Including Successive Stage Treatments To Modify Or Remove A Different Component In Each Stage Patents (Class 423/213.7)
  • Patent number: 8580228
    Abstract: The present invention relates to a process for reducing cold start emissions in an exhaust gas stream (such as from an internal combustion engine) by contacting the exhaust stream with a combination of molecular sieves comprising (1) a small pore crystalline molecular sieve or mixture of molecular sieves having pores no larger than 8 membered rings selected from the group consisting of SSZ-13, SSZ-16, SSZ-36, SSZ-39, SSZ-50, SSZ-52 and SSZ-73 molecular sieve and having a mole ratio at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a trivalent element, pentavalent element, second tetravalent element which is different from said first tetravalent element or mixture thereof and (2) a medium-large pore crystalline molecular sieve having pores at least as large as 10 membered rings selected from the group consisting of SSZ-26, SSZ-33, SSZ-64, zeolite Beta, CIT-1, CIT-6 and ITQ-4 and having a mole ratio of at least 10 of (a) an oxide of a first tetravalent element to (b) an oxide of a tr
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Cabral M. Williams, Tecle S. Rufael, Allen W. Burton
  • Patent number: 8562924
    Abstract: Methods and systems for treating NOx-containing exhaust from an internal combustion engine. An exhaust aftertreatment system has at least a PM control device and a downstream selective reduction catalyst (SCR) device. By using a bypass line to divert engine-out exhaust around the PM control device, or by introducing NO or NO2 from a non-engine source, the NO/NOx ratio into the SCR device can be controlled to a desired ratio for improved SCR efficiency.
    Type: Grant
    Filed: October 20, 2012
    Date of Patent: October 22, 2013
    Assignee: Southwest Research Institute
    Inventor: Charles E. Roberts, Jr.
  • Patent number: 8562925
    Abstract: An arrangement for controlling injection of a reducing agent in an exhaust line of a combustion engine (1): An injection system (8-12) injects the reducing agent into the exhaust line (3). A first catalyst (13) reduces the amount of nitrogen oxides in the exhaust gases in the exhaust line (3) using the reducing agent. A second catalyst (14) downstream of the first catalyst (13) in the exhaust line (3) converts ammonia in the exhaust gases to nitrogen gas and nitrous oxide. A nitrous oxide sensor (17) monitors the amount of nitrous oxide in the exhaust line (3) downstream of the second catalyst (14). A control unit (10) of the injection system (8-12) adjusts the amount (q) of reducing agent injected into the exhaust line (3) if the sensor (17) detects that the amount of nitrous oxide is not within a selected range (A).
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 22, 2013
    Assignee: Scania CV AB
    Inventor: Håkan Sarby
  • Patent number: 8551432
    Abstract: A method for injecting ammonia into an exhaust gas stream downstream of a diesel engine includes providing an exhaust gas passageway (11) from the diesel engine to an ambient (14). The exhaust gas passageway (11) includes an NOx Slip Catalyst (NSC) 20 downstream of an NOx Particulate Filter (NPF) 18. The method includes emitting exhaust gas (EG) through the exhaust gas passageway (11), and selectively injecting ammonia (NH3) upstream of the NPF 18, upstream of the NSC (20), both upstream of the NPF and the NSC, or not injecting ammonia, depending on the temperature of the exhaust gas at the NPF and at the NSC.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: October 8, 2013
    Assignee: International Engine Intellectual Property Company, LLC.
    Inventors: Brad J. Adelman, Vadim Olegovich Strots, Shyam Santhanam
  • Patent number: 8551433
    Abstract: A SCR catalyst system, comprising a first SCR catalyst (1) and a second SCR catalyst (2) which is disposed in the exhaust gas tract downstream of the first SCR catalyst (1). At least one metering device (12) for metering in a reducing agent solution is disposed in the exhaust gas tract upstream of a first SCR catalysis element (13) of said first SCR catalyst (1). The SCR catalyst system does not require a device for metering a reducing agent solution into a second SCR catalysis element (21) of the second SCR catalyst (2).
