creates a virtual semiconductor nanowire that is lesser in width than the patterned depletion zone.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: August 14, 2012
    Assignee: Intel Corporation
    Inventors: Gil Shalev, Amihood Doron, Ariel Cohen
  • Patent number: 8234773
    Abstract: A method of forming at least one electronic device on a substrate comprising creating a depository and an attached capillary; providing a liquid containing particles in the range 1 nanometer to 1 millimeter for deposit into the depository; the liquid flowing into the at least one capillary by capillary action; evaporating the liquid such that the particles form an agglomerate beginning at the end of the at least one capillary with a substantially uniform distribution of the particles within the agglomerate; whereby the agglomerate is used to form a part of the at least one electronic device. An microelectronic integrated circuit device comprising a substrate; a depository coupled to said substrate formed by at least one wall, a capillary channel coupled to said depository adapted to be filled with liquid comprising nanoparticles by capillary action, whereby as the liquid evaporates, an agglomerate forms in the capillary channel having a substantially uniform distribution of the particles.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: August 7, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Sarah S. Bedair, Brian Morgan, Christopher D. Meyer
  • Patent number: 8226891
    Abstract: Method and apparatus for performing a discrete glucose testing and bolus dosage determination including a glucose meter with bolus calculation function are provided.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: July 24, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Mark K. Sloan, R. Curtis Jennewine
  • Patent number: 8222041
    Abstract: A high electron mobility transistor (HEMT) capable of performing as a CO2 or O2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 17, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton
  • Patent number: 8222043
    Abstract: A leak detection system for a flowing electrolyte battery comprising a containment member associated with at least one of a stack of a flowing electrolyte battery and an electrolyte reservoir of a flowing electrolyte battery and a sensing member for sensing a fluid leak within the containment member.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 17, 2012
    Assignee: Premium Power Corporation
    Inventor: Rick Winter
  • Patent number: 8211705
    Abstract: The invention relates to an apparatus and to a method for detecting and/or quantifying mercuric ions, Hg2+. The apparatus of the invention is of the type comprising an electrical device comprising two electrodes and a substrate comprising at least one surface made of an organic or inorganic semiconductor material, the electrodes being in electrical contact with said organic or inorganic semiconductor material, and a device for measuring the variation in the conduction current between the two electrodes, and wherein at least one compound which complexes mercuric ions Hg2+, selected from a dithia-dioxa-monoaza crown ether compound, an N,N-di(hydroxyethyl)amine, an N,N-di(carboxyethyl)amine, and mixtures of two at least of these compounds, is bonded to said semiconductor material or to an electrode of said electrical device. The invention finds application in the field of the detection of mercuric ions, in particular.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 3, 2012
    Assignee: Commissariat a l'Energie Atomique Et Aux Energies Alternatives
    Inventors: Alexandre Carella, Jean-Pierre Simonato
  • Patent number: 8211366
    Abstract: A precious metal testing apparatus and methods adapted to analyze impurities in a precious metal test sample is described. The testing apparatus contains a test probe that has a replaceable portion and that is connected to a meter to measure resistance. The replaceable portion contains or forms a reservoir that includes at least one electrolyte component, a conductive member, and a fibrous tip. The electrolyte component is fluidly associated with a fiber tip and the conductive member contacts an electrical contact located outside the reservoir. Methods of testing and instructions regarding such methods are also included.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: July 3, 2012
    Assignee: Kee Gold Corp.
    Inventors: Michael R. Ebersole, Warren D. Kleinfelter
  • Patent number: 8206649
    Abstract: A component measuring apparatus is provided with a case having a cylindrical case main body and a cover arranged to cover the base end opening section of the case main body; a chip mounting section for mounting a chip; a light measuring section for detecting a prescribed component; a printed board whereupon a control section having a function of controlling the operation of the light measuring section is arranged; a liquid crystal display device; a battery arranging section for arranging a battery provided on the cover; an O-ring arranged between the case main body and the light measuring section on the leading end section of the case main body; and an O-ring arranged between the case main body and the cover on the base end opening section of the case main body. Sealing of inside the case is ensured by the O-ring.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: June 26, 2012
    Assignees: Terumo Kabushiki Kaisha, Hosiden Corporation
    Inventors: Yoshiro Suzuki, Yasushi Nagasawa, Eiji Arita, Masakazu Ishizu, Yasuhiro Yamamoto
  • Publication number: 20120156099
    Abstract: A flexible chemiresistor (CR) sensor for sensing a molecule of interest in a fluid (liquid or gas) is provided. The flexible CR sensor comprises a flexible chemiresistor (CR) module. The flexible CR module comprises a flexible substrate such polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polyimide (PI), and a thin film nanoparticle assembly assembled on the flexible substrate. The thin film nanoparticle assembly comprises metal or metal alloy core, ligand-capped nanoparticles and molecular linkers connecting the nanoparticles. The flexible CR sensor and an intelligent pattern recognition engine can be incorporated in a handheld device that can detect a molecule of interest in a fluid (e.g., a liquid or gas) accurately, rapidly, and without false positives. Any sensing array nanomaterial, pattern recognition, and compact/or electronic hardware can be integrated to achieve a desired detection limit and response speed.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: The Research Foundation of State University of New York
    Inventors: Chuan-Jian Zhong, Jin Luo, Lingyan Wang, Jun Yin, Susan Lu
  • Publication number: 20120148449
    Abstract: An electric conductivity-based biosensor electrochemically detects the concentration of tested objects via measuring impedance or capacitance variation of the tested objects. The biosensor comprises a substrate, two electric-conduction electrodes arranged on the substrate, an antibody adhesion layer arranged on a region of the substrate and a plurality of antibodies arranged on the antibody adhesion layer. The antibody adhesion layer is between the two electric-conduction electrodes. The antibodies are connected with a plurality of tested objects. The tested objects connected with the antibodies form an electric-conduction group contacting the two electric-conduction electrodes. The concentration of the tested objects can be provided via measuring impedance or capacitance between the two electric-conduction electrodes.
