Fluorescence Patents (Class 422/82.08)
  • Patent number: 8343778
    Abstract: The invention encompasses microfluidic microarray assemblies (MMA) and subassemblies and methods for their manufacture and use. In one embodiment, first and second channel plates are provided and are sealingly connected to a test chip in consecutive steps. Each plate includes microfluidic channels configured in a predetermined reagent distribution pattern. The test chip comprises a plurality of discrete test positions, each test position being located at the intersection between a first predetermined reagent pattern and a second predetermined reagent pattern, wherein at least one of said patterns is non-linear. The first channel plate allows the distribution of a first reagent on said test chip, wherein said first reagent is immobilized at said test positions. The second channel plate allows the distribution of a second reagent on said test chip, wherein said second reagent comprises a plurality of different test samples.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: January 1, 2013
    Assignee: Simon Fraser University
    Inventors: Hua Zhong Yu, Meenakshinathan Parameswaren, Paul Chi Hang Li, Xing Yue Peng, Hong Chen, Wa Lok Chou
  • Patent number: 8343755
    Abstract: The invention relates to sensors for detecting chemical and biological material and for chemical actuation. In particular, the sensors of the present invention incorporates membranes or beams that are deformable in the presence of chemical adsorption on its surface. The sensor of the present invention contains a polymeric membrane or beam (102) that is clamped at least at two opposing ends (104) and (106).
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: January 1, 2013
    Assignee: University of Virginia Patent Foundation
    Inventors: Matthew R. Begley, James P. Landers, Jerome P. Ferrance, Ling Huang, Michael H. Jones, Marcel Utz, Scott Barker
  • Patent number: 8345215
    Abstract: The invention relates to a system and method for the optical calibration of the temperature of a micro-environment. The system comprises a thermochromic liquid crystal in combination with a luminophore. The steps of the method comprise providing in combination in the micro-environment at least one thermochromic liquid crystal and a luminophore, varying the temperature of the environment while irradiating the combination with light that includes light at one or more excitation wavelengths of the luminophore, and monitoring luminescence emitted by the combination while recording the temperature of the environment.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 1, 2013
    Assignee: Corbett Research Pty Ltd
    Inventor: Carl Peter Renneberg
  • Patent number: 8343439
    Abstract: The present invention provides an assay device for performing an assay on a liquid sample using a detection conjugate capable of binding to an antigen and containing a label, said device comprising a substrate having a substrate surface, wherein the surface comprises projections substantially perpendicular to said surface, said projections having a height, diameter and distance capable of generating lateral capillary flow of a fluid in said passage, said surface comprising a sample addition zone, a reaction zone and an absorbing zone, said zones being connected by at least one fluid passage, wherein said device has a first functionality verifying feature located between the sample addition zone and the reaction zone, and a second functionality verifying feature located within the absorbing zone, and both functionality verifying features being features capable of undergoing a detectable change when contacted by the sample, said assay device further comprising at least one alignment verification zone.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: January 1, 2013
    Assignee: AMIC AB
    Inventors: Per Ove Öhman, Ib Mendel-Hartvig, Tomas Lindström
  • Patent number: 8343526
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Publication number: 20120329143
    Abstract: A chilled reagent container comprises a reagent vessel containing part for containing therein a plurality of reagent vessels, a container lid including a container lid hole through which the reagent vessels contained by the reagent vessel containing part are accessible, and a cooling block for cooling the reagent vessels contained by the reagent vessel containing part, wherein the container lid slides to be changeable between an opened situation wherein the reagent is accessible from an outside and a closed situation wherein the reagent is prevented from being accessed from the outside, wherein the chilled reagent container further comprises a reagent container packing including another hole through which the reagent vessels are accessible and arranged between the container lid and the reagent vessel containing part to be pressed against the container lid.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 27, 2012
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Motohiro Yamazaki, Ryoji Inaba, Shuhei Yamamoto, Takuya Matsui, Kohshi Maeda, Yuichiro Ota, Hiroyuki Higashino
  • Patent number: 8337705
    Abstract: Described are a device and a method for the manipulation of a liquid sample material in which magnetic microparticles are suspended whereby the microparticles have a functionalized surface and an analyte is bound to the surface. The sample material is introduced into a device with a liquid system through an injection device (50) and in a first mobile phase the sample material is carried to an extractor (90). In a section (97) of the extractor (90) the microparticles are immobilized by means of a magnetic field of a controllable means (96) and separated from the remaining sample material. By switching over of a switching unit (110) a second mobile phase (75) is carried to the extractor (90) and the second mobile phase (75) detaches the adsorbed analyte from the surface of the microparticles. The second mobile phase (75) with the dissolved analyte(s) can be analyzed by way of chromatographic separation (130) and subsequent detection (140).