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 8, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Fritsch, Andreas Holzeder
  • Publication number: 20130259779
    Abstract: Particles of mixed oxides of cerium, zirconium, and copper (CeZrCuOx) may be prepared as catalysts and used to preferentially catalyze the oxidation of CO in exhaust streams containing CO and NH3. In one practice, this CeZrCuOx catalyst may be used in combination with a close-coupled PGM catalyst which promotes the formation of NH3 in the exhaust during fuel-rich operation, and at least one under-floor NH3-SCR catalyst, which catalyzes the reduction of NOx in the exhaust stream during fuel-lean operation using NH3 as a reductant. During fuel-rich engine operation, the exhaust stream may be doped with oxygen downstream of the PGM catalyst and passed in contact with particles of the CeZrCuOx catalyst so that residual CO in the exhaust may be oxidized to CO2, without oxidation or other conversion of the NH3.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chang H. KIM, Gongshin QI
  • Patent number: 8540952
    Abstract: An exhaust system, and a catalyzed substrate for use in an exhaust system, is disclosed. The exhaust system comprises a lean NOx trap and the catalyzed substrate. The catalyzed substrate has a first zone, having a platinum group metal loaded on a support, and a second zone, having copper or iron loaded on a zeolite. The first zone or second zone additionally comprises a base metal oxide or a base metal loaded on an inorganic oxide. Also provided are methods for treating an exhaust gas from an internal combustion engine using the exhaust system. The exhaust system is capable of storing NH3 generated in rich purging, reacting the NH3 with slip NOx, controlling H2S released from NOx trap desulfation, and oxidizing slip hydrocarbons and carbon monoxide. When the catalyzed substrate is a filter substrate, it is also capable of removing soot from exhaust system.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 24, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Daniel Swallow, Andrew Francis Chiffey, Paul Richard Phillips
  • Patent number: 8524182
    Abstract: Disclosed is a catalyzed soot filter with layered design wherein the first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating, and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1:1 to 0:1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54 cm)3)): loading of the second coating (in g/inch3 (g/(2.54 cm)3)).
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 3, 2013
    Assignees: BASF SE, BASF Corporation
    Inventors: Gerd Grubert, Alfred Punke, Torsten Neubauer, Ruediger Wolff, Stanley Roth, Yuejin Li, Torsten Müller-Stach, Marcus Hilgendorff
  • Patent number: 8524181
    Abstract: The invention relates to a device for the qualitative and/or quantitative determination of at least one component of a chemically reducible gas mixture, an exhaust gas catalytic converter utilizing such a device, a vehicle including such a catalytic converter, a process for preparing such a device, a process for monitoring the NOx emissions of a vehicle, and the use of such a device.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 3, 2013
    Assignee: Deutsches Zentrum Fuer Luft-und Raumfahrt e.V.
    Inventors: Bilge Saruhan-Brings, Mathias Christian Stranzenbach, Christoph Leyens
  • Patent number: 8512658
    Abstract: The present invention relates to a method for exhaust gas after-treatment for essentially lean-burn internal combustion engines and also a corresponding advantageous exhaust gas after-treatment system. In particular, the present invention relates to reducing the proportion of the greenhouse gas N20 in the total exhaust gas from a corresponding internal combustion system using at least one NOx storage catalyst as exhaust gas purification element. The objective of the invention is to operate the N20 depletion catalyst located downstream of the NOx storage catalyst under lambda=<1 conditions when the N20 formed by the NOx storage catalyst reaches the N20 depletion catalyst.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: August 20, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Stephan Eckhoff, Frank Adam, Christian Lammarck
  • Patent number: 8512657
    Abstract: A filter for filtering particulate matter (PM) from exhaust gas emitted from a positive ignition engine or a compression ignition engine, which filter comprising a porous substrate having inlet surfaces and outlet surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a porous structure containing pores of a first mean pore size, wherein the porous substrate is coated with a washcoat comprising a plurality of solid particles wherein the porous structure of the washcoated porous substrate contains pores of a second mean pore size, and wherein the second mean pore size is less than the first mean pore size.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 20, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Louise Clare Arnold, Robert James Brisley, Christopher Gough Morgan
  • Patent number: 8491860
    Abstract: Systems and methods are provided for a layered emission control device coupled to an exhaust manifold. Various formulations may be incorporated in a plurality of layers of the device to enable various emission control functions to be grouped within spatial constraints. For example, a first layer may include a first, oxidizing catalyst, a second layer may include a HC trap, and a third layer may include a second, different oxidizing catalyst, the second layer positioned between the first and third layers. The layers may be organized to reduce functional interference and improve functional synergy between the various emission control functions.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: July 23, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Christine Kay Lambert, Douglas Allen Dobson
  • Patent number: 8475752
    Abstract: The lean NOx trap catalyst composition of the present invention comprises distinct layers, or zone configuration or multi-brick arrangement. The top layer, front zone or front brick is free of any alkali or alkaline earth NOx trapping components. The under layer, rear zone or rear brick may contain any desirable NOx trapping component in contact with a precious metals group catalyst (e.g., Pt). Catalysts of this invention show wide temperature operation window with superior low temperature performance.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 2, 2013
    Assignee: BASF Corporation
    Inventor: Chung Z. Wan
  • Patent number: 8475754
    Abstract: An engine exhaust gas purification device comprising control unit having successively arranged switching device (1), counter-current heat exchanger (3) and at least one exhaust gas purification component (2). The switching device (1) has a first position where a flow path (6) of the exhaust gas to the exhaust gas purification component (2) is opened and a second position where a flow path (6) of the exhaust gas to the exhaust gas purification component (2) is blocked and the exhaust gas flows along a further flow path (7) where the exhaust gas is heated and conveyed, via a flow path (20) of the exhaust gas purification component (2), and exits the exhaust gas purification unit (5) through outlet channels (4) of the counter-current heat exchanger (3). The switching device, the exhaust gas purification component, the counter-current heat exchanger and the flow paths are integrated in a compact exhaust gas treatment unit.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Universitaet Stuttgart Institut fuer Chemische
    Inventors: Gerhart Eigenberger, Ulrich Nieken, Matthias Rink, Stefan Matschke
  • Patent number: 8465631
    Abstract: A device for the purification of a polluted gas, for example an exhaust gas from a diesel or gasoline engine, comprising, in combination: A honeycomb structure, comprising at least one porous electron-conductive material forming the walls (1) of said structure and an electrochemical system for treating said gas, comprising a layer (7) of an ionically conductive and electronically insulating material D, a reduction catalyst A (9) for reducing the polluting species of the NOx type and an oxidation catalyst B (4) for oxidizing the polluting species of the soot, hydrocarbon HC, CO or H2 type, said electrochemical system being configured in the form of an electrode W and a counterelectrode CE; and means for applying a voltage or a current between said electrode W and said counterelectrode CE.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 18, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Ahmed Marouf
  • Patent number: 8454917
    Abstract: A nitrogen oxide storage catalyst is provided, which has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and includes platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present and applied to a homogeneous magnesium-aluminum mixed oxide. The second layer is notable for three-way catalytic activity, and includes palladium applied to aluminum oxide and barium oxide or strontium oxide, but no platinum.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 4, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Patent number: 8431099
    Abstract: The invention provides a process for purification of an exhaust gas comprising nitrogen oxides, carbon monoxide, hydrocarbons and particulate matters from an internal combustion engine comprising the step of contacting the exhaust gas with one or more catalysts on one or more cross corrugated wire mesh sheets (5) being arranged between two or more gas impermeable cross corrugated sheets (4). The exhaust gas is contacted with one or more catalysts being coated in different zones on the one or more cross corrugated wire mesh sheets (5). Particulate matters in the exhaust gas are retained in a zone of the gas impermeable sheets (4), where the zone is porous and optionally coated with an oxidation catalyst. The exhaust gas from the combustion engine can be heated by the purified exhaust gas. The invention further comprises an apparatus for the purification process of an exhaust gas from an internal combustion engine.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 30, 2013
    Assignee: Haldor Topsoe A/S
    Inventors: Jesper Norsk, Keld Johansen, Niels Poul Dalskov
  • Patent number: 8420036
    Abstract: Methods and systems for treating NOx-containing exhaust from an internal combustion engine. An exhaust aftertreatment system has at least a primary oxidation catalyst, a particulate filter, and a selective reduction catalyst (SCR). A bypass line diverts a portion of the exhaust from the exhaust line from a point downstream the particulate filter to a point upstream the SCR. A secondary oxidation catalyst on the bypass line is used to generate NO or NO2 to be returned to the exhaust line upstream the SCR.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 16, 2013
    Assignee: Southwest Research Institute
    Inventor: Jason T. Miwa
  • Patent number: 8404203
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to aluminum ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: March 26, 2013
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald S. Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew T. Caudle
  • Patent number: 8394348
    Abstract: Disclosed herein is a layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides being separated in a front and rear portion is disclosed. Provided is a catalytic material of at least two front and two rear layers in conjunction with a substrate, where each of the layers includes a support, all layers comprise a platinum group metal component, and the rear bottom layer is substantially free of a ceria-containing oxygen storage component (OSC).
