Mixture Is Exhaust From Internal-combustion Engine Patents (Class 423/212)
  • Publication number: 20120321537
    Abstract: The invention relates to a novel coating device, the method carried out using said device, products obtained thereby, and use of said products.
    Type: Application
    Filed: February 8, 2011
    Publication date: December 20, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Bernd Mergner, Stephane Masson
  • Publication number: 20120315204
    Abstract: Provided are an exhaust purification device for a diesel engine and an exhaust purification method that utilizes the exhaust purification device enabling effective utilization of exhaust gas heat and allowing reduction in the size of the device, by virtue of the design of the layout of each post-processing units.
    Type: Application
    Filed: January 24, 2011
    Publication date: December 13, 2012
    Inventor: Kazuo Osumi
  • Publication number: 20120308455
    Abstract: A device includes an injector for a liquid having at least one pressure sensor, preferably an integrated pressure sensor. The device is used, in particular, for adding liquid reducing agent to an exhaust gas line of a motor vehicle. A configuration having the device and methods of using the device and the configuration are also provided.
    Type: Application
    Filed: July 13, 2012
    Publication date: December 6, 2012
    Applicant: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: WOLFGANG MAUS, LUDWIG WIERES, JAN HODGSON, ROLF BRUECK
  • Publication number: 20120301378
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, HAI-YING CHEN, RAJ RAO RAJARAM
  • Publication number: 20120301381
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, JOHN LEONELLO CASCI, HAI-YING CHEN, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, RAJ RAO RAJARAM
  • Publication number: 20120294786
    Abstract: Provided are an exhaust purification device for a diesel engine, and an exhaust purification method that utilizes this exhaust purification device enabling effective utilization of exhaust gas heat and allowing reduction in the size of the device, by virtue of the design of the layout of each post-processing units.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 22, 2012
    Applicant: Isuzu Motors Limited
    Inventor: Kazuo Osumi
  • Patent number: 8313717
    Abstract: The present invention relates to the field of atomizing fluids. Some embodiments described herein relate to a nozzle for atomization of one fluid in an exhaust system of a combustion engine or gas turbine, the nozzle comprising an inlet and two or more outlets, arranged so that fluid streams discharged from the two or more outlets impinge at a distance from the two or more outlets so that the fluid streams discharged from at least two of the two or more outlets impinge each other at a specified angle in the range of 70° to 95° so as to provide a spray by atomization of the fluid. The fluid streams may e.g. have a cross section in the order of 0.005 to 0.05 mm2 before impingement.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 20, 2012
    Assignee: Grundfos NoNox A/S
    Inventor: Christian Boe
  • Publication number: 20120282159
    Abstract: An exhaust gas purification apparatus for an engine is provided with a filter arranged in an exhaust passage of the engine, and a regeneration control unit for regenerating the filter by burning the particulate matters accumulated in the filter. The control unit may include an over-accumulation state determination unit and a switch. The over-accumulation state determination unit determines over-accumulation of the particulate filter in the filter when the particulate matter is over-accumulated in the filter. The switch switches a regeneration temperature for regenerating the filter between a first regeneration temperature at which a normal regeneration is performed and a second regeneration temperature which is lower than the first regeneration temperature. The control unit is connectable to a command unit when the particular matter is over-accumulated in the filter, so that the switch is forcibly operated toward the second regeneration temperature.
    Type: Application
    Filed: January 26, 2011
    Publication date: November 8, 2012
    Inventors: Ko Takayanagi, Keisuke Okuda
  • Publication number: 20120279206
    Abstract: An exhaust gas treatment device includes a first substrate coated with a low temperature catalyst configured to facilitate formation of an oxidizer when an exhaust gas temperature is below a threshold temperature. The device further includes a second substrate coated with a high temperature catalyst and positioned coaxially with the first substrate, the high temperature catalyst configured to facilitate formation of the oxidizer when the exhaust gas temperature is above the threshold temperature.
    Type: Application
    Filed: August 25, 2011
    Publication date: November 8, 2012
    Inventors: STEPHEN MARK GEYER, Shashi Kiran, Paul Llovd Flynn
  • Patent number: 8303766
    Abstract: A method and device for evaporating a predeterminable volume of fluid includes successive addition of partial volumes of the predeterminable volume to a supply line at different adding rates, at least partially evaporating the partial volumes forming vapor film between them and a supply line wall, conveying the partial volumes through the supply line to an evaporator surface, and applying the partial volumes to an evaporator surface region varying as a function of mass and/or volume adding rate of the partial volume, permitting effective evaporation of fluid, particularly urea/water solution. Utilization of the highest possible proportion of evaporator surfaces is achieved by mass and/or volume addition rate-dependent distribution of impingement surfaces on the evaporator surface. This heating strategy in the supply line region ensures the Leidenfrost effect when individual partial volumes are added.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 6, 2012
    Assignee: EMITEC Emissionstechnologie mbH
    Inventors: Peter Hirth, Rolf Brück
  • Publication number: 20120275978
    Abstract: A system and method for NOx reduction is described, with a catalytic unit including a first zeolite catalyst with a first NOx conversion performance in a first temperature range and a second NOx conversion performance, lower than said first NOx conversion performance, in a second temperature range. The catalytic unit also comprises a second zeolite catalyst with a third NOx conversion performance, lower than said first NOx conversion performance, in the first temperature range and a fourth NOx conversion performance, higher than said second and third NOx conversion performances in the second temperature range, said first temperature range being higher than said second temperature range. The system further includes a controller configured to adjust an amount of reducing agent added to the NOx reducing system responsive to a temperature of the catalytic unit.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: James W. Girard, Giovanni Cavataio, Christine Kay Lambert, Rachel Alison Snow
  • Publication number: 20120269705
    Abstract: The invention relates to a system and method for selective catalyst reduction (SCR), where the addition of reducing agent is administered by a control portion and injected into a gas by an injection portion upstream of a catalyst portion. In some embodiments of the invention the injection portion comprises a plurality of injection nozzles.
    Type: Application
    Filed: November 19, 2010
    Publication date: October 25, 2012
    Applicant: DANSK TEKNOLOGI PRODUKTIONSAKTIESELSKAB
    Inventors: Anders E. Jensen, Anders Færch Weiss, Andreas Aabroe Gamborg, Steen Kähler, Snorre Krogh Biehe
  • Publication number: 20120269706
    Abstract: A method for controlling emissions from an engine includes reducing trapped nitrogen oxides to ammonia on an LNT catalyst while concurrently oxidizing soot accumulated on the LNT catalyst, and, flowing the ammonia so formed to an SCR catalyst.
    Type: Application
    Filed: July 2, 2012
    Publication date: October 25, 2012
    Applicant: Ford Global Technologies, LLC
    Inventors: Karen Marie Adams, Yisun Cheng, Giovanni Cavataio
  • Publication number: 20120263632
    Abstract: The present invention provides for a method for dosing an urea-based reducing agent into a exhaust gas stream generated from a combustion engine and addressed to an aftertreatment system, e.g. SCR or SCRT system. According to the method of the invention the gas exhaust stream is conveyed into a dosing housing which develops along a longitudinal axis. In particular the gas is conveyed by generating an annular inlet jet inclined with respect of said axis. The urea-based reducing agent is injected by generating, inside the housing, an urea-based reducing agent spray which is preferably coaxial to said axis of the housing.