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: December 25, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Michael Vogeser
  • Patent number: 8338191
    Abstract: The invention relates to a device for performing binding assays. In particular, the invention relates to a centrifugal device for performing such assays. The invention also relates to a method of performing binding assays involving antigen-antibody binding, nucleic acid hybridization, or receptor-ligand interaction.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 25, 2012
    Assignee: Corbett Life Science Pty Ltd
    Inventors: John Michael Corbett, John Michael Corbett, Jr.
  • Patent number: 8337704
    Abstract: The invention concerns a device and a method for the manipulation of a liquid sample material in which magnetic microparticles are suspended whereby the microparticles have a functionalized surface and an analyte is bound to the surface. The sample material is introduced into a device with a liquid system through an injection device (50) and in a first mobile phase the sample material is carried to an extractor (90). In a first section (97a) of the extractor (90) the microparticles are immobilized by means of a magnetic field of a controllable device (96) and separated from the remaining sample material. By switching over of a switching unit (110) a second mobile phase (75) is carried to the extractor (90) and the second mobile phase (75) detaches the adsorbed analyte from the surface of the microparticles.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 25, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Michael Vogeser
  • Publication number: 20120322161
    Abstract: Fluorescent pH detector and methods for measuring pH using the fluorescent pH detector.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 20, 2012
    Applicant: BLOOD CELL STORAGE, INC.
    Inventors: Michael W. Reed, Steven J. Geelhood, Robert O. Dempcy
  • Publication number: 20120321520
    Abstract: The present invention enables liquid suction with a nozzle tip end in contact with a bottom surface of a container without causing damage to the nozzle and/or the bottom surface of the container. Plural rails 112 are disposed on an arm 101 movable three-dimensionally so as to extend upward from the arm 101, and a pipe 102 is fixed to a pipe fixing member 103 movable along the rails. A tip end of the pipe functions as a nozzle. Plural resilient members 114 are disposed on the arm so as to correct the inclination of the pipe fixing member. When the arm is moved downward and the tip end of the pipe comes in contact with the bottom of the container 106, the pipe and the pipe fixing portion move upward along the rails, so that the tip end of the pipe can be brought into contact with the bottom surface of the container while avoiding damages in the pipe and bottom of the container and suck liquid in the container in this state.