    Type: Application
    Filed: May 24, 2011
    Publication date: June 14, 2012
    Inventors: Ya-Hsuan Chuang, Kuo-Liang Liu, Tri-Rung Yew
  • Patent number: 8192995
    Abstract: A method of correction of particle interference to hemoglobin measurement of a blood sample on a hematology analyzer is provided. The method includes mixing an aliquot of a blood sample with a lytic reagent to lyse red blood cells and forming a sample mixture; measuring absorbance of the sample mixture at a predetermined wavelength of a hemoglobin chromogen formed in the sample mixture, and obtaining an apparent hemoglobin concentration of the blood sample using obtained absorbance; measuring concentration and size of cellular particles remaining in the sample mixture; removing contribution of the cellular particles to the apparent hemoglobin concentration using the concentration and the size of the cellular particles to obtain a corrected hemoglobin concentration of the blood sample; and reporting the corrected hemoglobin concentration of the blood sample.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 5, 2012
    Assignee: Beckman Coulter, Inc.
    Inventors: Shuliang Zhang, Jiuliu Lu, Min Zheng, Eric M. Grace, Jing Li, Maritza Lavernia, Ted W. Britton
  • Patent number: 8187865
    Abstract: The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 29, 2012
    Assignee: California Institute of Technology
    Inventors: Minhee Yun, Nosang Myung, Richard Vasquez, Margie Homer, Margaret Ryan, Shiao-Pin Yen, Jean-Pierre Fleurial, Ratnakumar Bugga, Daniel Choi, William Goddard, Abhijit Shevade, Mario Blanco, Tahir Cagin, Wely Floriano
  • Patent number: 8187540
    Abstract: A concentration monitor for monitoring a concentration of a plurality of use solutions, each of the plurality of use solutions being, at least, a concentrate in a diluent, each of the plurality of use solutions having a resistivity which varies as a function of both temperature and an amount of the concentrate contained in a given amount of the diluent. A resistivity probe is adapted for use with at least one of the plurality of use solutions for taking a measurement related to the resistivity of the at least one of the plurality of use solutions. A temperature sensor is adapted for use with the at least one of the plurality of use solutions for taking a measurement related to the temperature of the at least one of the plurality of use solutions.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: May 29, 2012
    Assignee: Ecolab Inc.
