Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/230)
  • Patent number: 7758836
    Abstract: A system and method for removing sulfur-containing contaminants from indoor air includes a panel system having a first layer and a second layer. The first layer can include a base media onto which sodium bicarbonate is attached. The second layer can include a base media onto which activated carbon is attached. Indoor air including sulfur-containing contaminants can contact and pass through the first layer. Sulfuric acid can react with the sodium bicarbonate to produce sodium sulfate, which can, in turn, act as a drying agent for organic sulfur-containing contaminants in the indoor air, such as carbon disulfide and carbonyl sulfide. As a result of such drying, the second layer can more effectively trap and/or bind (adsorb) the organic sulfur-containing contaminants so that these contaminants are removed from the contaminated air. The treated air can be returned to an indoor space of the structure.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: July 20, 2010
    Inventors: Ronald G. Huggins, Carl M. Sabatello, Paul T. Sabatello
  • Patent number: 7749455
    Abstract: A COS treatment apparatus for a gasified gas includes an O2 removal catalyst and a COS conversion catalyst located on the downstream side of a gasified gas flow with respect to the O2 removal catalyst. Also, a COS treatment apparatus includes a TiO2 catalyst that carries Cr2O3 or NiO. Further, a COS treatment method includes a first step in which O2 is removed by the reaction with H2S and CO, and a second step in which COS is converted to H2S.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: July 6, 2010
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masahiro Harada, Shintaro Honjo, Makoto Susaki, Kazuo Ishida, Hajime Nagano, Susumu Okino, Kozo Iida, Akira Johana
  • Publication number: 20100158777
    Abstract: In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 24, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert James Perry, Larry Neil Lewis, Michael Joseph O'Brien, Grigorii Lev Soloveichik, Sergei Kniajanski, Tunchiao Hubert Lam, Julia Lam Lee, Malgorzata Iwona Rubinsztajn
  • Publication number: 20100135881
    Abstract: A process is provided for the simultaneous removal of carbon dioxide and sulfur oxides from a flue gas stream by a potassium carbonate solvent. As a part of the regeneration of the contaminated stream, a portion of that stream is removed and cooled to allow for filtration of potassium sulfate, the reaction product of the solvent and the sulfur oxides.
    Type: Application
    Filed: July 28, 2009
    Publication date: June 3, 2010
    Inventors: Lubo Zhou, Dennis J. Bellville, Edward P. Zbacnik
  • Patent number: 7722842
    Abstract: A method for mineral sequestration of pollutant gases resulting from the combustion of carbon-based fuels such as carbon and sulfur dioxides is provided and includes, providing a particulate magnesium-containing mineral and exposing the magnesium-containing mineral to a weak acid to dissolve magnesium from the mineral and form a magnesium-containing solution. The surface of the particulate magnesium-containing mineral is physically activated to expose and dissolve additional magnesium into the solution. Pollutant gases such as carbon dioxide are mixed with the magnesium-containing solution. When the pH of the magnesium-containing solution is increased, solid magnesium carbonate is formed.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: May 25, 2010
    Assignee: The Ohio State University
    Inventors: Ah-Hyung Park, Liang-Shih Fan
  • Patent number: 7708805
    Abstract: Porous carbon fibers, whose active centers are formed by pores that are filled at least in part by carbon and/or metal and/or metal carbide, obtainable by carbonization of organic or inorganic polymers, the use thereof for the adsorption or separation of gaseous substances, in particular of CO2, and also a method for the production thereof. First, a spinning mixture containing polyacrylonitrile-based polymer A and an organic or metallo-organic polymer B is produced. Next, the spinning mixture is spun to form mixed fibers of polymer A and polymer B. The mixed fiber is stabilized by oxidation. This is followed by carbonization or graphitization of the mixed fiber under non-oxidizing conditions in such a way that the polymer B forms a carbon and/or metal and/or metal carbide residue of at least 22 wt %, the residue forming active centers.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: May 4, 2010
    Assignee: SGL Carbon AG
    Inventors: Michael Heine, Richard Neuert, Rainer Zimmermann-Chopin
  • Publication number: 20100092359
    Abstract: The present invention relates to a method for capturing CO2 from exhaust gas in an absorber (A1), wherein the CO2 containing gas is passed through an aqueous absorbent slurry wherein said aqueous absorbent slurry comprises an inorganic alkali carbonate, bicarbonate and at least one of an absorption promoter and a catalyst, and wherein the CO2 is converted to solids by precipitation in the absorber, said slurry having the precipitated solids is conveyed to a separating device (F1), in which the solids are separated off, essentially all of at least one of the absorption promoter and catalyst is recycled together with the remaining aqueous phase to the absorber.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 15, 2010
    Inventors: Hallvard F. Svendsen, Finn Andrew Tobiesen, Thor Mejdell, Karl Anders Hoff
  • Publication number: 20100086456
    Abstract: A method for separating CO2 from combustion exhaust gas includes discharging the CO2-containing combustion exhaust gas mass flow into the carbonator of a carbonate looping system having at least one carbonator and one calciner. Combining the CO2 of the combustion exhaust gas mass flow with a carbonate-forming sorbent inside the carbonator to form a carbonate. Sending the carbonate as a carbonate-solids mass flow is sent to the calciner. Burning the carbonate at the carbonate-specific calcination temperature by the addition of heat provided by an additional firing that uses oxygen as the oxidant, whereby regenerated sorbent and a gas essentially containing CO2 is formed. Sending the hot regenerated sorbent to the carbonator as a sorbent-solids mass flow for carbonization of CO2, and discharging the hot gas as gas mass flow.
