Forming Insoluble Substance In Liquid Patents (Class 423/140)
  • Publication number: 20030152503
    Abstract: A method of recovering metal and/or oxide thereof from a slurry is described. The method involves magnetically separating at least a portion of any magnetic impurities from the slurry and then leaching or dissolving at least a portion of any remaining magnetic impurities in a slurry. At least one chelating agent can then be added to the slurry and the solids can be recovered from the slurry by various separation techniques. The methods of the present invention are particularly useful in the recovery of tantalum and/or oxide thereof especially tantalum and/or oxide thereof having a very fine size.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Inventors: Claude Deveau, Stephen R. Young
  • Patent number: 6596246
    Abstract: Stable copper hydroxide is prepared by removing ferrous ion from the beginning cupric solution. The ferrous ion is oxidized to ferric ion, and the ferric ion is precipitated by raising the pH of the solution to 3-4. The utilization of phosphate ion both increases the efficiency of oxidation and simultaneously precipitates ferric ion. A second raising the pH of the purified solution precipitates highly pure copper hydroxide that can be harvested.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: July 22, 2003
    Assignee: Dermet SA de CV
    Inventors: Julio Huato, Tetsuya Ogura
  • Patent number: 6589695
    Abstract: Disclosed is a method of preparing a positive active material for a rechargeable lithium battery. In this method, a lithium salt is reflux-reacted with a metal salt in a basic solution. The positive active material has a spherical or sperical-like form, diameter of 10 nm to 10 &mgr;m, and a surface area of 0.1 to 5 m2/g.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: July 8, 2003
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ho-Jin Kweon, Sung-Kyun Jang, Young-Uk Kwon
  • Patent number: 6579505
    Abstract: A method for producing an iron oxide pellet including the steps of adding water to a raw material mixture comprising iron oxide which serves as a primary component, a carbonaceous material in an amount sufficient for reducing the iron oxide, an organic binder in an amount sufficient for binding the iron oxide and the carbonaceous material, and an inorganic coagulant in an amount of not less than 0.05 mass % and less than 1 mass %; pelletizing the resultant mixture to thereby obtain a green pellet; and drying the green pellet until the moisture content is reduced to equal to or less than 1.0 mass %. The thus-produced iron oxide pellet is charged in a reducing furnace for reduction to thereby obtain a reduced iron pellet.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: June 17, 2003
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Osamu Tsuchiya, Hidetoshi Tanaka, Takao Harada, Jun Jimbo, Shoichi Kikuchi, Yasuhiko Igawa
  • Patent number: 6544673
    Abstract: Spindle-shaped magnetic metal particles containing iron as a main component, having an average major axis diameter (L) of 0.05 to 0.15 &mgr;m; a coercive force of 111.4 to 159.2 kA/m; a Co content of from 5 to less than 15 atm % based on whole Fe; a crystallite size of from 150 to less than 170 Å; a ratio of Al to Co from 0.3:1 to less than 2.0:1; a specific surface area (S) represented by the formula: S≦−160×L+65; an oxidation stability (&Dgr;&sgr;s) of saturation magnetization of not more than 4.5%; and an ignition temperature of not less than 145° C. The spindle-shaped magnetic metal particles containing iron as a main component, exhibit an adequate coercive force, and are excellent in dispersibility, oxidation stability and coercive force distribution despite fine particles, especially notwithstanding the particles have an average major axis diameter as small as 0.05 to 0.15 &mgr;m.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: April 8, 2003
    Assignee: Toda Kogyo Corporation
    Inventors: Kenji Okinaka, Masayuki Uegami
  • Patent number: 6504077
    Abstract: A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: January 7, 2003
    Assignee: The University of Chicago
    Inventors: Ankur Purohit, Michael D. Kaminski, Luis Nunez
  • Patent number: 6485696
    Abstract: Ozone is used to rapidly oxidize specific metallic elements. The insoluble oxidized compounds of the metals formed by the ozonation are then recovered for industrial use in a conventional sedimentation/filtration tank or pool. There is no requirement for pre-treating or neutralizing the acid mine discharge, even when iron is the dominant metal. If the pH of the untreated acid mine discharge is less than about 2.5, metals other than iron precipitated first. After that, the pH is raised and the iron is precipitated as ferric hydroxide. Aluminum is removed as hydrated aluminum compounds after removal of the iron prior to discharging the acid mine discharge to streams. Both the ozonation and neutralization processes are monitored and controlled using electrochemical sensors and feedback controllers.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: November 26, 2002
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Motoaki Sato, Eleanora I. Robbins
  • Patent number: 6475450
    Abstract: A method for directly leaching a zinc concentrate in one of the stages contained in the hydrometallurgical process for the production of electrolytic zinc. The method comprises: a neutral leach step, a zinc concentrate leach step, and an iron oxidation step. In the zinc concentrate leach step, a neutral leach residue and an iron sediment returned from the iron oxidation step are repulped by the spent electrolyte followed by adding thereto zinc concentrate to extract zinc from the zinc concentrate by carrying out a leaching under atmospheric pressure and at a temperature of not lower than 90° C., but not higher than the boiling point of the solution. According to this method, the concentration of Fe(III) ions in the zinc concentrate leach solution is significantly increased. Due to this Fe(III) ion concentration, the leaching rate of the zinc concentrate is enhanced.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: November 5, 2002
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kaoru Saruta, Norihito Ishimori, Hitoshi Masuda
  • Patent number: 6468483
    Abstract: A method for processing alumina-bearing ores such as bauxite to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the alumina-bearing ores to a digester containing an acid to provide a mixture of acid and alumina-bearing ores and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: October 22, 2002
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6447699
    Abstract: An electrode conductive material includes a non-stoichiometric oxidized cobalt compound whose electrical conductivity is greater than 5×10−3 S/cm and which has a direct spinel structure and formula Co2+xCo3+yO4, with 0.73≦≦0.80 and 1.87≦y≦1.95. An alkaline electrolyte secondary storage cell positive electrode includes a current collector and a layer containing a binder, particles of an electrochemically active material and the aforementioned conductive material, the proportion by weight of the conductive material in the layer being from 4% to 10% of the active material.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: September 10, 2002
    Assignee: Alcatel
    Inventors: Patrick Bernard, Claudette Audry
  • Patent number: 6440300
    Abstract: A swimming pool water treatment system for removing iron from feed water, with the system including a large storage/reaction vessel to which a branch injection/filtration circuit is coupled. An alkali metal hypochlorite is injected into water flowing through the injection/filtration circuit and delivered to the storage/reaction vessel to permit precipitation of the iron oxide. A bank of parallelly coupled filters are provided in the branch filtration circuit upstream from the hypochlorite injection site for removal of insoluble iron precipitated from the treated water within the storage/reaction vessel. The branch injection/filtration circuit further incorporates an ozone injector valve where a flow of ozone is continuously introduced to water flowing through the branch injection/filtration circuit. The storage/reaction vessel is sized sufficiently large so as to permit an adequate contact dwell time for formation of the insoluble iron precipitate.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: August 27, 2002
    Inventors: Michael Randall, Eric Granheim, James M. Vossen
  • Patent number: 6440377
    Abstract: Process for the production of gypsum and also of an iron-oxide pigment from the waste acid that accumulates in the course of the production of titanium dioxide in accordance with the sulfate process, characterized in that in a first stage a partial neutralization of the waste acid is effected with a calcium compound subject to precipitation and optionally direct separation of gypsum, subsequently the remaining solution is neutralized further in a second stage subject to precipitation of a deposit containing Ti, Al, Cr, V and optionally Fe(III) and from the solution containing iron sulfate that is obtained after separation of the solids an iron-oxide pigment is produced in a third stage by addition of alkaline compounds and also of an oxidizing agent.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: August 27, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Auer, Günter Lailach, Ulrich Meisen, Werner Schuy
  • Patent number: 6416723
    Abstract: Process for the production of gypsum and also of an iron-oxide pigment from the waste acid that accumulates in the course of the production of titanium dioxide in accordance with the sulfate process, characterized in that in a first stage a partial neutralization of the waste acid is effected with a calcium compound subject to precipitation and optionally direct separation of gypsum, subsequently the remaining solution is neutralized further in a second stage subject to precipitation of a deposit containing Ti, Al, Cr, V and optionally Fe(III) and from the solution containing iron sulfate that is obtained after separation of the solids an iron-oxide pigment is produced in a third stage by addition of alkaline compounds and also optionally addition of ammonia and also of an oxidizing agent, ammonia being liberated by addition of CaO and/or Ca(OH)2 from the solution containing (NH4)2SO4 that is obtained after separation of the iron-oxide pigment.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: July 9, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Auer, Günter Lailach, Ulrich Meisen, Werner Schuy
  • Patent number: 6409979
    Abstract: A method for precipitating nickel and cobalt from an acid aqueous solution containing at least dissolved nickel, cobalt and manganese, comprising adding solid caustic calcined magnesium oxide or freshly slurried caustic calcined magnesium oxide to the solution in an amount sufficient to precipitate a substantial proportion of the nickel and cobalt in solution and to precipitate a minor proportion of the manganese in solution; maintaining the magnesium oxide in contact with the solution for a period of about 1 hour to about 9 hours to thereby achieve precipitation of a substantial proportion of the nickel and cobalt in solution and precipitation of a minor proportion of the manganese in solution; and separating solids precipitated in the prior step from the aqueous solution.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: June 25, 2002
    Assignee: Centaur Nickel Pty Limited
    Inventor: David Thomas White
  • Patent number: 6406676
    Abstract: A method of purifying an acid leaching solution obtained by processing hydrometallurgically material that contains valuable metals and also Fe3+ and Fe2+, and possibly also arsenic in solution. The major part of the Fe3+-content and the arsenic is precipitated out in a first stage, by adding pH-elevating agent to the leaching solution. The precipitate formed in the first precipitation stage is extracted from the solution and removed from the process. The solution is oxidised in a second precipitation stage while adding a further pH-elevating agent for oxidation of Fe2+ and precipitation of resultant Fe3+ and any arsenic still present. The resultant precipitate and any residual solid pH-elevating agent are then extracted from the solution and returned in the process to more acid conditions, and the thus purified solution is then processed to win its valuable metal content in a manner per se. The pH is suitably raised during the first stage to a value in the range of 2.2-2.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: June 18, 2002
    Assignee: Boliden Mineral AB
    Inventor: Jan-Eric Sundkvist
  • Patent number: 6395242
    Abstract: The present invention relates to an apparatus and a process for producing zinc oxide from a zinc-bearing material. The process according to the present invention comprises the steps of leaching the complex sulfide material with hydrochloric acid and oxygen; precipitating iron from the leach solution using magnesium oxide and oxygen; removing copper, silver, cadmium, cobalt and lead from the leach solution by cementation with zinc dust; precipitating zinc oxide from the leach solution using magnesium oxide; and spray roasting the remaining magnesium chloride leach solution to regenerate hydrochloric acid and magnesium oxide. The present invention further relates to processes for recovering copper, silver, lead, and iron from complex sulfide materials.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: May 28, 2002
    Assignee: Noranda Inc.
    Inventors: Carole Allen, Peter Kondos, Serge Payant, Gezinus Van Weert, Anthonie Van Sandwijk
  • Patent number: 6379637
    Abstract: The present invention provides an atmospheric acid leaching process for leaching nickel and cobalt from highly-serpentinized saprolitic fractions of nickel laterite deposits that are generally too low in nickel to support economical extraction of their nickel contents by pyrometallurgical processing except under special circumstances, and generally too high in magnesium to be suitable for processing by modern high pressure acid leaching processes employed for treating predominantly limonitic nickel laterites. The process involves leaching the highly-serpentinized saprolitic portion of the nickel laterite ore profile in strong sulphuric acid solutions at atmospheric pressure and temperatures between 80° C. and 100° C., essentially autogenously, to extract at least 90% of its contained nickel content and a large proportion of its cobalt content after leaching reaction times of about one hour or less.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 30, 2002
    Inventor: Walter Curlook
  • Publication number: 20020041840
    Abstract: A hydrometallurgical process is provided for leaching nickeliferous laterite ores at temperatures below the boiling point of the pulp and at atmospheric pressure. The high iron fraction of the laterite, referred to as limonite, is first contacted with concentrated sulfuric acid to partially or completely dissolve the iron and nickel into solution. A reducing agent is used to keep the redox potential in solution below 1000 mV to enhance cobalt dissolution and more advantageously between 1000 and 900 mV to avoid reduction of ferric iron. Further mixing of the leach slurry in the presence of sodium, potassium, or ammonium allows formation of iron jarosite at ambient pressure. The resulting acid from iron hydrolysis is neutralized with the low iron fraction of the laterite ore (saprolite), thereby dissolving nickel into solution. The resulting final leach slurry can then be treated with conventional methods to recover nickel and cobalt from solution.
    Type: Application
    Filed: May 24, 2001
    Publication date: April 11, 2002
    Inventors: J. Carlos Arroyo, David A. Neudorf
  • Publication number: 20020031463
    Abstract: A method for precipitating nickel and cobalt from an acid aqueous solution containing at least dissolved nickel, cobalt and manganese, the method including: adding solid caustic calcined magnesium oxide or freshly slurried caustic calcined magnesium oxide to the solution, the magnesium oxide being added in an amount sufficient to precipitate a substantial proportion of the nickel and cobalt in solution and to precipitate a minor proportion of the manganese in solution, maintaining the magnesium oxide in contact with the solution for a period of about 1 hour to about 9 hours to thereby achieve precipitation of a substantial proportion of the nickel and cobalt in solution and precipitation of a minor proportion of the manganese in solution; and separating solids precipitated in step (b) above from the aqueous solution. Preferably, about 80% to 100% of the Ni and Co in solution is precipitated and about 5% to 15% of the Mn in solution is precipitated. The precipitated material separates early from the solution.
    Type: Application
    Filed: April 7, 2000
    Publication date: March 14, 2002
    Applicant: Centaur Nickel Pty Limited
    Inventor: DAVID THOMAS WHITE
  • Patent number: 6352571
    Abstract: One or more metal salts of at least one iron group metal containing organic groups are dissolved in at least one polar solvent and complex bound with at least one complex former comprising functional groups in the form of OH or NR3, (R═H or alkyl). In addition, at least one insoluble, reducible salt of at least one iron group metal is suspended in the solution. Hard constituent powder and, optionally, a soluble carbon source are added to the solution. The solvent is evaporated and the powder mass is heat treated in inert and/or reducing atmosphere. As a result, a powder mixture is obtained which, after addition of a pressing agent, can be compacted and sintered according to standard practice to form a body containing hard constituents in a binder phase.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: March 5, 2002
    Assignee: Sandvik AB
    Inventors: Mats Waldenström, Rolf Svensson
  • Patent number: 6350420
    Abstract: A process is provided for the direct recovery of nickel and cobalt from a nickeliferous oxide ore leach slurry by ion exchange. A nickeliferous ore is leached with mineral acid to solubilize the metals. The resulting leach slurry is contacted with ion exchange resin, which selectively loads the nickel and cobalt from the pulp. The resin is separated from the leach slurry by screening and then stripped with an acidic solution. After stripping, the resin is returned to the loading cycle. Nickel and/or cobalt can be recovered in substantially pure form from the eluate by known processes. The metal-depleted slurry proceeds to waste treatment and disposal. This process eliminates the difficult solid/liquid separation, which would otherwise be required to recover metals values from the pregnant leach slurry.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: February 26, 2002
    Assignee: BHP Minerals International, Inc.
    Inventors: Willem P. C. Duyvesteyn, David A. Neudorf, Erik M. Weenink
  • Patent number: 6344294
    Abstract: A process for producing a positive electrode active material for a nonaqueous secondary battery comprising the steps of: dissolving compounds capable of providing lithium ions, nickel ions and optionally ions of at least one element selected from the group consisting of transition metals,-3B-group elements, 4B-group elements and 5B-group elements in a buffer solution containing at least lithium ions, thereby to prepare a starting aqueous solution; adding an oxalic acid to the starting aqueous solution to form a precipitate of oxalates of said ions and separating the precipitate; calcining the resulting precipitate to produce LiNI1−xMxO2, wherein 0≦X<0.5 and M is at least one element selected from the group consisting of the transition metals, 3B-group elements, 4B-group elements and 5B-group elements; and re-using a residual liquid after the precipitate is separated for preparing the starting aqueous solution.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: February 5, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoto Torata, Takehito Mitate
  • Publication number: 20020012621
    Abstract: A process for the recovery of nickel and/or cobalt values from a concentrate containing nickel or cobalt hydroxide comprises the steps of subjecting the concentrate to a leaching stage with an ammonium solution to produce a leach solution containing nickel and/or cobalt values and a residue. The nickel concentration in the leach solution is controlled to a maximum value of about 3 to 25 g/l, preferably 8 to 15 g/l and more preferably 10 g/l.
    Type: Application
    Filed: November 27, 1998
    Publication date: January 31, 2002
    Inventor: DAVID L. JONES
  • Patent number: 6342189
    Abstract: A method for the total precipitation of valuable metals, such as copper, nickel, zinc, cobalt, etc., from a leaching solution that has been acidified with sulphuric acid and that is substantially free from impurities, by neutralizing the solution with lime and/or limestone. Neutralization is effected in at least two stages, wherewith only partial precipitation is effected in the first stage, and wherewith full precipitation of remaining valuable metal content is effected in the last stage, by adding a surplus of neutralization agent. Slurry containing precipitates and remaining solid neutralization agent formed in the last stage in the neutralization process is returned to the first neutralization stage, possibly after re-dissolving the slurry in the incoming acid leaching solution. The amount of slurry returned together with any further neutralizing agent added promotes the partial precipitation of the valuable metal content.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: January 29, 2002
    Assignee: Boliden Mineral, AB
    Inventor: Jan-Eric Sundkvist
  • Patent number: 6328938
    Abstract: A method for the integration of a manufacturing facility with a salt dome, which manufacturing facility is one for the production of high purity titanium dioxide using chlorine as a reactant. The metal chlorides produced as a by-product of titanium dioxide production are reacted with sodium hydroxide to produce metal hydroxide precipitates in an aqueous sodium chloride solution, which is then conducted into a reservoir of brine in a salt dome. The metal hydroxide precipitates are allowed to settle and the sodium chloride solution mixes with the brine. A portion of the brine is conducted to the surface where it is decomposed to produce chlorine, hydrogen, and sodium hydroxide. The chlorine and sodium hydroxide are recycled for use in the overall integrated process.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: December 11, 2001
    Inventors: Timothy L. Taylor, Tommy G. Taylor
  • Patent number: 6270738
    Abstract: The invention relates to a process for preparing a usable product, in particular a water treatment solution which contains ferric iron, from an impure ferric sulfate solution which contains as an impurity at least one other metal, the process comprising a first precipitation step in which a base is added to the said impure ferric sulfate solution in order to raise the pH to approx. 2-5, preferably approx. 3-4, whereupon ferric hydroxide precipitates; following the first precipitation step, a second precipitation step in which there are added to the solution an oxidant and a base to raise the pH to approx. 6-10, preferably approx. 8-9, whereupon the said impurity metal precipitates; and one or more separation steps to separate from the sulfate solution the solids precipitated in the first and the second precipitation steps; as well as possibly an additional step in which the said separated solids, or a portion thereof, are treated further in order to form a usable product.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 7, 2001
    Assignee: Kemira Chemicals OY
    Inventors: Simo Jokinen, Stefan Jäfverström, Timo Kenakkala
  • Patent number: 6261526
    Abstract: A process for the recovery of nickel from a nickel containing ore in which the ore, particularly a laterite ore, is initially leached with an aqueous acid solution, after which the nickel is precipitated as nickel hydroxide by adding a hydroxide to the aqueous acid leach solution containing the nickel, followed by a re-leaching of the nickel with an aqueous ammoniacal solution and recovery of the nickel by a solvent extraction of the nickel from the aqueous ammoniacal solution with an organic phase of a water insoluble oxime extractant comprising a ketoxime containing less than 10% phenols dissolved in a water-immiscible hydrocarbon solvent and the nickel recovered by electrowinning the nickel from the aqueous acid stripping solution employed to strip the nickel from the organic phase.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: July 17, 2001
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, George Wolfe
  • Patent number: 6261527
    Abstract: A process is provided for leaching nickeliferous laterite ores by hydrometallurgical methods at temperatures below the boiling point of the pulp and at atmospheric pressure from which high overall nickel and cobalt extractions are obtained. The high iron fraction of the laterite, referred to as limonite, is first contacted with a concentrated mineral acid to partially or completely dissolve the iron and nickel in solution. During this process, a reducing agent is used to keep the redox potential in solution below 1000 mV to enhance cobalt dissolution and more advantageously between 1000 and 900 mV to avoid reduction of ferric iron. Further mixing of the leach slurry in the presence of sodium, potassium, or ammonium will allow the formation of iron jarosite at ambient pressure. The resulting acid from iron hydrolysis is neutralized with the low iron fraction of the laterite ore (saprolite) dissolving nickel into solution.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: July 17, 2001
    Assignee: BHP Minerals International Inc.
    Inventors: J. Carlos Arroyo, David A. Neudorf
  • Patent number: 6248302
    Abstract: A method for processing red mud to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the red mud to a digester containing an acid to provide a mixture of acid and red mud and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: June 19, 2001
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6245240
    Abstract: Provided herein is a process for treatment of solutions which contain ferrous, ferric and soluble manganese species which process comprises addition of an oxidizing agent to such a solution to cause formation of manganese dioxide particles and adding manganese dioxide seed particles so as to cause nascent manganese dioxide agglomerates formed from the action of the addition of the oxidizing agent on the soluble manganese species to adhere to the manganese dioxide seed particles. By a process according to the invention, it is possible to effectively remove the soluble manganese species as solid manganese dioxide by having effective control over the size of the manganese dioxide particles to enable their subsequent removal using ordinary filtration techniques.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: June 12, 2001
    Assignee: Tioxide Group Services Limited
    Inventor: Brian Cameron Noble
  • Patent number: 6231822
    Abstract: A method of recovering chloride and sulfate salts from spent potliner using acid digestion.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: May 15, 2001
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6228263
    Abstract: A process for treating sulphate- and metal-containing waste water, includes subjecting, in a reaction stage, the sulphate- and metal-containing waste water to biological sulphate reduction in which sulphates in the waste water are converted to sulphides, with metals present in the waste water precipitating out and treated waste water being obtained. The precipitated metals are withdrawn from the reaction stage, while treated waste water is withdrawn from the reaction stage. The treated waste water is subjected to polishing and/or to nutrient removal.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: May 8, 2001
    Assignee: Water Research Commission
    Inventors: Peter Dale Rose, Oliver O'Connor Hart
  • Patent number: 6217768
    Abstract: A method for treating sludge from wastewater purification is described. In the method, a sludge is treated, which contains phosphorus and at least one metal which originates from precipitation chemicals and which is selected among divalent iron and aluminum, the pH of the sludge being adjusted to below 4, preferably below 2, for dissolving the content of the phosphorus and said metal in the sludge; the remaining sludge is separated; the solution relieved of sludge and containing phosphorus and said metal is treated for precipitation of the phosphorus content of the solution as FePO4 at a pH of 2-3; and precipitated FePO4 is separated. The method is characterized in that the solution which remains after separation of FePO4 and which contains said metal from the precipitation chemicals, is recycled to the wastewater purification. The phosphorus content of the solution is precipitated as FePO4 by adding an at least equivalent amount of Fe3−.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: April 17, 2001
    Assignee: Kemira Kemi AB
    Inventors: Bengt Hansen, Simo Jokinen
  • Patent number: 6214302
    Abstract: The object of this invention is to provide a new low-cost method of production of the Aluminum Sulfate (Alum, Type 1, Class 1 and 2) from any alumina contained raw material, which comprises of selective precipitation of ferric ions from aluminum sulfate solution by adding a soluble phosphate compound at pH at least of 2.0.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: April 10, 2001
    Inventors: Gainel Malybaeva, Dariavash Partovi
  • Patent number: 6177571
    Abstract: A method for removing heavy metals, selected from palladium, tin and nickel, from heavy metal complexes with thiazole compounds in aqueous or alcoholic solution, by precipitation as sulfides, characterised in that such solutions are treated with a water-soluble ammonium, alkaline or alkaline-earth sulfide.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: January 23, 2001
    Assignee: Zambon Group S.p.A.
    Inventor: Mario Fantucci
  • Patent number: 6171564
    Abstract: A process for the extraction of metal from an ore or concentrate which contains nickel and/or cobalt values and other metals, comprises subjecting the ore or concentrate to acid leaching under pressure at pH≦2 to obtain a liquor containing nickel and/or cobalt values, subjecting the liquor to a first precipitation stage at pH of about 5 to 6 to produce a solid containing non nickel and non cobalt metals and a resultant solution containing the nickel and/or cobalt values and subjecting the resultant solution to a second precipitation stage at a pH of about 7 to 8 to produce a solid containing nickel and/or cobalt.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: January 9, 2001
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 6156280
    Abstract: Process for removing manganese values from a solution of a water-immiscible hydrocarbon containing manganese values and a water-insoluble oxime extractant capable of extracting nickel values from aqueous ammoniacal solutions comprising the steps ofI) contacting the water-immiscible hydrocarbon solution with a finely divided active metal and an aqueous solution of a strong acid to decrease or complete remove the manganese values from said water-immiscible hydrocarbon solution; andII) separating the stripped hydrocarbon solution from the aqueous solution.The invention also relates to a method for the extraction of nickel from nickel-containing ores in which a content of manganese values is present in which the above process is used.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: December 5, 2000
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Stephen M. Olafson, Burrel Boley, III
  • Patent number: 6139753
    Abstract: The present invention relates to a method of treatment of acid waste waters or acid drainage waters containing metals comprising ferrous and ferric ions, the method comprising increasing the pH of the acid waste to at least 7.5 by addition of an alkaline reagent under conditions such that ferrous ions are stable with respect to oxidation to ferric ions, to form a precipitate and collecting the precipitate.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: October 31, 2000
    Assignee: GEO2 Limited
    Inventor: Reginald Morton Taylor
  • Patent number: 6123908
    Abstract: A process of treating spent potliner material from aluminum reduction cells and recovering useful products. In the process of the present invention, spent potliner material is introduced into an acid digester containing, for example, sulfuric acid. As a result of this step, a gas component is produced which includes hydrogen fluoride, silicon tetrafluoride and hydrogen cyanide. Also, a slurry component is produced which includes carbon, a refractory material including silica, alumina, sodium compounds such as sodium sulfate, aluminum compounds such as aluminum sulfate, iron compounds such as iron sulfate, magnesium and calcium compounds such as magnesium and calcium sulfate. The slurry component remains in the digester after the gas component is removed. The gas component is recovered and heated an effective amount to convert or decompose the silicon tetrafluoride to fumed silica, hydrogen cyanide to a remaining gas component including CO.sub.2, H.sub.2 O, and nitrogen oxides, as well as HF gas.
    Type: Grant
    Filed: March 27, 1999
    Date of Patent: September 26, 2000
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6117408
    Abstract: A method for producing zinc bromide from zinc hydroxide contaminated with iron and manganese compounds. The method comprises the step of mixing zinc hydroxide feedstock containing metal impurities with a hydrobromic acid comprising elemental bromine in the presence of a reducing agent to produce an impure zinc bromide solution. The metal impurities are removed from the zinc bromide solution in a two-stage process: the first stage comprises the steps of precipitating iron by maintaining the pH within a range of from about 3.6 to 4.15 and filtering out the insoluble iron compounds. The second stage comprises the steps of acidifying the zinc hydroxide solution and adjusting the pH to a range of 3.8 to 4.3 with a alkalinity source from metal oxide, hydroxide or carbonate to precipitate the manganese compounds. The resulting mixture is filtered and concentrated to form a solution comprising zinc bromide essentially free of iron and manganese compounds.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: September 12, 2000
    Assignee: Tetra Technologies, Inc.
    Inventors: Lyle H. Howard, John A. Bain
  • Patent number: 6110433
    Abstract: The invention relates to a process for recovering metals from used nickel/hydride storage batteries, in which storage battery scrap has been mechanically comminuted and divided into at least a coarse fraction and a fine fraction capable of being treated separately from one another. The process comprises the steps of digesting and dissolving the fine fraction with a mixture of sulfuric acid and hydrogen peroxide, performing a double sulfate precipitation of the rare earths by raising the pH, performing a precipitation of the iron and of the aluminum by further raising the pH, performing a solvent extraction of other metals to separate nickel and cobalt which remain in the aqueous phase from the other metals which are extracted into the organic phase. Optionally, the nickel and the cobalt can be separated from each other and, if desired, the mixed-metal rare earth component which has been recovered can be melted together with cobalt and nickel alloy for the fabrication of new batteries.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: August 29, 2000
    Assignee: Varta Batterie Aktiengesellschaft
    Inventors: Klaus Kleinsorgen, Uwe Kohler, Alexander Bouvier, Andreas Folzer
  • Patent number: 6103421
    Abstract: A process of preparing a positive electrode active material for a nonaqueous secondary battery, comprising: making a buffered aqueous solution of a water-soluble lithium compound and a water-soluble nickel compound having a definite pH, reacting with oxalic acid and a water-soluble lithium compound and a water-soluble nickel compound to yield a co-precipitate of a slightly water-soluble salt of lithium and nickel in the resulting aqueous solution, followed by calcination.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: August 15, 2000
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoto Torata, Takehito Mitate, Kazuaki Minato
  • Patent number: 5997828
    Abstract: A process for extraction of alumina from ore bodies containing aluminum is disclosed. The process comprises the steps of acid leaching an aluminum bearing ore to produce a leach liquor that includes aluminum values and silicon values. Any ferrous sulfate in the leach liquor is oxidized with an oxidizing agent comprising ozone to ferric sulfate. The oxidized leach liquor is hydrolyzed at about 130.degree. C. to form a gel of ferric values which are then removed. Any ferric sulfate remaining in the leach liquor after hydrolyzing is reduced to ferrous sulfate. The reduced leach liquor is then hydrolyzed at 165-180.degree. C. to remove precipitated basic aluminum alkali sulfate. The basic aluminum alkali sulfate is then dried and calcined at around 950.degree. C. to produce alumina and alkali sulfate which releases any SO.sub.2 and any SO.sub.3. The alumina is washed to remove any alkali sulfate and the washed alumina is then agglomerated and dried.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: December 7, 1999
    Inventor: John S. Rendall
  • Patent number: 5980856
    Abstract: This invention relates to synthetic chalcoalumite-type compounds represented by formula (1) below:M.sup.2+.sub.a-x/2 Li.sub.x.sup.1+ Al.sub.4.sup.3+ (OH).sub.b (A.sup.n-).sub.c.mH.sub.2 O (1)(whereinM.sup.2+ represents at least one of the following divalent metal ions: Zn.sup.2+, Cu.sup.2+, Ni.sup.2+ and Mg.sup.2+,a is 0.6<a<1.2,x is 0<x<1.4,b is 11<b<13,A.sup.n- is at least one member of the group consisting of SO.sub.4.sup.2-, HPO.sub.4.sup.2-, CO.sub.3.sup.2-, SiO.sub.3.sup.2-, SO.sub.3.sup.2-, HPO.sub.3.sup.2-, H.sub.2 PO.sub.4.sup.-, NO.sub.3.sup.- and OH.sup.-,c is 0.5<c<1.2, andm represents a number of 1 to 4)and processes for their preparation. The synthetic chalcoalumite-type compounds of the present invention are conveniently used for adsorbing agents of acidic substances, anion exchangers, infrared absorption agents for agricultural films, deodorants and recording media for ink jet, etc.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: November 9, 1999
    Assignee: Kyowa Chemical Industry Co., Ltd.
    Inventors: Akira Okada, Kazushige Oda, Kanako Shimizu
  • Patent number: 5961879
    Abstract: The present invention discloses a process for the manufacture of liquid aqueous bleaching compositions comprising hypochlorite, a strong source of alkalinity and water, said process comprising the steps of: mixing said alkali metal hypochlorite, said strong source of alkalinity and said water, adding a precipitating agent, or mixtures thereof; and thereafter separating the precipitates formed from said composition. The compositions provided by the process according the present invention are substantially free of heavy metal ions, thereby providing improved whiteness performance and/or fabric safety performance.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: October 5, 1999
    Assignee: Procter & Gamble Company
    Inventor: Giuseppe Trigiante
  • Patent number: 5954969
    Abstract: A method and system is provided for producing a commercially usable iron oxide material by treating iron contaminated water. A clean effluent is also produced. Iron contaminated water is sampled to determine a bicarbonate to iron molar ratio. The flow of the water is directed to a collection basin assembly when the bicarbonate to iron molar ratio is at least 2 to 1. Iron oxide material precipitates in the collection basin assembly. The water from the collection basin assembly is directed to a constructed wetland. After a period of time, the iron oxide material in the collection basin assembly can be harvested and used for commercial purposes without excessive further treatment.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: September 21, 1999
    Inventor: Robert S. Hedin
  • Patent number: 5951954
    Abstract: A method for utilization of zinc byproducts in the manufacture of clear brine fluids comprising the step of mixing zinc feedstock containing metal impurities with a halogenic acid to produce an impure zinc halide solution. The metal impurities are removed from the zinc halide solution in a two-stage process: the first stage comprises the steps of precipitating and filtering out manganese and iron and the second stage comprises the steps of contacting the zinc halide solution with elemental zinc to cement out the remaining metals comprising nickel, lead, cadmium, copper, mercury and cobalt. Preferably, the zinc halide solution is contacted with zinc shot in multiple passes through zinc-filled column systems. The pH is adjusted between each step, if necessary, to maintain the pH in the first stage within a range of from about 3.5 to 4.5 and the alkalinity during the second stage at less than 1.0% zinc oxide.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: September 14, 1999
    Assignee: Tetra Technologies, Inc.
    Inventors: Russell A. Fisher, Paul Wayland, David J. Hanlon
  • Patent number: 5928559
    Abstract: The present invention discloses a process for the manufacture of liquid aqueous bleaching compositions comprising alkali metal hypochlorite, a strong source of alkalinity and water; said process comprising the steps of: mixing alkali metal hypochlorite, strong source of alkalinity and said water, separating the insoluble species formed in the first step, and thereafter adding a chelating agent capable of chelating heavy metal ions. The compositions provided by the process according to the present invention are substantially free of heavy metal ions, thereby providing improved whiteness performance and/or fabric safety performance.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: July 27, 1999
    Assignee: The Procter & Gamble Company
    Inventors: Mauririo Marchesini, Giuseppe Trigiante
  • Patent number: 5925256
    Abstract: The present invention concerns the treatment of an aqueous effluent and consists of ridding it of the iron which it contains, notably in the form of a complex. The method according to the invention consists of treating this effluent by successively a silicate, and a magnesium and aluminium hydroxycarbonate, then decanting and filtering. The method according to the invention is particularly useful in the treatment of photographic effluents.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: July 20, 1999
    Assignee: Eastman Kodak Company
    Inventor: Philippe Strauel
  • Patent number: 5855858
    Abstract: A process for the extraction of Ni/Co values from an ore or concentrate comprises the steps of subjecting the ore or concentrate to pressure oxidation in the presence of oxygen and an acidic solution containing halide, copper and sulphate ions to obtain a liquor containing Ni/Co values from the resultant pressure oxidation slurry. The liquor is subjected to a selective precipitation treatment to obtain a solid containing Ni/Co hydroxide. The solid is subjected to a Ni/Co leaching stage with an ammonium solution to produce a leach solution containing Ni/Co values and a residue. The Ni/Co values are separated by solvent extraction to produce solutions suitable for electrowinning of Ni and Co. The process also provides for the recovery of precious metals and other metals such as copper.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: January 5, 1999
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones