Waveguides Patents (Class 422/82.11)
  • Patent number: 7090988
    Abstract: A device for detecting the presence of an antigen including (1) a cell having antibodies which are expressed on the surface of the cell and are specific for the antigen to be detected, where binding of the antigen to the antibodies results in an increase in calcium concentration in the cytosol of the cell, the cell further having a emitter molecule which, in response to the increased calcium concentration in the cytosol, emits a photon; (2) a liquid medium for receiving the antigen and in which the cell is immersed; and (3) an optical detector arranged for receiving the photon emitted from the cell.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: August 15, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Todd H. Rider, Laura Bortolin
  • Patent number: 7091049
    Abstract: An enhanced diffraction based biosensor system and method are provided for detecting an analyte of interest in a test medium. The system incorporates at least one additional detection tag substance with the analyte of interest, the tag emitting a measurable parameter that is different from optical diffraction characteristics of the analyte. The biosensor may be a “fluoroptical” system wherein the detection tag is a fluorescence emitting substance, including fluorescent-labeled diffraction enhancing elements. The enhanced diffraction biosensor system may determine the presence of analytes in biological fluids both qualitatively and quantitatively.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: August 15, 2006
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Rameshbabu Boga, Chibueze Obinna Chidebelu-Eze, Rosann M. Kaylor, Xuedong Song
  • Patent number: 7074621
    Abstract: The present invention provides a method of detecting human antibodies in a sera solution. The invention also provides a method of quantitating anti-glycolipid antibody levels in solutions. The invention provides a method of diagnosing disease states, including neurological diseases, by quantitating a subject's antibody levels.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: July 11, 2006
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Norman Latov, Armin Alaedini
  • Patent number: 7070987
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: July 4, 2006
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li, Jean Qiu, Homer Pien
  • Patent number: 7060487
    Abstract: Coupled fiber-optic, evanescent-wave biosensors are improved through the use of configurations which adjust certain optical characteristics for enhanced sensitivity. In the preferred embodiment, this is carried out by inputting light into the coupler at either a different wavelength or multiple wavelengths simultaneously. In alternative embodiments, different modulation schemes and/or interferometric schemes are utilized. For example, at each of the inputs, different carrier frequencies may be used and modulated at lower frequencies, including prime-number frequencies. As the refractive index is changed in the vicinity of the coupling, a shift in the wavelength will induce a phase shift in the baseline signal such that, during data collection, the sensor is able to detect more refined changes. In general, through appropriate choice of input wavelength, fewer operational points will fall in an inefficient local maximum or minimum, thereby affording much greater sensitivity.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: June 13, 2006
    Assignee: Veridian Systems Division
    Inventor: Michael D. Lackhart
  • Patent number: 7052652
    Abstract: Arrangements for the detection of the presence and/or concentration of an analyte in a sample of bodily fluid include diffuse transmission, diffuse reflection and edge or waveguide illumination arrangements. A vertical flow assay arrangement and/or technique is also disclosed, and includes a detection component that can be in the form of an array of optical detection elements. A number of assay pad constructions are described which may include at least one or more of the following components: a prefilter component, a reflective component, a membrane component, a reagent component, a mesh component, and a component to prevent lateral spreading.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: May 30, 2006
    Assignee: Rosedale Medical, Inc.