    Inventors: Richard J. Mehus, Charles A. Hodge, Quang Van Dao
  • Patent number: 8187444
    Abstract: A fluid treatment device is disclosed. The fluid treatment device includes at least a first electrode and a second electrode in direct contact with the fluid. The fluid treatment device may include a control device which adjusts a parameter of an alternating potential difference provided between the first electrode and the second electrode based on the indication of the conductivity between the first electrode and the second electrode.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: May 29, 2012
    Inventor: Eric John Kruger
  • Patent number: 8187887
    Abstract: The present invention relates to devices, systems, and methods for determination of ionizing radiation. In some embodiments, the devices comprise nanocomposite materials containing nanostructures (e.g., carbon nanotubes) dispersed in radiation sensitive polymers. In some cases, the device may include a conductive pathway that may be affected upon exposure to ionizing radiation. Embodiments described herein may provide inexpensive, large area, low power, and highly sensitive radiation detection materials/devices.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: May 29, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jose M. Lobez
  • Patent number: 8182747
    Abstract: The invention concerns a test device for analyzing especially a biological sample liquid comprising a composite body consisting of a plurality of layers of flat materials and a sample channel located in the composite body for transporting the sample liquid from an application site to a measuring site. According to the invention it is proposed that the composite body has a plurality of transport layers arranged in a stack-like manner between support layers for holding in each case sample channel.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: May 22, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Michael Marquant, Volker Unkrig, Fritz Hindelang
  • Patent number: 8182692
    Abstract: Solutions, dialysates, and methods for measuring solutes in blood and/or for treating blood. In one aspect of the invention, a method of performing dialysis includes placing a solution in communication with blood of a subject, where a concentration of at least one electrically conductive solute in the solution, prior to being placed in communication with the blood of the subject, is substantially equal to a concentration of the at least one electrically conductive solute in the blood of the subject.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: May 22, 2012
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Frank A. Gotch
  • Patent number: 8178357
    Abstract: Sensors, sensing systems and sensing methods of the invention provide for detection of peroxides, including for example, vapor-phase H2O2 and organic peroxides such as di-tert-butyl peroxide. A sensor and sensing method of the invention uses at least two phthalocyanines, one of which exhibits an oxidation reaction with peroxides and the other of which exhibits a reduction reaction with peroxides. A peroxide is readily identified by a sensor of the invention when one of the at least two phthalocyanines exhibits increased resistance to current flow and the other of the at least two phthalocyanines exhibits decreased resistance to current flow.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 15, 2012
    Assignee: The Regents of the University of California
    Inventors: William C. Trogler, Forest Bohrer, Andrew C. Kummel
  • Patent number: 8178044
    Abstract: A liquid property detecting device includes a switch portion switching an electrode to charge with a standard voltage generated by a generator, or discharge through a grounding. An operation signal output portion outputs an operation signal to the switch portion so as to switch in a predetermined switch period. A voltage of the electrode is output as a detection signal, when the standard voltage is applied to the electrode. A signal process portion calculates liquid property based on the detection signals. A gain of the signal process portion relative to the detection signal is increased, as the detection signal is decreased.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: May 15, 2012
    Assignee: Denso Corporation
    Inventor: Jun Tarui
  • Patent number: 8178355
    Abstract: The present invention relates to the field of detection of components in gas phase, and in particular to detection of nitric oxide exhaled as a component of breath, using a liquid crystal assay format and a device utilizing liquid crystals as part of a reporting system.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 15, 2012
    Assignee: Platypus Technologies, LLC.
    Inventors: Bharat Acharya, Avijit Sen, Nicholas Abbott, Kurt Kupcho
  • Patent number: 8173436
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 8, 2012
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 8173069
    Abstract: An ion analyzing apparatus includes a sensor; a counter electrode having openings, the counter electrode being positioned so as to substantially surround the sensor; and a bias generating circuit coupled to the sensor, wherein the sensor includes quartz crystal and a pair of electrodes positioned on surface of the quartz crystal, and one of the pair of electrodes is coupled to the bias generating circuit.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 8, 2012
    Assignee: Fujitsu Limited
    Inventor: Ryozo Takasu
  • Patent number: 8173071
    Abstract: An apparatus, system, and method for determining the osmolarity of a fluid. The apparatus includes at least one micro-fluidic circuit and at least one electrical circuit disposed in communication with the at least one micro-fluidic circuit for determining a property of a fluid contained within the at least one micro-fluidic circuit.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: May 8, 2012
    Assignee: International Business Machines Corporation
    Inventors: Govindarajan Natarajan, Emmanuel Delamarche, Eric A Eckberg, James N Humenik, Kathleen A McGroddy-Goetz, Scott Partington, Christopher F Perrera, Marco G Trivella, Timothy M Wiwel
  • Patent number: 8168120
    Abstract: A sensor, having a resonant frequency responsive to presence of an analyze, comprising a DC electrostatic excitation component, to produce a static force pulling a moveable element toward a backplate; an AC electrostatic excitation component, to produce an oscillation in the moveable element with respect to the backplate; and a sensor to detect contact between the moveable and the backplate.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: May 1, 2012
    Assignee: The Research Foundation of State University of New York
    Inventor: Mohammad Younis
  • Patent number: 8163240
    Abstract: A detection device and system are provided. The detection device includes a detection capacitor and a Field Effect Transistor (FET). The detection capacitor has a reactive material layer reacting to a specific functional group in a fluid, and first and second electrodes disposed on the both surfaces of an insulating layer, and the FET has a source electrode connected with the second electrode, a gate electrode connected with the first electrode, and a drain electrode. Here, the insulating layer of the detection capacitor is thicker than a gate insulating layer of the FET.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: April 24, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chang Geun Ahn, Chan Woo Park, Jong Heon Yang, In Bok Baek, Chil Seong Ah, Han Young Yu, An Soon Kim, Tae Youb Kim, Moon Gyu Jang, Seon Hee Park
  • Patent number: 8153062
    Abstract: Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Chuan-Hua Chen, D. Morgan Tench, Jeffrey F. DeNatale, Frederick M. Discenzo