    Type: Application
    Filed: September 8, 2009
    Publication date: April 8, 2010
    Inventor: Bernd Epple
  • Patent number: 7687047
    Abstract: A process for the simultaneous removal of H2S and SO2 from tail gases is disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises Zn and a promoter metal. A process for the recovery of sulfur is also disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce solid sulfur, wherein the sorbent comprises Zn and a promoter metal, wherein the promoter metal is manganese.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: March 30, 2010
    Assignee: ConocoPhillips Company
    Inventors: Roland Schmidt, Robert W. Morton, Edward L. Sughrue, II, Joseph B. Cross
  • Patent number: 7682582
    Abstract: A process for the simultaneous removal of H2S and SO2 from tail gases is disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises Zn and a promoter metal.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: March 23, 2010
    Assignee: ConocoPhillips Company
    Inventors: Robert W. Morton, Joseph B. Cross, Roland Schmidt, Edward L. Sughrue, II
  • Patent number: 7682424
    Abstract: A system employing a regenerable zinc-oxide based sorbent to remove one or more contaminants from an incoming gas stream. The contaminant-depleted gas stream can then be used for any subsequent application, while at least a portion of the contaminant-laden sorbent can be regenerated via a step-wise regeneration process. In one embodiment, sorbent regenerated via the step-wise regeneration process can comprise less sorbent-damaging compounds than traditional sorbents exposed to conventional regeneration processes.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: March 23, 2010
    Assignee: ConocoPhillips Company
    Inventors: Roland Schmidt, Robert W. Morton, Joseph B. Cross, Edward L. Sughrue, II, Albert C. Tsang
  • Patent number: 7682423
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 23, 2010
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasael Gupta
  • Patent number: 7678351
    Abstract: Applying an acid treatment to eggshells provides a sorbent with unexpectedly high CO2 capture capacity and ability to regenerate.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 16, 2010
    Assignee: The Ohio State University
    Inventors: Mahesh V. Iyer, Liang-Shih Fan
  • Patent number: 7670410
    Abstract: A carbon-dioxide-gas absorber includes a main component of composite oxide, the composite oxide including Ti and X that is at least one of Sr and Ba, and the composite oxide having a molar ratio (X/Ti) of about 1.8 to about 2.2. A substance having a perovskite structure and an (X/Ti) of about 0.9 to about 1.1 or at least one selected from green sheets, green sheet wastes, green-sheet-laminate wastes, and precursors of green sheets including the substance is fired with at least one of strontium carbonate and barium carbonate. An apparatus includes a carbon-dioxide-gas-absorbing mechanical unit that allows a carbon-dioxide-gas absorber to absorb a carbon dioxide gas at about 1.0×104 to about 1.0×106 Pa and at about 500° C. to about 900° C.; and a carbon-dioxide-gas-evolving mechanical unit that evolves the absorbed carbon dioxide gas at about 1000 Pa or less and at at least about 750° C.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 2, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshinori Saito, Yukio Sakabe
  • Patent number: 7666379
    Abstract: A process and apparatus is provided for the purification of binary halide fluid. The process and apparatus purifies the binary halide fluid by selectively removing Bronsted acid impurities and/or volatile oxygen containing impurities present in the binary halide. A regenerable adsorbent polymer is utilized to remove the Bronsted acid impurities from the binary halide fluid and a volatile oxide adsorbent having a specific adsorption capacity for the volatile oxide impurity is utilized to remove the volatile oxide from the binary halide when in gaseous form.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 23, 2010
    Assignee: Voltaix, Inc.