    Type: Application
    Filed: December 22, 2010
    Publication date: December 20, 2012
    Inventors: Masahiro Okanojo, Hideyuki Noda
  • Patent number: 8333926
    Abstract: An apparatus for analyzing particles in urine comprising is disclosed that includes: a measurement specimen preparing section for preparing a measurement specimen by using a urine sample and a stain reagent; an optical detecting section comprising a light source for emitting a light to the prepared measurement specimen, a forward-scattered light receiving element for detecting forward-scattered light emitted from the specimen, a side-scattered light receiving element for detecting side-scattered light emitted from the specimen, and a fluorescence receiving element for detecting fluorescence emitted from the specimen; and a measurement section for measuring leukocytes in urine, based on the forward-scattered light, the side-scattered light and the fluorescence detected by the optical detecting section. A method for analyzing particles in urine is also disclosed.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 18, 2012
    Assignee: Sysmex Corporation
    Inventors: Yousuke Tanaka, Takamichi Naito, Masatsugu Ozasa, Rumi Takata
  • Publication number: 20120315191
    Abstract: A microchannel chip is provided that is easily mountable irrespective of limitation of arrangement of devices therearound and relatively inexpensive in manufacturing cost. The microchannel chip includes: a substrate holder including a recess; a reaction substrate mounted in the recess of the substrate holder; a first sheet disposed so as to cover the substrate holder and the reaction substrate; and a second sheet disposed so as to cover the first sheet. The reaction substrate includes: a first surface exposed to the reaction chamber; and a second surface exposed to the outside through an observation window provided on the recess of the substrate holder. A reaction spot including a microstructure is formed on the first surface of the reaction substrate. The reaction spot is exposed to the reaction chamber.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 13, 2012
    Inventors: Akira Maekawa, Satoshi Takahashi
  • Patent number: 8329107
    Abstract: A sensor that generates an output signal in response to a stimulus, where the output signal is generated with a predetermined relationship to one or more properties of the stimulus such that the one or more properties of the stimulus can be determined as a function of the output signal. In one embodiment, the sensor includes a component, a sensor processor, and a transmitter. The component deteriorates, thereby causing predictable fluctuations in the predetermined relationship between the output signal and the one or more properties of the stimulus. The sensor processor provides information related to the deterioration of the component. The transmitter wirelessly transmits the information provided by the processor.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: December 11, 2012
    Assignee: Ric Investments, LLC
    Inventor: Cord Mueller
  • Patent number: 8329106
    Abstract: The present invention relates to a apparatus for quantitative continuous real-time monitoring to monitor a continuous reaction of biochemical reagent and the reaction, such as DNA. More particularly, the present invention is directed to a miniaturized apparatus for real-time monitoring of biochemical reaction, which comprises capillary tubes (100) wherein biochemical reaction mixture flow; a thermal conduction block (120) which is coiled with capillary tube several rounds in order and composed of several blocks for temperature control of which temperatures are different from each other for heating or cooling the biochemical reaction mixture which flow in capillary tube, and a temperature controller which controls the temperature of above temperature control block; a radiation part (130) to radiate the reaction mixture flowing through the capillary tube and a light receiving section (140) which receives and measures the intensity of the fluorescence generated from the capillary tubes.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 11, 2012
    Assignee: Bioneer Corporation
    Inventors: Han Oh Park, Hanee Park, Jong Soo Baek
  • Publication number: 20120309095
    Abstract: Compositions containing polyanthrylene and methods of making these compositions are disclosed herein. The polyanthrylene composition can, for example, be used for detection of iron in a sample.
    Type: Application
    Filed: April 7, 2011
    Publication date: December 6, 2012
    Applicant: TONGJI UNIVERSITY
    Inventors: Mei-rong Huang, Shao-jun Huang, Jiang Ying Li, Xin-gui Li
  • Patent number: 8323978
    Abstract: A calibration device and method of using the device to calibrate an analytical instrument capable of reading a photoluminescent oxygen probe. The device includes at least (a) a first mass of an oxygen sensitive photoluminescent dye retained within a hermetically sealed space so as to isolate the dye from environmental oxygen, and in fluid communication with an activated metal-air battery whereby any oxygen permeating into the hermetically sealed space is quickly consumed by the battery, and (b) a second mass of an oxygen sensitive photoluminescent dye in fluid communication with an environmental concentration of oxygen.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 4, 2012
    Assignee: Mocon, Inc.
    Inventors: Timothy A. Ascheman, Daniel W. Mayer
  • Patent number: 8323576
    Abstract: A detector for detecting vapors emitted from analytes includes a housing, a pump and a sensing assembly. The housing has an inlet, an outlet and an enclosed sensing volume therebetween. The pump communicates with the housing for moving a carrier sequentially through the enclosed sensing volume at a predetermined flow rate. The sensing assembly senses the vapors of the analyte delivered by the carrier as the carrier passes through the housing. The sensing assembly includes a sensing unit constructed of an amplifying fluorescent polymer, a source of excitation, a detector, and a convertor assembly.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 4, 2012
    Assignee: FLIR Systems, Inc.
    Inventors: Craig A. Aker, Colin J. Cumming, Mark E. Fisher, Michael J. Fox, Marcus J. laGrone, Dennis K. Reust, Mark G. Rockley, Eric S. Towers
  • Patent number: 8323953
    Abstract: A device for the detection of micro particles that can be marked by probes or antibodies capable of being detected by radiation has a filter, a supply system, and a detection system. Fluid to be examined is passed over a filter to filter out the micro particles and to perform the marking steps by supplying corresponding marking substances to the filter.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: December 4, 2012
    Assignee: EADS Deutschland GmbH
    Inventors: Alois Friedberger, Ulrich Reidt, Gerhard Müller
  • Patent number: 8323982
    Abstract: Fluid analyte sensors include a photoelectrocatalytic element that is configured to be exposed to the fluid, if present, and to respond to photoelectrocatalysis of at least one analyte in the fluid that occurs in response to impingement of optical radiation upon the photoelectrocatalytic element. A semiconductor light emitting source is also provided that is configured to impinge the optical radiation upon the photoelectrocatalytic element. Related solid state devices and sensing methods are also described.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: December 4, 2012
    Assignee: Valencell, Inc.
    Inventors: Steven Francis LeBoeuf, Jesse Berkley Tucker, Michael Edward Aumer
  • Publication number: 20120301875
    Abstract: Methods are provided for nucleic acid analysis wherein a target nucleic acid that is at least partially double stranded is mixed with a dsDNA binding dye having a percent saturation of at least 50% to form a mixture. In one embodiment, the nucleic acid is amplified in the presence of the dsDNA binding dye, and in another embodiment a melting curve is generated for the target nucleic acid by measuring fluorescence from the dsDNA binding dye as the mixture is heated. Dyes for use in nucleic acid analysis and methods for making dyes are also provided.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 29, 2012
    Inventors: Carl T. Wittwer, Gudrun Reed, Virginie Dujols, Luming Zhou
  • Patent number: 8318099
    Abstract: Embodiments of the invention include a wireless sensor, such as an RFID tag, that includes a substrate, an antenna disposed on the substrate, and an environmentally sensitive sensor material disposed over at least a portion of said substrate. Other embodiments an RFID tag and at least one antibody coupled to the RFID tag. The RFID tag includes a substrate, circuitry disposed on the substrate, and an antenna coupled to the substrate. The at least one antibody is capable of affecting the signals emanating from the RFID tag. Further embodiments include a detection system that includes a reader. Yet other embodiments include a method for detecting specific analytes. The method includes providing an RFID tag which emanates a first signal having a first frequency, and enabling the REID tag to emanate a second signal having a second frequency upon attraction of a specific analyte to the RFID tag.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris, Kenneth Brakeley Welles, II, Andrew Michael Leach, Andrew David Pris
  • Patent number: 8313698
    Abstract: The present invention relates to a droplet-based nucleic acid amplification apparatus and system. According to one embodiment, a droplet microactuator is provided made using a first substrate including a fluorescing material and including a detection region for detecting a fluorescence signal from a droplet, which detection region is coated with a light absorbing, low fluorescence or non-fluorescing material.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: November 20, 2012
    Assignees: Advanced Liquid Logic Inc, Duke University
    Inventors: Michael G. Pollack, Philip Y. Paik, Vamsee K. Pamula
  • Patent number: 8309360
    Abstract: A reagent for analyzing urine is described. The reagent comprises a fungus membrane damaging agent for damaging a cellular membrane of yeast-like fungus in urine; a first dye for staining yeast-like fungus so that a fluorescent intensity of damaged yeast-like fungus becomes more intense than that of erythrocyte in urine; and a second dye for staining sperm in urine so that a fluorescent intensity of sperm becomes more intense than that of the damaged yeast-like fungus.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: November 13, 2012
    Assignee: Sysmex Corporation
    Inventor: Yasuyuki Kawashima
  • Patent number: 8309316
    Abstract: The present invention provides an approach for the simultaneous determination of the activation states of a plurality of proteins in single cells. This approach permits the rapid detection of heterogeneity in a complex cell population based on activation states, and the identification of cellular subsets that exhibit correlated changes in activation within the cell population. Moreover, this approach allows the correlation of cellular activities or properties. In addition, the use of potentiators of cellular activation allows for characterization of such pathways and cell populations.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 13, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Omar D. Perez, Garry P. Nolan, Jonathan M. Irish
  • Publication number: 20120282705
    Abstract: Provided herein are explosives detection substrates which include an electrospun (electro)sprayed and/or dry spun aromatic polymer, such as polystyrene, and a small molecule fluorophore. Methods for detecting an explosive material using such substrates are also provided.
    Type: Application
    Filed: March 28, 2012
    Publication date: November 8, 2012
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Yu Lei, Ying Wang
  • Publication number: 20120282630
    Abstract: The present invention provides for mixed metal structures that can be deposited on a substrate or free in solution that exhibit several distinctive properties including a broad wavelength range for enhancing fluorescence signatures. Further, metal surface plasmons can couple and such diphase coupled luminescence signatures create extra plasmon absorption bands. The extra bands allow for a broad range of fluorophores to couple therefore making more generic substrates with wider reaching applications.
    Type: Application
    Filed: December 17, 2010
    Publication date: November 8, 2012
    Inventor: Chris D. Geddes
  • Patent number: 8304251
    Abstract: Systems and methods are disclosed to automatically detect the presence of a substance on a test swipe by capturing a background image of the test swipe; applying one or more test chemicals to a test swipe; adjusting the temperature of the test swipe to a predetermined temperature range; capturing an in-situ image of the test swipe after the application of chemical at the predetermined temperature range; subtracting the background image from the in-situ image; generating a difference value from the two images; and searching a known database to identify the substance.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: November 6, 2012
    Assignee: Chem Spectra, Inc.
    Inventors: Jeffrey Haas, Douglas Haas
  • Publication number: 20120264226
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: October 5, 2011
    Publication date: October 18, 2012
    Applicant: Fluidigm Corporation - A Delaware Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20120261256
    Abstract: This invention has two synergistic elements for simultaneous use in point-of-care or field analyses of diverse substances important to clinical medicine and other applications. The first element is a sample holder in which are stored the several reagents need for quantification of target molecules. The onboard storage of reagents in a water soluble plastic obviates the need for purchase, storage, measuring and mixing of the required reagents prior to analyses. The second part of the invention is a compact hand-held analyzer made of modern miniature optical components, into which the holder is inserted right after it is loaded with a sample by capillary action. The combination of the holder and analyzer permits analyses that are ten times faster than those done with current analyzers, and equally accurate. Analyses can be performed by diverse people, who require only a few minutes of training in the use of the entire invention.
    Type: Application
    Filed: February 22, 2012
    Publication date: October 18, 2012
    Inventors: Chia-Pin CHANG, David J. Nagel
  • Patent number: 8288167
    Abstract: Embodiments of the invention relate to integrated chemiluminescence devices and methods for monitoring molecular binding utilizing these devices and methods. These devices and methods can be used, for example, to identify antigen binding to antibodies. The devices include both a chemiluminescence material and a detector integrated together.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 16, 2012
    Assignee: Intel Corporation
    Inventors: Narayan Sundararajan, Tae-Woong Koo
  • Patent number: 8287812
    Abstract: Substrates are provided for use in the detection, identification and analysis of biologic or chemical samples that are labeled with a fluorescent label, in which the plane of maximum fluorescence is displaced from a reflective substrate surface so that the intensity maximum of the standing wave interference pattern of incident and reflected probe radiation is enhanced. The format of the substrates includes substantially planar surfaces as well as substrates with introduced variations to the substrate surface, e.g., depressions, wells, pedestals and the like, disposed in arrays or other similar structures such that one or more fluorophore-comprising objects can be attached thereto.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: October 16, 2012
    Assignee: Complete Genomics, Inc.
    Inventor: Andres Fernandez
  • Patent number: 8287811
    Abstract: The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: October 16, 2012
    Assignee: Flir Systems, Inc.
    Inventors: Ross James Harper, Marcus la Grone, Mark Fisher
  • Publication number: 20120258548
    Abstract: Provided herein are devices, methods, and uses for measuring redox potential. For example, provided herein are fiber optic redox sensors and methods of use thereof.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: TUFTS UNIVERSITY
    Inventors: Wayne Chudyk, Christine Sotolongo, Eric Mueller
  • Publication number: 20120258547
    Abstract: A challenge in using recycled material in the papermaking process is the presence of hydrophobic organics with adhesive properties commonly known as “stickies.” Hydrophobic agglomerates can result in spots or defects in the final paper product or deposit on papermaking equipment resulting in poor runnability and downtime. Technologies for monitoring and controlling microstickies exist. However, a need exists for a technique to rapidly determine the size and content of macrostickies (diameter>100 microns) in recycled pulp process streams. The present invention is a device and method to perform real-time macrostickies and/or any visible hydrophobic particle analysis in an aqueous medium. Using the present invention, furnish quality can be monitored and treatment performance can be monitored and controlled. The technique is based on fluorescence image analysis to identify and count sticky particles as well as measure their size.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Inventors: William A. Von Drasek, Brett Brotherson, Sergey M. Shevchenko, Michael J. Murcia
  • Patent number: 8282896
    Abstract: Carriers or holders for holding microfluidic devices are provided. Some of the carriers that are provided include a hydration control device and/or a source of controlled fluid pressure to facilitate use of the carrier in conducting various types of analyses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 9, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Richard Facer, Hany Ramaz Nassef
  • Publication number: 20120252704
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Application
    Filed: June 1, 2012
    Publication date: October 4, 2012
    Applicant: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Publication number: 20120252132
    Abstract: A various-substance holder, a various-substance holder treating apparatus, and a various-substance holder treating method are provided which enable the mutual identification of particulate carriers to which various substances are or can be immobilized without the need to arrange the particulate carriers at predetermined positions or in a predetermined order, eliminating the need for time and effort to arrange the various substances at predetermined positions or in a predetermined order to allow treatments to be quickly and easily achieved. The various-substance holder has a plurality of particulate carriers or plural sets of particulate carriers to which plural types of chemical substances are or can be immobilized and a carrier holding portion holding the plurality of particulate carriers or the plural sets of particulate carriers in a substantially stationary state such that the plurality of particulate carriers or the plural sets of particulate carriers can be externally measured.
    Type: Application
    Filed: May 31, 2012
    Publication date: October 4, 2012
    Applicant: UNIVERSAL BIO RESEARCH CO., LTD.
    Inventor: Hideji Tajima
  • Patent number: 8277761
    Abstract: A fluidic device (100) comprising a substrate (101) and a transport medium (103) provided on the substrate (101) to define a transport path for transporting a fluidic sample (104) driven by an electric force.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: October 2, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Stefan Falk-Jordan, Patrick Kaltenbach
  • Patent number: 8278114
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. A detecting apparatus may be configured so that light from luminescent samples pass through a collimator, a a first lens, a filter, and a camera lens, whereupon an image is created by the optics on the charge-coupled device (CCD) camera. The detecting apparatus may further include central processing control of all operations, multiple wavelength filter wheel, and/or a robot for handling of samples and reagents.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: October 2, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Michael Gambini, Jeff Levi, John Voyta, John Atwood, Susan Atwood-Stone, legal representative, Bruce De Simas, Edward Lakatos, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 8273566
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 25, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8273033
    Abstract: A mainstream gas monitoring system and method that includes a mainstream airway adapter, and a gas sensing assembly associated with the mainstream airway adapter to measure an analyte of a gas flow through the adapter. A gas sensing portion outputs a signal indicative of the analyte in a gas flow in the mainstream airway adapter. A processing portion receives the signal from the gas sensing portion and determines an amount of the analyte in the gas flow based on the signal from the gas sensing portion. The gas sensing portion is subject to temperature variations associated with variations in flow rate and direction of respiratory gases. Methods are described that utilize the measurement of instantaneous respiratory flow rate combined with estimates of gas temperature and composition to estimate the sensor cooling effects from which a flow based time varying compensation factor is derived.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 25, 2012
    Assignee: RIC Investments, LLC
    Inventors: Joesph A. Orr, Paul B. Gunneson, Anthony T. Pierry
  • Patent number: 8273567
    Abstract: There is provided a portable measuring system having a biophotonic sensor. The portable measuring system also includes a tunable light source, an output intensity detector and an output wavelength detector, which are mounted therein. The portable measuring system can precisely measure a variation in the reflectivity spectrum and/or the transmittance spectrum of the biophotonic sensor before and after an antigen-antibody reaction by varying the wavelength of the tunable light source. Thus, the concentration of the antigen is precisely measured.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Sung Ko, Chul Huh, Kyung Hyun Kim, Jong Cheol Hong, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Publication number: 20120238472
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: LUMENCOR, INC.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Publication number: 20120237964
    Abstract: Provided herein are a luminogen compound of formula (I) including a AIE luminophore moiety conjugated with a maleimide moiety and a use of the same for detecting thiol groups in biomolecules. Also provided is a dye molecule, a biosensor or a bioprobe comprising the luminogen compound of formula (I) in use for detecting thiol groups in biomolecules. The detection method of the present subject matter not only has high thio-selectivity and sensitivity, but also is rapid, convenient and handy.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 20, 2012
    Applicant: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Benzhong TANG, Yang Liu, Wing Yip Lam, Yong Yu
  • Patent number: 8268249
    Abstract: An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 18, 2012
    Assignees: 3M Innovative Properties Company, Life Technologies Corporation
    Inventors: Larry J. Carson, Joel R. Dufresne, Patrick R. Fleming, Michael C. Lea, Nicholas A. Lee, John Shigeura
  • Patent number: 8268247
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 18, 2012
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8268571
    Abstract: The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 18, 2012
    Assignee: STC.UNM
    Inventors: Larry A Sklar, Bruce Edwards, Frederick Kuckuck
  • Publication number: 20120231549
    Abstract: Implementations and techniques for sensing hydroxyl radicals in ozone washing systems are generally disclosed.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Miller
  • Publication number: 20120231532
    Abstract: An optical scanning system including a switchable light source, a detector, a substrate and a plurality of optical sensing sites, as well as methods and kits for use thereof are provided. The substrate is coupled to and in optical communication with the switchable light source and the detector. Additionally, the substrate includes a plurality of substantially parallel excitation waveguides, and a plurality of substantially parallel collection waveguides, the excitation waveguides and collection waveguides crossing to form a two-dimensional array of intersection regions where an excitation waveguide and a collection waveguide cross and provide optical communication with the intersection region at each crossing. The plurality of optical sensing sites are each in optical communication with an intersection region.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Inventor: Reuven Duer