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 12, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan Andersen, Davion Clark, David Moser
  • Publication number: 20130058849
    Abstract: A method of using a hybrid oxidation catalyst system for remediating a lean emission from a vehicle includes the step of oxidizing the hydrocarbons and carbon monoxide in an engine emission comprising hydrocarbons, carbon monoxide, NOx including NO and NO2, and oxygen with a first catalyst. The first catalyst includes noble metal particles supported in a first ceramic layer. The method further includes oxidizing the NO with a second catalyst having base metal oxide particles supported in a second ceramic layer to form NO2. The first catalyst is disposed upstream of the second catalyst and the system is capable of converting at least 10% of the amount of NO to NO2 at a temperature ranging from 75° C. to 225° C.
    Type: Application
    Filed: November 1, 2012
    Publication date: March 7, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Ford Global Technologies, LLC
  • Patent number: 8377400
    Abstract: An after-treatment system architecture and method for oxidizing the nitric oxide component of a gas stream are disclosed. One embodiment may include treatment of a gas stream that includes NOx with a perovskite catalyst of the general formula ABO3 or a modified formula of ABO3 wherein a small amount of a promoter material is substituted for a portion of at least one of element A or element B in a catalytic oxidation reaction to oxidize nitric oxide in the gas stream.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Schmieg, Chang H Kim, Gongshin Qi, Wei Li, David B. Brown
  • Patent number: 8372364
    Abstract: An exhaust gas post treatment system for, in particular, a self-igniting internal combustion engine including a catalytic converter that is arranged in an exhaust gas line, a fine particle filter and an introduction device for a reduction agent arranged upstream of the catalytic converter in the direction of the flow of the exhaust gas, and to a method for operating said type of exhaust gas post treatment system. An exhaust gas post treatment system and a method for operating said type of system that is simple to use and compact. This is achieved by virtue of the fact that the catalytic converter is a reductively or oxidatively operated catalytic converter, or that the introduction device, the catalytic converter, that can be operated reductively or oxidatively, and the fine particle filter are arranged in said sequence and in the exhaust line in the direction of flow.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 12, 2013
    Assignee: Deutz Aktiengesellschaft
    Inventors: Peter Broll, Markus Mueller
  • Patent number: 8337791
    Abstract: An exhaust gas purification catalyst, which is suitable as a three way catalyst for efficiently purifying carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) in exhaust gas discharged from a gasoline automobile and exhaust gas purification apparatus using the same and an exhaust gas purification method. <The upper layer> A catalyst composition having an activated metal (A), a heat resistant inorganic oxide (B) and a cerium-zirconium-type composite oxide (C) containing a pyrochlore phase in a crystal structure, wherein the activated metal (A) is rhodium. <The lower layer> A catalyst composition having an activated metal (A), a heat resistant inorganic oxide (B) and a cerium-containing oxide (C?) having a cubic crystal and/or tetragonal crystal structure as a major crystal structure, wherein the activated metal (A) is palladium, or palladium and platinum.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: December 25, 2012
    Assignees: Daiichi Kigenso Kagaku Kogyo Co., Ltd., N.E. Chemcat Corporation
    Inventors: Akira Kohara, Yoshiro Hirasawa, Takashi Yamada
  • Publication number: 20120315204
    Abstract: Provided are an exhaust purification device for a diesel engine and an exhaust purification method that utilizes the exhaust purification device enabling effective utilization of exhaust gas heat and allowing reduction in the size of the device, by virtue of the design of the layout of each post-processing units.