    Inventors: Leisl Dukhedin-Lalla, German Shekk, John P. de Neufville, Michael Pikulin
  • Patent number: 7658788
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 9, 2010
    Assignees: Air Products and Chemicals, Inc., SOFCO-EFS Holdings LLC
    Inventors: Michael Jerome Holmes, Theodore R. Ohrn, Christopher Ming-Poh Chen
  • Publication number: 20100021362
    Abstract: A carbon dioxide sequestration process includes the following steps. In a first stage, a slurry of a metal silicate rock is mixed with ammonia so as to produce a ammonia/water/metal silicate slurry. In a second stage, the process includes scrubbing a gas stream containing carbon dioxide with the solution from the first stage to thereby absorb the carbon dioxide into a reactive slurry. In a third stage, the reactive slurry from the second stage is passed through a reactor that is controlled so as to promote the reaction between the carbon dioxide and the metal silicate to thereby produce a metal carbonate.
    Type: Application
    Filed: February 20, 2008
    Publication date: January 28, 2010
    Inventor: Richard J. Hunwick
  • Patent number: 7645323
    Abstract: A method and apparatus for improving air quality within an enclosed space. The apparatus provides at least three molecular sieves that contain zeolite material to treat the air to remove toxins such as suspended particles, carbon dioxide, carbon monoxide, nitrogen dioxide, bacteria, formaldehyde, total volatile organic compounds, radon, ozone, toxic mould and organic odor-causing compounds. The apparatus uses the sieves such that one of the sieves is locked and retaining air, substantially immobile within, for a period of not less than 2 seconds to allow the zeolite material to breakdown the compounds and release the individual natural elements.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: January 12, 2010
    Assignee: Oxyvital Limited
    Inventors: Ilse A. Massenbauer-Strafe, Brian M. C. Neirynck, Jürgen F. G. Strafe
  • Publication number: 20090317315
    Abstract: This invention relates to a method and plant for energy-efficient removal of CO2 from a gas phase by means of absorption. The invention is particularly suitable for use in connection with thermal power plants fired by fossil fuels, and is also well-suited for retrofitting in existing thermal power plants. A processing plant according to the invention comprises three sections: a primary CO2-generating process that serves as main product supplier; a CO2-capture and separation plant based on absorption and desorption of CO2 respectively by/from at least one absorbent; and a second CO2-generating process where combustion of carbonaceous fuel in pure oxygen atmosphere serves as energy supply to at least a part of the thermal energy necessary to drive the regeneration of the absorbent in the desorption column(s).
    Type: Application
    Filed: January 12, 2007
    Publication date: December 24, 2009
    Applicants: CO2-Norway AS, Nebb Engineering AS
    Inventors: Carl-W. Hustad, Ingo Tronstad
  • Publication number: 20090311156
    Abstract: A process for the removal of contaminants from a gas stream is disclosed. A gas stream is contacted with a chlorine-containing compound to form a mixed gas stream. The mixed gas stream is then contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises zinc and a promoter metal.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 17, 2009
    Inventors: Roland Schmidt, Robert W. Morton
  • Patent number: 7628966
    Abstract: The present invention is a process for removing hydrogen sulfide gas from natural gas by contacting a flow of sour natural gas containing hydrogen sulfide gas with a scavenging agent including a group IIA metal hydroxide such as calcium hydroxide for a sufficient amount of time to form calcium sulfide and water to yield natural gas that is substantially depleted of hydrogen sulfide gas. Sour natural gas may be percolated through a column containing a scavenging agent such as calcium hydroxide suspended as a fine particulate in water or a bed of dry calcium hydroxide granules. The scavenging agent may be periodically or continuously replenished with fresh scavenging agent rich in the selected group IIA metal hydroxide.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: December 8, 2009
    Assignee: American Energies Corporation, Inc.