    Type: Application
    Filed: December 15, 2010
    Publication date: October 18, 2012
    Inventors: John Campbell, Harald Hagin, Fritz Papst
  • Publication number: 20120258030
    Abstract: A gas separation and recovery apparatus that separates and recovers nitrogen oxides from a gas mixture includes: a liquid storing portion that stores a liquid, the liquid absorbing the nitrogen oxides; a gas-liquid contacting portion in which the liquid and the gas mixture contact with each other; and a liquid recovering portion that recovers the liquid after the liquid contacts the gas mixture. The liquid is an ionic liquid that chemically absorbs the nitrogen oxides.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: DENSO CORPORATION
    Inventors: Masatoshi MARUYAMA, Keiji Noda, Yuuki Tarusawa, Yoshiaki Nishijima, Mitsuhiro Kanakubo, Takashi Makino, Tatsuya Umeki, Hiroshi Nanjo
  • Publication number: 20120251419
    Abstract: An exhaust gas conversion system includes an oxide catalyst, a filter, a selective catalytic reduction catalyst and an ammonia supplying device. The filter has a honeycomb structural body including a honeycomb unit. The selective catalytic reduction catalyst has a honeycomb structural body including a honeycomb unit. The oxide catalyst, the filter and the selective catalytic reduction catalyst are sequentially arranged in a direction in which an exhaust gas flows. A ratio of an area of a cross section of the selective catalytic reduction catalyst perpendicular to a longitudinal direction of the selective catalytic reduction catalyst with respect to an area of a cross section of the filter perpendicular to a longitudinal direction of the filter is approximately 0.55 or more and approximately 0.90 or less. The area of the cross section of the filter is approximately 300 cm2 or more and approximately 1000 cm2 or less.
    Type: Application
    Filed: December 7, 2011
    Publication date: October 4, 2012
    Applicant: IBIDEN CO., LTD.
    Inventors: Masafumi KUNIEDA, Shigeaki Goto
  • Publication number: 20120247092
    Abstract: Catalytic articles, systems and methods for treating exhaust gas streams are described. A catalytic article comprising a wall flow filter having gas permeable walls, a hydrolysis catalyst, an optional soot oxidation catalyst, a selective catalytic reduction catalyst permeating the walls, an ammonia oxidation catalyst and an oxidation catalyst to oxidize CO and hydrocarbons is described. Methods of treating exhaust gas streams comprising soot, an ammonia precursor such as urea, ammonia, NOx, CO and hydrocarbons are also provided.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Applicant: BASF Corporation
    Inventor: R. Samuel Boorse
  • Patent number: 8268273
    Abstract: A method and a device for the regeneration of a particle filter, especially a diesel particle filter, arranged in the exhaust gas train of an internal combustion engine, wherein an exhaust gas stream to be cleaned is supplied to the at least one particle filter. The exhaust gas stream supplied to the at least one particle filter is a raw exhaust gas stream of the internal combustion engine, into which, during regeneration mode, a heated exhaust gas stream at a higher temperature than the raw exhaust gas stream is mixed at a point upstream of the particle filter under the control of at least one open-loop and/or closed-loop control device, which actuates a throttle device and/or shut-off device in accordance with predetermined regeneration parameters.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: September 18, 2012
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Publication number: 20120230894
    Abstract: According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Yisun Cheng, Yinyan Huang, Christine Kay Lambert
  • Patent number: 8241598
    Abstract: A system may include a urea injection device, first, second and third conduits and a valve. The first conduit may contain a fluid and may be in heat transfer relation with the urea injection device. The second conduit may be in selective fluid communication with the first conduit. The third conduit may be in selective fluid communication with the first conduit and in heat transfer relation with a heat source. The valve may be connected to the first, second and third conduits and may be movable between first and second positions. The first position may allow fluid communication between the first and third conduits and restrict communication between the first and second conduits. The second position may allow fluid communication between the first and second conduits and restrict fluid communication between the first and third conduits.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: August 14, 2012
    Assignee: DENSO International America, Inc.
    Inventor: Stephen Frederiksen
  • Publication number: 20120183459
    Abstract: An apparatus, system, and method are disclosed for a filter for filtering a dosing fluid in an exhaust aftertreatment system. The filter may comprise a dosing tank configured to contain a dosing fluid, a filter media disposed within the dosing tank, and a support structure supporting the filter media to form a pathway for a flow of dosing fluid. Beneficially, the apparatus, system, and method of the present invention reduce the cost of operation and manufacture of the SCR system.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 19, 2012
    Applicant: KUSS FILTRATION INC.
    Inventors: Alain Rocheux, Gary Rickle, Julie Graber, Vikrant Aggarwal
  • Publication number: 20120183460
    Abstract: The invention provides a process for purification of an exhaust gas comprising nitrogen oxides, carbon monoxide, hydrocarbons and particulate matters from an internal combustion engine comprising the step of contacting the exhaust gas with one or more catalysts on one or more cross corrugated wire mesh sheets (5) being arranged between two or more gas impermeable cross corrugated sheets (4). The exhaust gas is contacted with one or more catalysts being coated in different zones on the one or more cross corrugated wire mesh sheets (5). Particulate matters in the exhaust gas are retained in a zone of the gas impermeable sheets (4), where the zone is porous and optionally coated with an oxidation catalyst. The exhaust gas from the combustion engine can be heated by the purified exhaust gas. The invention further comprises an apparatus for the purification process of an exhaust gas from an internal combustion engine.
    Type: Application
    Filed: October 26, 2010
    Publication date: July 19, 2012
    Inventors: Jesper Norsk, Keld Johansen, Niels Poul Dalskov
  • Patent number: 8201399
    Abstract: Apparatus for reducing emissions of PCDD and PCDF in exhaust gas of an internal combustion engine includes a transition metal-containing catalyzer for the selective catalytic reduction of nitric oxides, and a molecular sieve upstream of the catalyzer, either as a layer on the catalyzer or on a separate structure. The molecular sieve blocks hydrocarbons from reaching the transition metal-containing catalyzer.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: June 19, 2012
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Publication number: 20120148464
    Abstract: The present invention relates to an exhaust-gas aftertreatment system which comprises a preferably catalytically active particle filter (wall-flow filter) which is followed in turn by a throughflow monolith (flow-through monolith) which is preferably provided with a catalytically active function. Both components have the same storage functions for gaseous substances present in the exhaust gas of internal combustion engines. The system is suitable in particular for the simultaneous removal of particles and pollutants from the exhaust gas of both predominantly lean-operated internal combustion engines and also of internal combustion engines operated predominantly with a stoichiometric air/fuel mixture. Likewise described is a process for the production and the use of such a system for exhaust-gas aftertreatment.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 14, 2012
    Applicant: UMICORE AG &CO. KG
    Inventors: Stephan Eckhoff, Wilfried Mueller, Joerg-Michael Richter, Stefan Franoschek, Martin Votsmeier
  • Publication number: 20120141344
    Abstract: The present disclosure describes systems and methods for making an active bed for use in catalyst, filter or other chemical processing systems. A fluidic substrate material is combined with one or more active ingredients while in the fluid or substantially plasticized state. Acoustic energy is applied to the fluidic substrate and active ingredient mixture, and static pressure is applied as well. The pressure is released and the mixture is allowed to form porous fluid-permeable structures (sometimes a lattice) through which a fluid to be processed can be passed.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 7, 2012
    Applicant: IMPULSE DEVICES INC.
    Inventors: Naresh Mahamuni, Peter L. Nelson
  • Publication number: 20120117952
    Abstract: A wall-flow filter comprises a catalyst for converting oxides of nitrogen in the presence of a reducing agent, which wall-flow filter comprising an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilised ceria, which catalyst comprising at least one metal, wherein: the at least one metal is present throughout the extruded solid body alone or in combination with: is also present in a higher concentration at a surface of the extruded solid body; is also carried in one or more coating layer(s) on a surface of the extruded solid body; or both.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 17, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel
  • Patent number: 8171727
    Abstract: A transition metal-containing catalyzer is arranged on a particle filter installed in the exhaust gas line of an internal combustion engine and cannot be separated therefrom without being destroyed. To reduce emissions, at least one molecular sieve which retains polychlorinated dibenzodioxins and polychlorinated dibenzofurans is arranged between the transition metal-containing catalyzer and the exhaust gas outlet. Further, the input side of the molecular sieve and/or the output side of the catalyzer has an oxidation activity for hydrocarbons, polychlorinated dibenzodioxins and polychlorinated dibenzofurans upstream of the molecular sieve.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 8, 2012
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Patent number: 8173074
    Abstract: A device for reducing the emission of polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF) from transition metal-containing catalyzers for selective catalytic reduction of nitric oxides in the exhaust gas of an internal combustion engine by means of ammonia and/or reducing agents which split off ammonia. At least one catalyzer for oxidizing hydrocarbon-containing PCDD precursor substances and PCDF is arranged upstream of the at least one transition metal-containing SCR catalyzer and/or at least one catalyzer for degrading precursor substances for degrading the polychlorinated dibenzodioxins and/or polychlorinated dibenzofurans is arranged downstream of the at least one transition metal-containing catalyzer. The at least one catalyzer for degrading PCDD and PCDF and/or the at least one catalyzer for oxidizing hydrocarbon-containing precursor substances thereof are/is additionally active for the reduction of nitric oxides by means of ammonia.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 8, 2012
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Publication number: 20120102970
    Abstract: A steam generator coupled in flow communication downstream from a combustion device that produces a flow of exhaust gases includes a heating device configured to heat the exhaust gases that include oxides of nitrogen (NOx), and an oxidation catalyst coupled downstream from the heating device. The oxidation catalyst facilitates reducing an amount of NOx in the exhaust gases channeled into the oxidation catalyst at a first temperature that is less than a thermal regeneration temperature for a catalytic material and at a second temperature that is approximately equal to at least the thermal regeneration temperature such that the catalytic material is simultaneously regenerated.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventor: Gilbert Otto Kraemer
  • Publication number: 20120107202
    Abstract: The present invention provides a process for minimizing the emission of particulate matter and precursors thereof from a flue gas stream of an engine comprising particulate matter and precursors thereof and at least one gaseous component, which process comprises the steps of: a. Obtaining a flue gas stream of an engine comprising particulate matter and precursors thereof; b. Increasing the moisture content of the stream by contacting the same with a first aqueous medium in an amount and at a temperature at which at least 50% of the water content of the first aqueous medium is evaporated; whereby a moisture laden gas stream, optionally containing suspension droplets, is formed; c. Cooling the moisture laden gas stream whereby suspension droplets are formed; and d.
    Type: Application
    Filed: October 1, 2009
    Publication date: May 3, 2012
    Inventors: Riki Canari, Aharon Eyal, Nils Christian Hoy-Petersen, Matitiahu Fichman, Carl Christian Hauge, Carmi Raz
  • Publication number: 20120102926
    Abstract: A method and a device for treating exhaust gas containing particles, include a particle separator and at least one particle agglomeration device positioned upstream of the particle separator in exhaust gas flow direction. The particle agglomeration device includes at least one apparatus for forming an electrical field and a particle buffer storage device, through which the exhaust gas can flow. The particles are stored on top of each other at the particle buffer storage device in such a way that particle agglomerates are formed, which are removed from the particle buffer storage device again after a short period of time and supplied to the particle separator for conversion. A motor vehicle having the device and performing the method is also provided.
    Type: Application
    Filed: December 19, 2011
    Publication date: May 3, 2012
    Applicant: EMITEC GESELLSCHAFT FÜR EMISSIONSTECHNOLOGIE MBH
    Inventor: WOLFGANG MAUS
  • Publication number: 20120077669
    Abstract: Described is a process for the preparation of a catalyst comprising the steps of: (i) providing one or more support materials; (ii) providing one or more polymers on the support material; and (iii) providing one or more metals on the one or more supported polymers; wherein in step (ii) the one or more polymers do not comprise cross-linked polymers and/or polymers which have been reacted with a cross-linking agent. Also described is a catalyst obtained or obtainable according to said process, as well as the use of the catalyst, in particular in a method for the treatment of automobile engine exhaust gas.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 29, 2012
    Applicants: BASF Corporation, BASF SE
    Inventors: Torsten Müller-Stach, Attilio Siani, Torsten Neubauer, Xinyi Wei
  • Patent number: 8133460
    Abstract: The invention relates to a method for preparing a reducing agent composition, which is used in the selective catalytic reduction of nitrogen oxides and which contains from 20 to 40% by weight of urea, from 20 to 40% by weight of ammonium formate, and water. The composition is prepared by adding urea to the aqueous solution of ammonium formate that is prepared in situ, and by preparing the aqueous solution of ammonium formate using, as starting materials, a source of ammonium, a source of formate, and water.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 13, 2012
    Assignee: Kemira Oyj
    Inventors: Jouko Arvola, Timo Härmä, Eero Hätälä, Lauri Määttä, Timo Nissinen, Pentti Pekonen
  • Publication number: 20120045378
    Abstract: The invention relates to systems and methods for heating a solid or liquid reducing material such as an urea-containing material for NOx selective catalytic reduction (‘SCR’) using a heat stored in a thermal energy storage material, such as a phase change material. The stored heat may be heat from an exhaust waste, such as from an exhaust gas of an internal combustion engine. The reducing material may be a solid reducing material. Other reducing materials include aqueous solutions such as an aqueous solution containing, consisting essentially of, or consisting of urea and water. In one aspect, the process may include a step of evaporating an aqueous solution of urea for immediate urea hydrolysis.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 23, 2012
    Applicant: DOW GLOBAL TECHNOLOGIES LLC.
    Inventors: Andrey Soukhojak, David H. Bank
  • Publication number: 20120036837
    Abstract: A method and a device provide for the controlled feeding of a reducing agent into an exhaust gas treatment unit with a storage capability for an exhaust gas component to be reduced which is generated from a mobile internal combustion engine. The method includes at least the following steps: a) determination of a quantity of the exhaust gas component to be reduced which is generated by the mobile internal combustion engine, b) determination of a storage capability of the exhaust gas treatment unit for the exhaust gas component to be reduced, c) determination of a metering of the reducing agent into the exhaust gas treatment unit as a function of steps a) and b), and d) feeding the reducing agent into the exhaust gas treatment unit.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 16, 2012
    Applicant: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: Jan Hodgson, Rolf Brück
  • Publication number: 20120039779
    Abstract: A method for feeding reducing agent or reducing agent precursor into exhaust systems of mobile internal combustion engines and an exhaust system are preferably used for internal combustion engines with high nitrogen oxide compound emissions. A feed time is established. An exhaust parameter and/or necessary quantity of reducing agent is determined and a feed state of the reducing agent is defined. The reducing agent is treated if the feed state does not correspond to a stored state. The reducing agent feed to the exhaust system takes place last. The steps are repeated multiple times. This permits reducing agent to be fed into an exhaust system in a state suitable for the exhaust temperature, so that complete conversion of reducing agent takes place and selectively catalytic reduction is also ensured. This reduces the quantity of electrical energy necessary for converting reducing agent. A motor vehicle having the system is also provided.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 16, 2012
    Applicant: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: WOLFGANG MAUS, ROLF BRÜCK
  • Publication number: 20120020857
    Abstract: A reductant dosing system is disclosed. The reductant dosing system may have a supply of reductant, a reductant nozzle, and a pump with an inlet and an outlet. The reductant dosing system may also have a first passage connecting the supply with the inlet of the pump, and a first control valve disposed in the first passage. The reductant dosing system may further have a second passage connecting the outlet of the pump with the reductant nozzle, and a second control valve disposed in the second passage. The reductant dosing system may additionally have a third passage connecting the second control valve to the first passage at a location downstream of the first control valve, and a fourth passage connecting the second control valve with the supply.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Inventors: Raymond Upano ISADA, Yongxiang Li
  • Publication number: 20120020875
    Abstract: The object is to provide an exhaust gas reduction catalyst that exhibit high nitrogen oxide reduction performance, and to provide a simple and efficient method for producing the catalyst, in which the amount of the waste liquid is reduced, further, an object of the invention is to provide a zeolite-containing catalyst for reducing nitrogen oxides, which does not use an expensive noble metal or the like and which has high nitrogen oxide reduction performance.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 26, 2012
    Applicant: MITSUBISHI PLASTICS, INC.
    Inventors: Takeshi MATSUO, Takahiko Takewaki, Daisuke Nishioka, Kazunori Oshima, Haijun Chen, Hiroyuki Kakiuchi
  • Patent number: 8093178
    Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Publication number: 20120003131
    Abstract: An apparatus for dissipating energy into the exhaust gas of an internal combustion engine includes a container for confining a flow path for exhaust gas from an internal combustion engine where the container has an inlet and an outlet. A porous, electrically conductive mesh is placed in the container such that exhaust gas can flow through the conductive mesh. At least two electrical terminals are in permanent electrical contact with the conductive mesh. An electrical power supply completes an electrical circuit through the conductive mesh with the power supply having two or more electrical outputs electrically connected to an equal number of electrical terminals on the conductive mesh. The apparatus provides a filter, heater, electrical load and silencer.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Applicant: RYPOS, INC.
    Inventors: Osama Ibrahim, Klaus Peter, Noah Loren, Peter Willey, Zachary L. Nardi, Amin Saeid, John Swenson, James McDonald
  • Patent number: 8087235
    Abstract: The present invention relates to an integrated system for the treatment of exhaust gases, which preferably consists of at least one NOx-storing component, at least one in situ ammonia-generating component, at least one ammonia-storing component and at least one ammonia (NH3)-SCR-component, as well as to a process for the treatment of exhaust gas comprising at least the steps (i) storing of NOx under lean exhaust gas conditions in at least one NOx-storing component; (ii) in situ conversion of the stored NOx to ammonia (NH3) under rich exhaust gas conditions; (iii) storing of the ammonia (NH3) in at least one NH3-storing component under rich exhaust gas conditions as well as the (iv) reaction of NH3 with NOx under lean exhaust gas conditions. Thereby, the partial steps “storing of NOx” and “conversion of NH3 with NOx” are carried out at least partially and/or temporarily simultaneously and/or parallelly. Furthermore, preferred catalysts are disclosed for carrying out the process.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: January 3, 2012
    Assignee: hte Aktiengesellschaft the high throughput experimentation company
    Inventors: Wolfgang Strehlau, Olga Gerlach, Jürgen Maier
  • Patent number: 8088201
    Abstract: There is described a method and apparatus (100, 100?) for storing and delivering ammonia wherein at least two ammonia storage materials (1a, 2a) capable of reversibly adsorbing or absorbing ammonia having different ammonia vapor pressures are used. Ammonia storage material (2a) having a lower vapor pressure, which is only partially saturated with ammonia or void of ammonia, is brought into fluid communication with ammonia storage material (1a) having a higher ammonia vapor pressure to adsorb or absorb ammonia released from the ammonia storage material (1a) having a higher ammonia vapor pressure when the latter is higher than a pressure threshold. An automotive NOx treatment system (200) comprising such apparatus (100, 100?) is also described.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 3, 2012
    Assignee: Amminex A/S
    Inventor: Tue Johannessen
  • Publication number: 20110312486
    Abstract: Described is a process for the production of a zeolitic material having an LEV-type framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises (1) preparing a mixture comprising one or more sources for YO2, one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, and X is a trivalent element, and wherein the mixture crystallized in step (2) contains 3 wt.-% or less of one or more metals M based on 100 wt-% of YO2, preferably 1 wt.-% or less, more preferably 0.5 wt.-% or less, more preferably 0.1 wt.-% or less, more preferably 0.05 wt.-% or less, more preferably 0.01 wt.-% or less, more preferably 0.005 wt.-% or less, more preferably 0.001 wt.-% or less, more preferably 0.0005 wt.-% or less, more preferably 0.0001 wt.-% or less of one or more metals M based on 100 wt.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Meike Pfaff, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos, Hiroyuki Imai, Bin Xie, Haiyan Zhang
  • Publication number: 20110313226
    Abstract: Described is a process for the production of a zeolitic material having an LEV-type framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises: (1) preparing a mixture comprising one or more sources for YO2, one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises one or more alkali metals M, wherein the molar ratio of the total amount of the one or more solvents to the total amount of the one or more sources for YO2 based on YO2 is 9.5 or less, and wherein for crystallization temperatures of 175° C.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Bibiana Andrea Betancur Moreno, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos, Meike Pfaff, Bin Xie, Haiyan Zhang
  • Publication number: 20110305612
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: BASF SE
    Inventors: Torsten Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8066963
    Abstract: The exhaust gas of internal combustion engines operated with a predominantly stoichiometric air/fuel mixture contains, as well as the gaseous hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) pollutants, also ultrafine particulates. There is disclosed a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. Both layers contain alumina. The first layer contains palladium. The second layer contains rhodium. The latter is disposed above the first layer.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 29, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 8057766
    Abstract: An exhaust gas purifying apparatus includes a metal casing and a honeycomb filter installed in the metal casing. The honeycomb filter includes cells, a first end face, and a second end face. The cells include a first cell and a second cell provided alternately. The first cell includes an open end on the first end face side and a sealed end on the second end face side. The second cell includes an open end on the second end face side and a sealed end on the first end face side. A cross-sectional area of the first cell is smaller than a cross-sectional area of the second cell. The first end face is disposed on a gas inlet side of the metal casing. The second end face is disposed on a gas outlet side of the metal casing.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 15, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazutake Ogyu, Kenichi Makino
  • Publication number: 20110274602
    Abstract: Novel metal-containing silicates, in particular redox-active as well as crystalline silicates, a process for preparing metal-containing crystalline silicates, as well as use thereof as high-temperature oxidation catalyst or diesel oxidation catalyst. Further, a catalytic composition and a shaped catalyst body which contains the metal-containing crystalline silicates.
    Type: Application
    Filed: November 13, 2009
    Publication date: November 10, 2011
    Inventor: Klaus Wanninger
  • Publication number: 20110243818
    Abstract: A system may include a urea injection device, first, second and third conduits and a valve. The first conduit may contain a fluid and may be in heat transfer relation with the urea injection device. The second conduit may be in selective fluid communication with the first conduit. The third conduit may be in selective fluid communication with the first conduit and in heat transfer relation with a heat source. The valve may be connected to the first, second and third conduits and may be movable between first and second positions. The first position may allow fluid communication between the first and third conduits and restrict communication between the first and second conduits. The second position may allow fluid communication between the first and second conduits and restrict fluid communication between the first and third conduits.
    Type: Application
    Filed: January 3, 2011
    Publication date: October 6, 2011
    Applicant: DENSO International America, Inc.
    Inventor: Stephen S. Frederiksen
  • Publication number: 20110236280
    Abstract: A method is provided for purifying exhaust gas from an engine having an exhaust passage with a selective reducing catalyst and an oxidation catalyst upstream of the selective reducing catalyst. The method calculates an amount of NOx that flows into the selective reducing catalyst; sets an amount of an additive agent to be supplied to the selective reducing catalyst based on the calculated amount of NOx; determines a degradation degree of the oxidation catalyst; determines whether a correction to the amount of the additive agent is necessary based on the determined degradation degree of the oxidation catalyst; corrects the amount of the additive agent to be supplied when the correction is necessary; and supplies the additive agent to the selective reducing catalyst in the corrected amount if the amount is determined to be corrected and in the uncorrected amount if the amount is determined not to be corrected.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 29, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Hiroaki Gotan, Yoshiaki Tomita, Masashi Naono, Tamiharu Nakamura, Hiroaki Ishida