    Inventors: Peter J. Zanzucchi, Sterling E. McBride
  • Patent number: 7037727
    Abstract: An apparatus for measuring a medical substance where a prism having a high refractive index, a thin metal film formed on one of the surfaces of the prism, a light source for making a light incident upon the thin metal film, and a detector for detecting an incident angle of a light being made incident upon a film on which a plasmon resonance phenomenon is generated on the thin metal film are provided. The medical substance, i.e. antigen as an object to be measured, is fixed to the surface of the thin metal film, and the condition for generating the plasmon resonance phenomenon is varied when a mixture of antibody which is coupled with the medical substance in a specific manner and a sample is made contact with a surface of the thin metal film; and the amount of the medical substance can be detected by recognizing the change with a high sensitivity.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: May 2, 2006
    Assignee: DKK Corporation
    Inventors: Norio Miura, Noboru Yamazoe, Taizo Uda
  • Patent number: 7033542
    Abstract: Rapid spectrum assay of multiple samples with infrared light is made possible by devices and methods that increase total light throughput. Multiple wavelength scan with Fourier analysis is combined with large numbers of sample wells located within infrared light compatible solid materials. In particular, very large scale measurement devices and systems for their use are fabricated from lithography and other techniques used for semiconductor processing.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: April 25, 2006
    Inventors: William B. Archibald, Alfred W. Archibald
  • Patent number: 7029631
    Abstract: An apparatus for enhancing the collection of optical signals comprises a waveguide, which comprises a structure in a channel adapted for the flow of assay fluid. In one embodiment, fluorophore is coupled to a surface of the structure, where the fluorophore has a receptor for an analyte (ligand) in the assay fluid and the structure is adapted to transmit optical signals from the fluorophore to a detector that is adapted to detect optical signals from the fluorophore coupled to the waveguide.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: April 18, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Leslie Leonard, David King
  • Patent number: 7022515
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: April 4, 2006
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatová, Shao-Chie Huang, Hsu-Kun Wang
  • Patent number: 7008799
    Abstract: The invention concerns an analytical test element for the determination of an analyte in a liquid containing an inert carrier, a detection element and a channel capable of capillary liquid transport which has a sample application opening at one end and a vent opening at the other end of the channel capable of capillary liquid transport, wherein the channel capable of capillary liquid transport is formed at least partially by the carrier and the detection element and extends in the direction of capillary transport from the sample application opening at least to the edge of the detection test element that is nearest to the vent opening and wherein a notch is located in one of the surfaces forming the channel capable of capillary liquid transport at the edge of the test element forming the sample application opening so that one side of the edge of the test element forming the sample application opening is at least partially discontinuous and the surface opposite to the notch is exposed.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: March 7, 2006
    Assignee: Roche Diagnostics GmbH
    Inventors: Volker Zimmer, Wolfgang Schwöbel, Ronald Mönch, Wilhelm Leichner
  • Patent number: 6991938
    Abstract: A kinetic assay method for quantifying an analyte in a sample.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: January 31, 2006
    Assignee: Applied Research Systems ARS Holding N.V.
    Inventors: Alan Derek Cookson, Phelim Daniels
  • Patent number: 6979567
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semicylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method has patches of capture molecules, each specific for a different analyte disposed adjacently within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers, which in turn are coupled to the waveguide surface or to a nonspecific binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers, the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: December 27, 2005
    Assignee: BioCentrex, LLC
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin Caldwell, Vera Janatová, Shao-Chie Huang
  • Patent number: 6962808
    Abstract: There is provided an apparatus for screening pharmacological agents for agents which induce regression of cancer. The apparatus includes an evanescent sensing device, at least one sensor having affixed to its surface molecules of a first type, which have affinity for molecules of a biological receptor, the surface molecule and receptor molecule combination having the effect that, in vivo, the binding affects the rate of transcription of gene products, and a molecular tag wherein the molecular tag is bound to the sensor wherein the binding between molecules of the first type and molecules the biological receptor cause the tag to produce a alteration in signal recorded by the evanescent sensing device, the tag also being bound to molecules of a second type, the molecules of the second type having affinity for the receptor molecules.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: November 8, 2005
    Assignee: The University of Louisville Research Foundation
    Inventors: Judith L. Erb, James G. Downward, IV, John R. Erb-Downward, James L. Witliff
  • Patent number: 6958131
    Abstract: The optical sensor contains an optical waveguide (1) with a substrate (104), waveguiding material (105), a cover medium (106) and a waveguide grating structure (101-103). By means of a light source (2), light can be emitted to the waveguide grating structure (101-103) from the substrate side and/or from the cover medium side. (101-103). With means of detection (11), at least two differing light proportions (7-10) radiated from the waveguide (1) can be detected. For carrying out a measurement, the waveguide can be immovably fixed relative to the light source (2) and the means of detection (11). The waveguide grating structure (101-103) itself consists of one or several waveguide grating structure units (101-103), which if so required can be equipped with (bio-)chemo-sensitive layers. The sensor permits the generation of absolute measuring signals.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 25, 2005
    Assignee: Artificial Sensing Instruments ASI AG
    Inventor: Kurt Tiefenthaler
  • Patent number: 6951715
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: October 4, 2005
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li, Homer Pien, Jean Qiu
  • Patent number: 6940590
    Abstract: An optical sensor device for determining the presence or concentration of an analyte, contains a waveguide disposed over a light source and a light detector mounted on a surface of a substrate and separated by an internal baffle, wherein the waveguide has a thickness corresponding to a far field emission point of the light source as determined by a light shielding baffle between the light source and light detector. An analyte indicator matrix is disposed on the outer surface of the waveguide. The sensor device geometry takes advantage of only direct illumination of the indicator matrix, and direct collection of indicator matrix illumination, without any significant reflection by said waveguide. Undesirable light noise generated by the light source passes directly out of the device through the waveguide.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: September 6, 2005
    Assignee: Sensors for Medicine and Science, Inc.
    Inventors: Arthur E. Colvin, Jr., Steven J. Walters
  • Patent number: 6936476
    Abstract: Systems and methods for medical diagnosis or risk assessment for a patient are provided. These systems and methods are designed to be employed at the point of care, such as in emergency rooms and operating rooms, or in any situation in which a rapid and accurate result is desired. The systems and methods process patient data, particularly data from point of care diagnostic tests or assays, including immunoassays, electrocardiograms, X-rays and other such tests, and provide an indication of a medical condition or risk or absence thereof. The systems include an instrument for reading or evaluating the test data and software for converting the data into diagnostic or risk assessment information.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: August 30, 2005
    Assignee: Adeza Biomedical Corporation
    Inventors: Emory V. Anderson, Jerome Lapointe, Ricardo Martinez, Gail Marzolf, Ronald Pong, Lynn Jones, Robert O. Hussa, Edward Nemec, Andrew E. Senyei, Duane DeSieno
  • Patent number: 6924138
    Abstract: Single-mode and multi-mode fibers to achieve modal splitting and greater sensitivity in an optical fiber coupler for evanescent-wave biosensor applications. A source of light having multiple modes is coupled to the input to one of the multi-mode fibers, with the geometry of necked-down section being such that a limited number of modes may be carried by the multi-mode fiber as the light emerges from the coupler. At least one of the single-mode fibers is supported adjacent the multi-mode fiber to receive and carry one of the limited modes. A biomolecule enveloped by the evanescent field, exhibits a direct or indirect affinity to a binding partner, such that attachment of the binding partner is at least partially responsible for the limited number of modes carried by the multi-mode fiber as the light emerges from the coupler.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: August 2, 2005
    Assignee: Veridian Systems Division
    Inventor: Michael D. Lockhart
  • Patent number: 6911344
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: June 28, 2005
    Assignee: BioCentrex, LLC
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Jacob D. Durtschi
  • Patent number: 6903815
    Abstract: An optical waveguide sensor for glucose measurement comprises a substrate, a first optical waveguide layer formed on a surface of the substrate, an entrance grating and an exit grating which are formed contacting with the first optical waveguide layer and being spaced from each other, a second optical waveguide layer located between the entrance grating and the exit grating while being in contact with the first optical waveguide layer, the second optical waveguide layer having a higher refractive index that that of the first optical waveguide layer, and a functioning layer containing an enzyme and a coloring reagent which is formed on the second optical waveguide layer.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: June 7, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichi Uchiyama, Ichiro Tono, Hideo Eto, Miki Nagatomo
  • Patent number: 6900059
    Abstract: An analytical device that can be used to conveniently and accurately assay plural vessels. In one exemplary embodiment, a pair of LED sources provides illumination through a pair of radial waveguides to plural vessels arranged in a pair of substantially concentric and circular rows about the LED sources. A light pipe receives light transmitted through a vessel from each radial waveguide and reflects the received light downward to a single printed circuit board that contains a photodiode for each light pipe, as well as processing circuitry. The first LED source/radial waveguide optical is used to confirm the presence of a vessel, and the second is used to perform, e.g., turbidometric and/or calorimetric assays upon an analyte within the vessel. The vessel is incubated in a vessel support that includes a heat conducting base and a heat insulating cover. Heat is supplied by a DC heater.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 31, 2005
    Assignee: Associates of Cape Cod, Inc.
    Inventors: Alan Shinn, Chiko Fan, Elias R. Elias, Thomas J. Novitsky, Michael Dawson, Keith Richardson
  • Patent number: 6893814
    Abstract: A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: May 17, 2005
    Assignee: The Regents of the University of California
    Inventors: Basil I. Swanson, Xuedong Song, Clifford Unkefer, Louis A. Silks, III, Jurgen G. Schmidt
  • Patent number: 6890483
    Abstract: A substantially non-reflective, low or non-fluorescing substrate comprising a phase-inversion support and a plurality of opaque solids that are substantially chemically non-reactive with the phase inversion support and of a size sufficient to be partially or completely contained within, or intimately bound to, the phase inversion support. Methods of making and using the substantially non-reflective, low or non-fluorescing substrate are also disclosed.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: May 10, 2005
    Assignee: Cuno Incorporated
    Inventors: Rita J. Andreoli, Richard S. Chesterson
  • Patent number: 6887701
    Abstract: The microarrays of the present invention are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: May 3, 2005
    Assignee: Large Scale Proteomics Corporation
    Inventors: Norman G. Anderson, N. Leigh Anderson
  • Patent number: 6887430
    Abstract: A total reflection cell has a total reflection prism on at least one surface thereof. A mixed solution containing a gold colloid labelled antibody which is adsorbed on a gold colloid is stored in the total reflection cell, and a sample solution containing an antigen causing antigen-antibody reaction with the antibody is added thereto for forming a gold colloid labelled immune complex. A measuring beam is introduced into the total reflection prism from an incident optical system at an angle ? of incidence causing total reflection and an outgoing beam from the total reflection prism is received by a measuring optical system, thereby measuring absorption by the gold colloid labelled immune complex and carrying out qualification and determination of the antigen.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: May 3, 2005
    Assignee: Kyoto Dai-Ichi Kagaku Co., Ltd.
    Inventors: Xiaoming Dou, Yoshinori Yamaguchi, Harumi Uenoyama
  • Patent number: 6872522
    Abstract: Described is a method for discriminating complex biological samples using an array of discrete biological sensing elements immobilized onto a solid support in which constituents bound to the sensor array is directly determined by measuring the mass increase on the surface; data analysis of said method is performed using neutral network or statical based pattern recognition techniques. In a preferred embodiment the liquid sample is tested for the presence of soluble constituent(s) by contacting said sample with said sensor array under specific conditions, removing unbound sample constituent(s), determining the mass increase on the surface and comparising said mass increase data with a reference standard using pattern recognition software.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: March 29, 2005
    Inventors: Michael Mecklenburg, Bengt Danielsson, Fredrick Winqvist
  • Patent number: 6869570
    Abstract: An apparatus and method for analyzing a sample of biologic fluid quiescently residing within a chamber is provided. The apparatus includes a light source, a positioner, a mechanism for determining the volume of a sample field, and an image dissector. The light source is operable to illuminate a sample field of known, or ascertainable, area. The positioner is operable to selectively change the position of any or any or all of the chamber, the light source, or the image dissector, thereby enabling selective illumination of all regions of the sample. The mechanism for determining the volume of a sample field can determine the volume of a sample field illuminated by the light source. The image dissector is operable to convert an image of light passing through or emanating from the sample field into an electronic data format.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: March 22, 2005
    Assignees: Wardlaw Partners, LP
    Inventor: Stephen C. Wardlaw
  • Patent number: 6866823
    Abstract: An apparatus for analyzing a sample of biologic fluid quiescently residing within a chamber is provided. The apparatus includes a light source, a positioner, a mechanism for determining the volume of a sample field, and an image dissector. The light source is operable to illuminate a sample field of known, or ascertainable, area. The positioner is operable to selectively change the position of one of the chamber or the light source relative to the other, thereby permitting selective illumination of all regions of the sample. The mechanism for determining the volume of a sample field can determine the volume of a sample field illuminated by the light source. The image dissector is operable to convert an image of light passing through or emanating from the sample field into an electronic data format.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: March 15, 2005
    Assignees: Wardlaw Partners LP
    Inventor: Stephen C. Wardlaw
  • Patent number: 6866824
    Abstract: Provided are methods of screening and identification of bioactivities and bioactive molecules of interest using a capillary array system. More specifically, disclosed are methods of using optical detection and capillary array-based techniques for screening libraries and recovering bioactive molecules having a desired activity or a nucleic acid sequence encoding such bioactive molecules.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: March 15, 2005
    Assignee: Diversa Corporation
    Inventors: William Michael Lafferty, Jay M. Short, Martin Keller
  • Patent number: 6846635
    Abstract: Microarrays are prepared by using a separate fiber for each compound being used in the microarray. The fibers are bundled and sectioned to form a thin microarray that is glued to a backing.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: January 25, 2005
    Assignee: Large Scale Proteomics Corp.
    Inventors: Norman G. Anderson, N. Leigh Anderson, James A. Braatz
  • Patent number: 6845203
    Abstract: The interior surfaces of the holes in holey optical fibers has adsorbed optically material which may be detected by propagating laser light down the axis of the fiber and detecting Raman, Infrared, or visible fluorescence or absorption.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: January 18, 2005
    Inventor: Marc David Levenson
  • Patent number: 6835351
    Abstract: An optical-chemical sensor which is suitable for the continuous and discontinuous determination by luminescence optics of the concentration of chloride in an aqueous sample and which comprises a luminescence indicator (I) and a polymer (H) carrying the luminescence indicator (I) is characterized in that the luminescence indicator (I) is a non-lipophile acridine or bisacridine compound and the polymer (H) is a linear-chain hydrophile polymer soluble in an organic solvent, whereby it is possible to excite the sensor by commercially available LEDs, to manufacture very large numbers thereof at a moderate cost and in a reproducible way and, preferably, to use it for the determination of physiological chloride concentrations and the sensor furthermore has a wide dynamic measuring range for the determination of chloride; a high sensitivity, stability and reproducibility; a high selectivity for chloride; and a low pH cross-sensitivity.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: December 28, 2004
    Assignee: F. Hoffmann-La Roche AG
    Inventors: Christian Huber, Tobias Werner, Otto S. Wolfbeis, Douglas E. Bell, Susannah Young
  • Publication number: 20040247486
    Abstract: The optical sensor contains an optical waveguide (1) with a substrate (104), waveguiding material (105), a cover medium (106) and a waveguide grating structure (101-103). By means of a light source (2), light can be emitted to the waveguide grating structure (101-103) from the substrate side and/or from the cover medium side. (101-103). With means of detection (11), at least two differing light proportions (7-10) radiated from the waveguide (1) can be detected. For carrying out a measurement, the waveguide can be immovably fixed relative to the light source (2) and the means of detection (11). The waveguide grating structure (101-103) itself consists of one or several waveguide grating structure units (101-103), which if so required can be equipped with (bio-)chemo-sensitive layers. The sensor permits the generation of absolute measuring signals.
    Type: Application
    Filed: July 23, 2004
    Publication date: December 9, 2004
    Applicant: ARTIFICIAL SENSING INSTRUMENTS ASI AG
    Inventor: Kurt Tiefenthaler
  • Publication number: 20040223882
    Abstract: A micro plasma sensor system having a glow discharge gap. A fluid to be sensed may be brought into the vicinity of the discharge at the gap. Emission light from the discharge may be coupled to an optical spectrum analyzer for determining properties of the fluid. The coupling may include a window and particulate-matter-sensing electrodes proximate to the discharge gap. Window cleanliness and electrode electrical isolation may be maintained by the discharge. The optical analyzer may have individual bandpass filters for two or more optical channels to optical detectors, a Fabry-Perot filter in front of a set of optical detectors, or a grating or prism which disperses emission light at various angles according to wavelength to an array of light detectors. The optical detectors may output electrical signals to be processed.
    Type: Application
    Filed: December 31, 2003
    Publication date: November 11, 2004
    Inventors: Ulrich Bonne, Michael L. Rhodes, Barrett E. Cole
  • Patent number: 6808938
    Abstract: A method and apparatus for assaying a drug candidate with a biosensor having one or more sensing surface-bound biomolecules associated therewith are disclosed. The method comprises the steps of measuring the binding interaction between the drug candidate and the one or more sensing surface-bound biomolecules of the biosensor to obtain an estimate of at least one binding interaction parameter of the drug candidate, and then comparing the estimated binding interaction parameter against a mathematical expression correlated from binding interaction data associated with known drug compounds to determine an estimate of at least pharmacokinetic parameter of absorption, distribution, metabolism, or excretion (ADME) that is related to the drug candidate. The present invention allows for the simultaneous measurement of different pharmacokinetic parameters of the drug candidate, as well as an indication of the drug candidate's solubility, by use of a single analytical instrument.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: October 26, 2004
    Assignee: Biacore AB
    Inventors: Markku Hämäläinen, Robert Karlsson, Stefan Löfås
  • Patent number: 6803020
    Abstract: The invention concerns a novel method for preparing latex by emulsion (co)polymerization of ethylenically unsaturated monomers, wherein the direct inline monitoring is carried out by Raman spectroscopy. The invention also concerns latex compositions obtainable by the emulsion (co) ploymerization method whereof the direct inline monitoring is performed by Raman spectroscopy. The invention further concerns a device for implementing said method, said device comprising a reactor, at least an optical probe, a Raman spectrometer, optical fibers, a computer and a regulating automaton.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: October 12, 2004
    Assignee: Raisio Chemicals OY
    Inventors: Mathias Agnely, Bruno Amram, Phil D. Armitage, Dominique Charmot, Bruno Drochon, Eve Pere
  • Publication number: 20040197234
    Abstract: In a chemical substance detecting method for determining a chemical substance adsorbed to an infrared transmitting substrate by infrared multiple internal reflection method, a first light quantity in a first wavelength range where no substantial absorption of the infrared light takes place is measured in a state of the infrared transmitting substrate without a chemical substance adsorbed to, a second light quantity in the first wavelength range is measured in a state of the infrared transmitting substrate with a chemical substance adsorbed to, and a light quantity ratio between the first light quantity and the second light quantity is considered to compute an adsorption amount of the chemical substance adsorbed to the infrared transmitting substrate, whereby even when a light quantity of the transmitted infrared light is changed due to factors other than a chemical substance adsorbed to the substrate, the adsorption amount of the chemical substance can be precisely computed.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 7, 2004
    Inventors: Michiaki Endo, Kazuyuki Maruo
  • Patent number: 6800448
    Abstract: A device for detecting the presence of an antigen including (1) a cell having antibodies which are expressed on the surface of the cell and are specific for the antigen to be detected, where binding of the antigen to the antibodies results in an increase in calcium concentration in the cytosol of the cell, the cell further having a emitter molecule which, in response to the increased calcium concentration in the cytosol, emits a photon; (2) a liquid medium for receiving the antigen and in which the cell is immersed; and (3) an optical detector arranged for receiving the photon emitted from the cell.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: October 5, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Todd H. Rider, Laura Smith
  • Publication number: 20040184961
    Abstract: An apparatus and method for monitoring a large number of binding interactions and obtaining data related to the interactions. In accordance with the illustrative embodiment, the apparatus includes an IR sensor, a sliding separator, and IR-transmitting fibers that are optically coupled, at a first end thereof, to the sensor. The sliding separator adjusts the spacing between fibers as is required for interfacing the second end of the fibers with any of a variety of sample carriers. The second end of the fibers capture chemical entities form the sample carriers. The chemical entities at the end of the fibers are then contacted with a binding compound. If binding activity occurs, a thermal signal indicative thereof will be transmitted through the fiber to the sensor.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Inventor: Ilya Feygin
  • Publication number: 20040175837
    Abstract: A sensor having a tubular optical cell or similar structure with a membrane wall. The wall may be permeable so that analyte can enter into the tube containing a reagent. Conversely, the wall structure could instead operate to let reagent enter into the tube containing the analyte. Attached to one end of the tube may be a reagent reservoir. A valve may be attached to the other end of the tube and to a reagent disposal container. The flow or replacement of the reagent in the tube may be caused by gravity, a pump, elastic reservoir design or pressurized gas. One or more light sources may be positioned at one end of the tube with a light detector at the other end. Processing and display electronics may be connected to the valve, light sources and detector.
    Type: Application
    Filed: December 4, 2003
    Publication date: September 9, 2004
    Inventors: Ulrich Bonne, Purnendu K. Dasgupta
  • Patent number: 6787364
    Abstract: A sample chip analyzing device includes a waveguide plate which entirely reflects and guides incident light and has a number of sampling probes that are connectable to a sample to be analyzed, a light source which irradiates fluorescent pumping light onto an end face of an end portion of the waveguide plate that is inserted into a light-shielding box, and a pickup member which picks up an image of substantially an entire surface of the waveguide plate. The sample to be analyzed is labeled with fluorescent substances that are fluorescence-pumped by an evanescent wave which occurs when the fluorescent pumping light enters into an interior of the waveguide to be entirely reflected and guided, and the sample is analyzed by detecting respective ones of the sampling probes that are coupled to the fluorescence-pumped flourescent substances of the labeled sample, based on data outputted by the pickup member.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: September 7, 2004
    Assignee: Nippon Laser & Electronics Lab.
    Inventors: Haruo Tajima, Hidekatsu Yoneda
  • Patent number: 6785432
    Abstract: Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: August 31, 2004
    Assignee: The Regents of the University of California
    Inventors: Sonia Letant, Anthony Van Buuren, Louis Terminello
  • Patent number: 6776962
    Abstract: An integrated optical waveguide sensor system includes: an optical waveguide having a monolithic and roughened metallic layer on which a self-assembled monolayer is formed; an optical energy source for generating an optical excitation signal; and a spectrometer for detecting spectra of optical energy emitted from the optical waveguide. The waveguide facilitates multiple SERS responses resulting from interactions between the optical excitation signal and an analyte of interest that may be present on the surface of the self-assembled monolayer. Thus, the sensor system provides a sensor for detecting organic contaminants with a sensitivity of ppm and even ppb in some cases.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: August 17, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Pamela A. Boss, Stephen H. Lieberman
  • Publication number: 20040151626
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Application
    Filed: January 16, 2004
    Publication date: August 5, 2004
    Inventors: Brian Cunningham, Jane Pepper, Bo Lin, Peter Li, Homer Pien
  • Patent number: 6767515
    Abstract: An integrated optical chip device for molecular diagnostics comprising a tunable laser cavity sensor chip using heterodyned detection at the juncture of a sensor laser and a reference laser, the sensor laser including exposed evanescent field material.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of California
    Inventor: Larry A. Coldren
  • Patent number: 6767733
    Abstract: The present invention concerns a portable, reliable and sensitive biosensor apparatus. In certain embodiments, the apparatus incorporates a fluidic cube, comprising a vent cap, vent cap isolator, cube body, waveguide and stage. In preferred embodiments, the fluidic cube further comprises a fluid manifold. In more preferred embodiments, the fluidic cube comprises one or more sample channels that are designed to increase fluid mixing through the use of baffles. The biosensor is designed to simultaneously process multiple samples for a variety of analytes. In certain embodiments, the biosensor is designed to operate as a compact, stand-alone automated unit that can reliably analyze environmental, clinical, veterinary, pathologic or medical samples under adverse field conditions.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: July 27, 2004
    Assignee: PriTest, Inc.
    Inventor: Larry R. Green
  • Publication number: 20040126049
    Abstract: The present invention relates to method and apparatus for determining concentrations of organic additives in metal plating solutions, based on infrared spectroscopy, and more specifically attenuated total reflection infrared spectroscopy (ATR-IR).
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Inventors: Yuriy V. Tolmachev, MacKenzie King
  • Patent number: 6752962
    Abstract: A miniaturized integrated sensor (50) useful for indicating the presence of a sample analyte is disclosed. The sensor (50) has a platform (52) with an upper surface (53) and a detector (62), light source (60), waveguide (58), and reflective fixtures (60, 62) embedded in the platform (52). The light source (60) is preferably a light emitting diode and sits in a cup-shaped dimple (68) that directs light from the light source (60) toward one of the reflective fixtures (64) to uniformly distribute light across the waveguide (58). The waveguide (58) is coupled to an upper surface (53) of the sensor platform (52) and is coated with a thin film of indicator chemistry (70) which interacts with the sample analyte to produce optic signal changes that are measurable by the detector (62). A lead frame (51) in the platform (52) has pins (54, 55, 56) which provide the interface to the outside world.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: June 22, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Richard A. Carr, Jose L. Melendez, Kirk S. Laney
  • Patent number: 6730487
    Abstract: The present invention provides a method of detecting human antibodies in a sera solution. The invention also provides a method of quantitating anti-glycolipid antibody levels in solutions. The invention provides a method of diagnosing disease states, including neurological diseases, by quantitating a subject's antibody levels.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 4, 2004
    Assignee: Trustees of Columbia University in the City of New York
    Inventors: Norman Latov, Armin Alaedini