    Inventor: Michael Wayne Sigel
  • Patent number: 7625837
    Abstract: A composition, containing vanadium, potassium and a support is disclosed. A method of preparing such composition is also disclosed. The composition is employed in a process to remove a heavy metal from a gaseous feed stream which can optionally include a separate heavy metal adsorption stage.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: December 1, 2009
    Assignee: ConocoPhillips Company
    Inventors: Glenn W. Dodwell, Joseph B. Cross, Marvin M. Johnson, Edward L. Sughrue, II, Jianhua Yao
  • Publication number: 20090285739
    Abstract: A method for neutralizing or reducing the carbon footprint from carbon dioxide emissions due to human activities related to the combustion or use of carbon containing fuels. This method includes an initial step of capturing carbon dioxide and then chemically recycling it to form and provide a permanent inexhaustible supply of carbon containing fuels or products, which subsequently can be combusted or used without increasing the carbon dioxide content of the atmosphere. Thus, the current lifestyles that rely extensively on conventional carbon containing fuels and products can continue indefinitely without harming the environment to preserve and even improve the earth's atmosphere for the benefit of future generations.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 19, 2009
    Inventors: George A. Olah, G.K. Surya Prakash
  • Patent number: 7618606
    Abstract: A reaction-based process has been developed for the selective removal of carbon dioxide from a multicomponent gas mixture. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 process consists of contacting a CO2 laden gas with calcium oxide in a reactor such that CaO captures the CO2 by the formation of calcium carbonate. Once “spent”, CaCO3 is regenerated by its calcination leading to the formation of fresh CaO sorbent. The “regenerated” CaO is then recycled for the further capture of more CO2. This process also identifies the application of a mesoporous CaCO3 structure, that attains >90% conversion over multiple carbonation and calcination cycles. Lastly, thermal regeneration (calcination) under vacuum provided a better sorbent structure that maintained reproducible reactivity levels over multiple cycles.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: November 17, 2009
    Assignee: The Ohio State University
    Inventors: Liang-Shih Fan, Himanshu Gupta, Mahesh V. Iyer
  • Publication number: 20090280046
    Abstract: The invention relates to an apparatus and method for reducing contaminants from industrial processes. More particularly, the invention is directed to a method of sequestering pollutants from flue gases in operational plants. The method includes sequestering contaminants from a point source by reacting an alkaline material with a flue gas containing contaminants to be sequestered, wherein the reaction has a rapid mass transfer rate to sequester at least a portion of the contaminants.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 12, 2009
    Applicant: UNIVERSITY OF WYOMING
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Publication number: 20090274600
    Abstract: The present invention provides for a process for purifying carbon monoxide-containing gas streams that contain impurities such as hydrocarbons by using a cryogenic adsorption process. Preferably this process is a temperature swing adsorption process at cryogenic temperatures below ?75° C. Alternatively, the carbon monoxide-containing gas streams may be purified using the cryogenic adsorption process with membrane separation units or vacuum swing adsorption units or cryogenic distillation.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 5, 2009
    Inventors: Ravi JAIN, Bruce Walter Uhlman
  • Patent number: 7611685
    Abstract: The inventive method for hydrogen sulphide and/or mercaptans decomposition consists in passing hydrogen sulphide and/or mercaptan-containing gas at a temperature less than 200° C. through a hard material layer (catalyst) which decomposes said hydrogen sulphide or mercaptans in such a way that hydrogen or hydrocarbons are released and sulphur-containing compounds are formed on a material surface. Said hard material is placed in a liquid medium layer. Said invention makes it possible to use a hard material (catalyst) without a periodical regeneration thereof.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 3, 2009
    Assignee: Institu Kataliza Imeni G. K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
    Inventors: Anatolii Nikolaevich Startsev, Anastasia Viktorovna Pashigreva, Olga Valeryevna Voroshina, Ivan Ivanovich Zakharov, Valentin Nikolaevich Parmon
  • Publication number: 20090269264
    Abstract: A carbon dioxide reforming catalyst and a manufacturing method thereof are provided, the catalyst enabling a hydrocarbon feedstock gas to react with carbon dioxide while carbon deposition is suppressed, efficiently generating hydrogen and carbon monoxide. A mixture containing a carbonate of at least one alkaline earth metal selected from the group consisting of Ca, Sr, and Ba and a catalytic metal promoting a decomposition reaction of a hydrocarbon feedstock gas is contained as a primary component. The catalytic metal can be a least one element selected from the group consisting of Ni, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo. In addition, ATiO3 (where A is at least one alkaline earth metal selected from the group consisting of Ca, Sr, and Ba) can further be present. The manufacturing is performed through a step in which carbon dioxide is absorbed in an alkaline earth/Ti composite oxide having a carbon dioxide absorption ability.
    Type: Application
    Filed: July 8, 2009
    Publication date: October 29, 2009
    Inventors: Yoshinori Saito, Hideto Sato
  • Publication number: 20090263301
    Abstract: The invention relates to an apparatus and method for reducing contaminants from industrial processes. More particularly, the invention is directed to a method of sequestering pollutants from flue gases in operational plants. The method includes sequestering contaminants from a point source by reacting an alkaline material with a flue gas containing contaminants to be sequestered, wherein the reaction has a rapid mass transfer rate to sequester at least a portion of the contaminants.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 22, 2009
    Applicant: University of Wyoming
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Patent number: 7604787
    Abstract: A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: October 20, 2009
    Assignee: The Penn State Research Foundation
    Inventors: M. Mercedes Maroto-Valer, Yinzhi Zhang, Matthew E. Kuchta, John M. Andresen, Dan J. Fauth
  • Publication number: 20090246107
    Abstract: Dry-scrubbing media compositions, methods of preparation and methods of use are provided. The compositions contain activated alumina and magnesium oxide. Optionally, activated carbon and other impregnates, such as hydroxides of group 1A metals, are included. The compositions exhibit improved efficiency and capacity for the removal of compounds, such as hydrogen sulfide, from an air-stream. The compositions are particularly useful for reducing or preventing the release of toxic gaseous compounds from the areas such as landfills, petroleum storage areas, refineries, drinking water systems, sewage treatment facilities, swimming pools, hospital morgues, animal rooms, and pulp and paper production sites.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Inventor: William G. England
  • Publication number: 20090238742
    Abstract: The proposed invention is directed to a solvent based flue gas processing system for removing CO2 from a flue gas stream. A catalyst is provided to increase the efficiency of the solvent in capturing CO2 from the flue gas stream or in regenerating the solvent.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Zheng Liu, Naresh B. Handagama
  • Patent number: 7588630
    Abstract: A carbon dioxide absorbent includes lithium silicate containing lithium orthosilicate and lithium metasilicate, the lithium metasilicate being contained in an amount of 5% by weight or more to 40% by weight or less with respect to the total amount of lithium orthosilicate and lithium metasilicate, where the lithium metasilicate produced by reaction of the lithium orthosilicate and carbon dioxide is excluded.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiro Imada, Yasuhiro Kato, Masahiro Kato
  • Publication number: 20090214407
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 7578986
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials such as Group 1 and Group 2 metal oxides that are adapted to absorb CO2 and catalyst materials such as reforming catalysts and water-gas shift catalysts, and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 25, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Publication number: 20090202409
    Abstract: This invention provides a method and process for the facile extraction of selected gases by means of a permeable membrane module, also known as a permeator, with effective and beneficial control of temperature the apparatus allowing temperature gradients or isothermal operation. The isolation and removal of subject gases, particularly those arising from combustion, i.e., combustion gases, is usually accomplished by means of absorber and stripper towers containing various packings to facilitate gas-liquid interaction. The inlet temperature has to be controlled but the temperature varies along the length of the tower height. In contrast, a membrane-based separation device, whether it is a permeator design or a traditional two body absorber and stripper, operates better, particularly if driven by a catalyst, under a controlled temperature regimen.
    Type: Application
    Filed: January 14, 2009
    Publication date: August 13, 2009
    Inventors: David A. Smith, Robert M. Cowan, Michael C. Tractenberg
  • Patent number: 7572429
    Abstract: A combined desulphurization and pre-reforming processing unit converts logistic fuels such as JP-5, JP-8, gasoline, and diesel with high sulfur content levels, into a mixture of hydrogen, methane, carbon monoxide, carbon dioxide, and water without any sulfur or higher hydrocarbons. The fuel is processed at lower temperatures with sulfur-resistant materials in order to break down all the heavy hydrocarbons into methane and carbon oxides while capturing the sulfur simultaneously. The resulting feed is passed to a methane reforming system to generate additional hydrogen with no effects of coking or sulfur poisoning on the reforming system. The unit itself operates in a cyclic manner in order to regenerate the bed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 11, 2009
    Assignee: Nu Element, Inc.
    Inventors: Michael K. Neylon, David C. LaMont, Karen M. Fleckner
  • Publication number: 20090196808
    Abstract: A process for the simultaneous removal of H2S and SO2 from tail gases is disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises Zn and a promoter metal.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Robert W. Morton, Joseph B. Cross, Roland Schmidt, Edward L. Sughrue, II
  • Publication number: 20090196809
    Abstract: A process for the simultaneous removal of H2S and SO2 from tail gases is disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce a product gas stream and a sulfur laden sorbent, wherein the sorbent comprises Zn and a promoter metal. A process for the recovery of sulfur is also disclosed. A tail gas stream is contacted with a sorbent in a sorption zone to produce solid sulfur, wherein the sorbent comprises Zn and a promoter metal, wherein the promoter metal is manganese.
    Type: Application
    Filed: March 24, 2008
    Publication date: August 6, 2009
    Inventors: Roland Schmidt, Robert W. Morton, Edward L. Sughrue, II, Joseph B. Cross
  • Patent number: 7556673
    Abstract: The present invention relates to a method for the separation of carbon dioxide from a gas mixture containing carbon dioxide comprising the steps of (a) contacting the gas mixture with at least one sorbent comprising a porous metal-organic framework material, the framework material taking up the carbon dioxide from the gas mixture and comprising at least one at least bidentate organic compound coordinately bound to at least one metal ion, wherein the at least bidentate organic compound comprises at least one substituted or unsubstituted amino group and wherein the at last one metal ion is an ion selected from the group of metals consisting of magnesium, calcium, strontium, barium, aluminium, gallium, indium, scandium, yttrium, titanium, zirconium, iron, copper and lanthanoids; and (b) desorbing the carbon dioxide.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: July 7, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Schubert, Ulrich Müller, Christoph Kiener
  • Publication number: 20090169452
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: December 24, 2008
    Publication date: July 2, 2009
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard
  • Patent number: 7553463
    Abstract: Methods by which new or used boilers or furnaces ranging from small industrial to the largest utility units that are designed for coal or oil or natural gas or shredded waste or shredded biomass firing can substantially improve their technical operation and sharply reduce their capital and operating costs by implementing component modifications and process steps that (a) minimize the adverse impacts of coal ash and slag on boiler surfaces and particulate emissions thereby also facilitating the use of oil or gas designed boilers for coal firing, (b) drastically reduce the loss of water used to transport coal in slurry form to power plants, (c) essentially eliminate the combined total nitrogen oxides (NOx), sulfur dioxide (SO2), mercury (Hg), trace metals, and carbon dioxide (CO2) emissions, (d) separate and permanently sequester carbon dioxide released during combustion and (e) improve the coal and solid fuel combustion efficiency.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 30, 2009
    Inventor: Bert Zauderer
  • Publication number: 20090155150
    Abstract: Disclosed is a process for the removal of sulfur from a fuel gas stream that additionally contains diolefins and oxygen as well as organic sulfur compounds by pretreating the fuel gas stream in a pretreatment reactor in order to significantly reduce the amounts of any diolefins and oxygen contained therein prior to the hydrodesulfurization in a hydrotreater reactor wherein organic sulfur compounds are converted to hydrogen sulfide. The hydrogen sulfide formed is removed from the hydrotreated gas stream by use of an absorption treatment method, such as amine treatment, to yield a treated fuel gas stream having a reduced concentration of hydrogen sulfide and an overall sulfur content that is low enough to meet stringent sulfur regulation requirements.
    Type: Application
    Filed: August 15, 2008
    Publication date: June 18, 2009
    Inventors: Gary Lee RIPPERGER, Michael Norris Treybig
  • Publication number: 20090155889
    Abstract: A system (10) for absorbing an acidic component from a process stream (22), the system including: a process stream (22) including an acidic component; an absorbent solution to absorb at least a portion of the acidic component from the process stream (22), wherein the absorbent solution includes an amine compound or ammonia; an absorber (20) including an internal portion (20a), wherein the absorbent solution contacts the process stream (22) in the internal portion of the absorber; and a catalyst (27) to absorb at least a portion of the acidic component from the process stream (22), wherein the catalyst is present in at least one of: a section of the internal portion (20a) of the absorber (20), the absorbent solution, or a combination thereof.
    Type: Application
    Filed: November 20, 2008
    Publication date: June 18, 2009
    Applicant: ALSTOM Technology Ltd
    Inventors: Nareshkumar B. Handagama, Rasesh R. Kotdawala
  • Publication number: 20090143211
    Abstract: A method of sequestering a greenhouse gas is described, which comprises: (i) providing a solution carrying a first reagent that is capable of reacting with a greenhouse gas; (ii) contacting the solution with a greenhouse gas under conditions that promote a reaction between the at least first reagent and the greenhouse gas to produce at least a first reactant; (iii) providing a porous matrix having interstitial spaces and comprising at least a second reactant; (iv) allowing a solution carrying the at least first reactant to infiltrate at least a substantial portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (v) allowing the at least first product to form and fill at least a portion of the interior spaces of the porous matrix, thereby sequestering a greenhouse gas.
    Type: Application
    Filed: November 14, 2008
    Publication date: June 4, 2009
    Inventors: Richard E. Riman, Vahit Atakan
  • Patent number: 7537742
    Abstract: This invention discloses an optimum set of adsorbents for use in H2-PSA processes. Each adsorbent bed is divided into four regions; Region 1 contains adsorbent for removing water; Region 2 contains a mixture of strong and weak adsorbents to remove bulk impurities like CO2; Region 3 contains a high bulk density (>38 lbm/ft3) adsorbent to remove remaining CO2; and most of CH4 and CO present in H2 containing feed mixtures; and Region 4 contains adsorbent having high Henry's law constants for the final cleanup of N2 and residual impurities to produce hydrogen at the desired high purity.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: May 26, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Mark William Ackley, Frank Notaro
  • Publication number: 20090111959
    Abstract: A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 30, 2009
    Inventors: Guang Cao, Machteld Maria Mertens, Karl G. Strohmaier, Hailian Li, Robert J. Saxton, Anil S. Guram, Jeffrey C. Yoder, Mark T. Muraoka, Anthony F. Volpe, JR.
  • Patent number: 7521031
    Abstract: A method for treating exhaust gas includes: adsorbing target components in the exhaust gas with an adsorbent (5); introducing a nitrogen gas with an oxygen concentration of 10 vol % or less and a purity of 90 vol % or more into the adsorbent (5); and applying (6, 7, 8) nonthermal plasma to the adsorbent (5). After the adsorbent (5) adsorbs the target components in the exhaust gas, the nitrogen gas is introduced into the adsorbent (5), and then an electric discharge is generated so that the nonthermal plasma of the nitrogen gas is applied to the adsorbent (5) and causes desorption of the target components and regeneration of the adsorbent (5). This method can remove the target components effectively from oxygen-containing exhaust gas by using nitrogen gas plasma with high activity as a result of ionization of a nitrogen gas and combining adsorption, desorption by the nitrogen gas plasma, and nitrogen plasma treatment.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: April 21, 2009
    Assignee: Osaka Industrial Promotion Organization
    Inventors: Masaaki Okubo, Toshiaki Yamamoto, Tomoyuki Kuroki
  • Patent number: 7514053
    Abstract: Methods for scrubbing gas streams to remove acid gases including sulfur dioxide, mercury-containing substances, and/or nitrogen oxides from the gas stream. The gas stream is contacted with a potassium-based sorbent effective for removing at least a portion of the acid gases. The partially cleaned gas stream is then contacted with an oxidant effective to remove at least a portion of the nitrogen oxides and/or mercury-containing substances after partially removing the acid gas substance.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 7, 2009
    Assignee: EnviroSolv Energy LLC
    Inventors: Dennis W. Johnson, Mark S. Ehrnschwender
  • Patent number: 7510692
    Abstract: A method for hydride gas purification uses materials having at least one lanthanide metal or lanthanide metal oxide. The method reduces contaminants to less than 100 parts per billion (ppb), preferably 10 ppb, more preferably 1 ppb. The material can also include transition metals and transition metal oxides, rare earth elements and other metal oxides. The invention also includes materials for use in the method of the invention.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: March 31, 2009
    Assignee: Entegris, Inc.
    Inventors: Daniel Alvarez, Jr., Jeffrey J. Spiegelman, Joshua T. Cook, Tram Doan Nguyen, Daniel A. Lev, Troy B. Scoggins