    Type: Application
    Filed: January 24, 2011
    Publication date: December 13, 2012
    Inventor: Kazuo Osumi
  • Patent number: 8329607
    Abstract: Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 11, 2012
    Assignee: BASF Corporation
    Inventors: M. Shahjahan Kazi, Michel Deeba, Torsten Neubauer, Alfred Helmut Punke, Torsten Wolfgang Mueller-Stach, Gerd Grubert, Stanley A. Roth, Jeffrey Barmont Hoke, Shlang Sung, Yuejin Li, Xinyi Wei, Chung-Zong Wan
  • Patent number: 8329127
    Abstract: A catalyst comprising: (a) a first layer comprising an oxidizing catalyst having an effective PGM loading such that oxidation of hydrocarbons generates sufficient heat to regenerate soot, wherein said effective amount of PGM is greater than about 10 g/ft3; and (b) a second layer adjacent to said first layer and comprising a reducing catalyst to selectively reduce NOx.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 11, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Julian Peter Cox
  • Patent number: 8323599
    Abstract: Disclosed herein is a layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides being separated in a front and rear portion is disclosed. Provided is a catalytic material of at least two front and two rear layers in conjunction with a substrate, where each of the layers includes a support, all layers comprise a platinum group metal component, and the rear bottom layer is substantially free of a ceria-containing oxygen storage component (OSC).
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 4, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan Andersen, Davion Clark, David H. Moser
  • Publication number: 20120294786
    Abstract: Provided are an exhaust purification device for a diesel engine, and an exhaust purification method that utilizes this exhaust purification device enabling effective utilization of exhaust gas heat and allowing reduction in the size of the device, by virtue of the design of the layout of each post-processing units.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 22, 2012
    Applicant: Isuzu Motors Limited
    Inventor: Kazuo Osumi
  • Patent number: 8293197
    Abstract: A system for reducing nitrogen oxides from an exhaust fluid is provided. The system includes an exhaust source, a hydrocarbon reductant source, a first injector in fluid communication with the hydrocarbon reductant source, where the first injector receives a first hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the first portion of the hydrocarbon reductant stream. The system further includes a first catalyst that receives the exhaust stream and the first hydrocarbon reductant stream, a second injector in fluid communication with the hydrocarbon reductant source, where the second injector receives a second hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the second hydrocarbon reductant stream, and a second catalyst disposed to receive an effluent from the first catalyst and the second portion of the hydrocarbon reductant stream.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 23, 2012
    Assignee: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Ashish Balkrishna Mhadeshwar
  • Patent number: 8273315
    Abstract: Systems and methods are provided for reducing exhaust NOx species using a monolith substrate having a plurality of channels configured with radially varying cell density. An injector injects reductant into the substrate unobstructedly, without use of a mixer. In some embodiments, a twist angle of the channels is based on a distance from an inlet of the substrate and varies exponentially as a function of the distance.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 25, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeong Yeol Kim, Giovanni Cavataio
  • Patent number: 8268274
    Abstract: One embodiment of the invention may include a product comprising a catalyst combination comprising a perovskite catalyst and a second catalyst that is not a perovskite catalyst.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: September 18, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, David B. Brown, Wei Li, Steven J. Schmieg, Gongshin Qi
  • Patent number: 8263031
    Abstract: A method is provided for purifying exhaust gas from an engine having an exhaust passage with a selective reducing catalyst and an oxidation catalyst upstream of the selective reducing catalyst. The method calculates an amount of NOx that flows into the selective reducing catalyst; sets an amount of an additive agent to be supplied to the selective reducing catalyst based on the calculated amount of NOx; determines a degradation degree of the oxidation catalyst; determines whether a correction to the amount of the additive agent is necessary based on the determined degradation degree of the oxidation catalyst; corrects the amount of the additive agent to be supplied when the correction is necessary; and supplies the additive agent to the selective reducing catalyst in the corrected amount if the amount is determined to be corrected and in the uncorrected amount if the amount is determined not to be corrected.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 11, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Hiroaki Gotan, Yoshiaki Tomita, Masashi Naono, Tamiharu Nakamura, Hiroaki Ishida
  • Patent number: 8252258
    Abstract: Provided is a diesel oxidation catalyst for the treatment of exhaust gas emissions from a diesel engine and a method for treating a diesel exhaust gas stream, the method comprising providing a diesel oxidation catalyst and contacting said diesel exhaust gas stream with said diesel oxidation catalyst for the treatment of exhaust gas emissions. More particularly, the present invention is directed to a catalyst structure comprising three distinct layers; in which layer comprises a precious metal component such as palladium is located between two hydrocarbon storage layers comprising a molecular sieve such as a zeolite.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: August 28, 2012
    Assignee: BASF Corporation
    Inventors: Torsten W. Müller-Stach, Torsten Neubauer, Alfred H. Punke, Gerd Grubert, Attilio Siani, Corinna Freitag
  • Patent number: 8246922
    Abstract: Provided are catalyst articles, emission treatment systems and methods for simultaneously remediating the carbon monoxide, nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The emission treatment system of specific embodiment effectively treats diesel engine exhaust with a single catalyst article.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 21, 2012
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Patent number: 8226914
    Abstract: Soot filters for removing soot from the exhaust gas of lean-burn engines become blocked with progressive operating duration on account of the deposition of soot, and must therefore be regenerated at regular intervals. It has been found that reliable operation of the soot filter is possible only if an active regeneration is carried out from time to time by increasing the exhaust-gas temperature to the soot ignition temperature. For this purpose, an oxidation catalytic converter is usually arranged upstream of the soot filter, and the exhaust-gas temperature is increased by means of the catalytic combustion of additionally injected fuel. Here, the oxidation catalytic converter is subjected to high temperature loading and therefore ages very quickly.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 24, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Paul Spurk, Stèphanie Frantz, Thomas Le Tallec, Olivier Teysset, Wilfried Mueller, Gerald Jeske
  • Patent number: 8211393
    Abstract: An exhaust system for a vehicular positive ignition internal combustion engine comprises a filter for filtering particulate matter from exhaust gas emitted from the engine, which filter comprising a porous substrate having inlet and outlet surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a porous structure containing pores of a first mean pore size, wherein the porous substrate is coated with a three-way catalyst washcoat comprising a plurality of solid particles wherein the porous structure of the washcoated porous substrate contains pores of a second mean pore size, which is less than the first mean pore size, and a three-way catalyst washcoat disposed on a separate substrate monolith located upstream of the filter, wherein a mass of three-way catalyst washcoat on the upstream substrate monolith is ?75% of the total mass of three-way catalyst washcoat in the exhaust system.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: July 3, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Louise Clare Arnold, Robert James Brisley, Neil Robert Collins, David Robert Greenwell, Christopher Gough Morgan
  • Patent number: 8211392
    Abstract: Provided is a catalyst composition, in particular a diesel oxidation catalyst, for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO). More particularly, the present invention is directed to a catalyst structure comprising at least two, specifically three distinct layers, at least one of which contains an oxygen storage component (OSC) that is present in a layer separate from the majority of the platinum group metal (PGM) components, such as palladium and platinum.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 3, 2012
    Assignee: BASF Corporation
    Inventors: Gerd Grubert, Torsten Neubauer, Alfred H. Punke, Torsten W. Müller-Stach, Attilio Siani, Stanley A. Roth, Jeffrey B. Hoke, Shiang Sung, Yuejin Li, Xinyi Wei, Michel Deeba
  • Patent number: 8197778
    Abstract: Sulfur dioxide (SO2) is removed from a carbon dioxide feed gas by maintaining the feed gas at elevated pressure(s) in the presence of oxygen (O2), water and NOx for a period of time sufficient to convert SO2 to sulfuric acid and NOx to nitric acid and produce SO2-depleted, NOx-lean carbon dioxide gas. The invention resides in separating the sulfuric and nitric acids from said SO2-depleted, NOx-lean carbon dioxide gas, and then neutralizing the acids by reaction with an alkaline sorbent in an acid/sorbent reactor system to produce sorbent-derive sulfate. The method has particular application in the removal of SO2 and NOx from flue gas produced by oxyfuel combustion of a carbonaceous fuel.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 12, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Kevin Boyle Fogash, Francis Peter Petrocelli
  • Patent number: 8137648
    Abstract: A diesel engine exhaust treatment system and method is provided which includes a platinum group metal trapping device (16) comprising cerium oxide or a perovskite material positioned between a diesel oxidation catalyst and an SCR catalyst. The platinum group metal trapping device traps trace amounts of platinum group metals which may be released from the diesel oxidation catalyst during engine operation and prevents them from accumulating on the SCR catalyst, preventing potential contamination of the SCR catalyst as well as ensuring that the performance of the SCR catalyst is uninhibited.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: March 20, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Hungwen Jen, Giovanni Cavataio, James W. Girard
  • Patent number: 8105559
    Abstract: A method of reducing nitrogen oxides (NOx) present in a lean gas stream comprising nitric oxide (NO) comprises the steps of: (i) net adsorbing NO per se from the lean gas stream in an adsorbent comprising palladium and a cerium oxide at below 200° C.; (ii) thermally net desorbing NO from the NO adsorbent in a lean gas stream at 200° C. and above; and (iii) catalytically reducing NOx on a catalyst other than the NO adsorbent with a reductant selected from the group consisting of a hydrocarbon reductant, a nitrogenous reductant, hydrogen and a mixture of any two or more thereof. A system for carrying out such a method is also disclosed.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 31, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joanne Elizabeth Melville, Robert James Brisley, Orla Keane, Paul Richard Phillips, Elizabeth Hazel Mountstevens
  • Patent number: 8105560
    Abstract: A system for treating a gas stream containing nitrogen oxides (NOx) and particulates flowing in the system comprises means for injecting a source of ammonia (NH3) or urea (CO(NH2)2) into a flowing exhaust gas upstream of a precious metal-free particulate trap, a selective catalytic reduction catalyst disposed downstream of the particulate trap and a source of ammonia or urea.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 31, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Richard Phillips, Gudmund Smedler, Martyn Vincent Twigg
  • Patent number: 8101304
    Abstract: The present invention relates to a process for the concentration of noble metals from fluorine-containing components of fuel cells, for example from PEM fuel cell stacks, DMFC fuel cells, catalyst-coated membranes (CCMs), membrane electrode assemblies (MEAs), catalyst pastes, etc. The process is based on an optionally multi-step heat treatment process comprising a combustion and/or a melting process. It allows an inexpensive, simple concentration of noble materials. The hydrogen fluoride formed during the heat treatment of fluorine-containing components is bound by an inorganic additive so that no harmful hydrogen fluoride emissions occur. The process can be used for the recovery of noble metals that are present as components in fuel cells, electrolysis cells, batteries, and the like.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: January 24, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Christian Hagelüken, Bernd Kayser, José-Manuel Romero-Ojeda, Ingo Kleinwächter
  • Patent number: 8101146
    Abstract: A system for reducing ammonia (NH3) emissions includes (a) a first component comprising a first substrate containing a three-way catalyst, wherein the first component is disposed upstream of a second component comprising a second substrate containing an ammonia oxidation catalyst, wherein said ammonia oxidation catalyst comprises a small pore molecular sieve supporting at least one transition metal; and (b) an oxygen-containing gas input disposed between the components. For example, a CHA Framework Type small pore molecular sieve may be used. A method for reducing NH3 emission includes introducing an oxygen-containing gas into a gas stream to produce an oxygenated gas stream; and exposing the oxygenated gas stream to an NH3 oxidation catalyst to selectively oxidize at least a portion of the NH3 to N2.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: January 24, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joseph M. Fedeyko, Hai-Ying Chen, Arthur J. Reining
  • Patent number: 8092767
    Abstract: A method of decomposing nitrogen dioxide to nitrogen monoxide in an exhaust gas of a lean-burn internal combustion engine, such as a diesel engine, comprises adjusting the C1 hydrocarbon:nitrogen oxides (C1 HC:NOx) ratio of the exhaust gas to from 0.1 to 2 and contacting this exhaust gas mixture with a particulate acidic refractory oxide selected from the group consisting of zeolites, tungsten-doped titania, silica-titania, zirconia-titania, gamma-alumina, amorphous silica-alumina and mixtures of any two or more thereof and passing the effluent gas to atmosphere.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: January 10, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Stephen David Pollington, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8057768
    Abstract: The invention relates to a special device for the purification of diesel exhaust gases, which device comprises, in the flow direction of the exhaust gas, an oxidation catalyst, a diesel particle filter with catalytically active coating, and, downstream of a device for introducing a reducing agent from an external reducing agent source, an SCR catalyst. The oxidation catalyst and the catalytically active coating of the diesel particle filter contain palladium and platinum. The ratio of the noble metals platinum and palladium in the overall system and on the individual components, oxidation catalyst and catalytically coated diesel particle filter, are coordinated with one another in such a way as to obtain firstly an optimum NO/NO2 ratio in the exhaust gas upstream of the downstream SCR catalyst, and secondly optimum heating and HC conversion behaviour during an active particle filter regeneration.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 15, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Wolfgang Schneider, Lothar Mussmann, Gerald Jeske, Michael Schiffer, Marcus Pfeifer
  • Publication number: 20110268635
    Abstract: Provided are selective catalytic reduction (SCR) filters that effectively provide simultaneous treatment of particulate matter and NOx. Provided also are methods for reducing NOx concentration and particulate matter in a diesel engine exhaust by using the SCR filters. The SCR filter can include a fiber matrix wall flow filter comprising a plurality of non-woven inorganic fibers and a chabazite molecular sieve SCR catalyst on the fiber matrix wall flow filter. By combining a fiber matrix wall flow filter with a chabazite molecular sieve SCR catalyst, high catalyst loading can be achieved without causing excessive back pressure across the filter when implemented in emission treatment systems.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 3, 2011
    Applicant: BASF Corporation
    Inventors: Samuel Boorse, Joseph C. Dettling
  • Patent number: 8038951
    Abstract: Provided are catalyst composites comprising: a catalytic material on a carrier, the catalytic material comprising a precious metal selected from a palladium component and an oxygen storage component, the oxygen storage component being present in an amount of at least 10% by weight, wherein substantially all of the oxygen storage component is in intimate contact with the palladium component and the catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. A catalyst composite comprising: a catalytic material on a carrier, the catalytic material comprising a palladium component and a ceria-zirconia composite support, the ceria being present in an amount in the range of 10 to 70% by weight, wherein substantially all of the ceria is in intimate contact with at least a portion of the palladium component. Methods of making and using these catalysts along with systems containing these catalysts are also provided.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: October 18, 2011
    Assignee: BASF Corporation
    Inventors: Knut Wassermann, Stephen Siemund, Michel Deeba, Harold Rabinowitz
  • Patent number: 7976802
    Abstract: A plant for treating pollutants contained in the exhaust gases of an internal-combustion engine includes an exhaust line (10) with an oxidation catalyst (12), a selective catalytic reduction catalyst (16) including a chemically active porous body and an injector (54) for injecting a reducing agent into the exhaust line. The selective catalytic reduction catalyst (16) includes at least one chemically inert passage (42) for the exhaust gases flowing therethrough and a shut-off (44) controlling access of the gases to the passage.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: July 12, 2011
    Assignee: IFP
    Inventor: Thierry Colliou
  • Patent number: 7964167
    Abstract: An after-treatment system architecture and method for oxidizing the nitric oxide component of an exhaust stream from a hydrocarbon fueled power source operated with a fuel lean combustion mixture.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: June 21, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg