Nitrogen Or Nitrogenous Component Patents (Class 423/235)
  • Publication number: 20110262331
    Abstract: An air pollution control system 10A according to the present invention includes: a boiler 11 that burns fuel; NOx removal equipment 12 that decomposes nitrogen oxides in flue gas 25 discharged from the boiler 11; a desulfurizer 15 that causes sulfur oxides in the flue gas 25 having passed through the NOx removal equipment 12 to be absorbed by an absorbent, thereby reducing sulfur oxides in the flue gas 25, a waste-water treatment device 16 including a solid-liquid separating unit 31 that separates desulfurized waste water 28 discharged from the desulfurizer 15 into a solid fraction and a liquid fraction, and a mercury removing unit 32 that removes mercury in the desulfurized waste water 28; and a treated waste-water returning unit (a makeup water line) 17 that returns at least a part of treated waste water 40 treated by the waste-water treatment device 16 to the desulfurizer 15.
    Type: Application
    Filed: February 25, 2010
    Publication date: October 27, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Nobuyuki Ukai, Moritoshi Murakami, Susumu Okino, Tatsuto Nagayasu, Seiji Kagawa
  • Publication number: 20110262332
    Abstract: An apparatus for the decomposition of a gaseous agent in exhaled air from patients, comprising a gas flow line along which there is a) an inlet arrangement, b) a decomposition unit with a chamber for decomposition of the agent, and c) an outlet arrangement. The characteristic feature is the presence of a gas regulating arrangement comprising a) a gradually adjustable function, e.g. a blower, for adjusting the flow through the chamber, and b) an optional by-pass valve function permitting adjustment of the gas pressure upstream of the adjustable function. An apparatus of the same kind as in the first sentence of the previous paragraph in which the chamber is combined with a regenerative heat exchanger preferably equipped with a puff filter. Methods are also claimed.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 27, 2011
    Inventors: Istvan Szabo, Berton Arespång
  • Publication number: 20110243823
    Abstract: A method and apparatus for producing ammonia suitable for use as a reductant in a selective catalytic reduction (SCR), a selective non-catalytic reduction (SNCR), or a flue gas conditioning system is provided. A method for treating combustion exhaust gas with ammonia is provided that includes the electrolytic hydrolysis of urea under mild conditions. The electrolysis apparatus includes an electrolytic cell, which may be operatively coupled to an exhaust gas treatment system to provide an apparatus for reducing nitrogen oxides (NOx) and/or particulate in exhaust gases.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: OHIO UNIVERSITY
    Inventor: Gerardine G. Botte
  • Patent number: 8029750
    Abstract: The invention relates to a process as well as a device for removal of exhaust gas (7) that contains oxidizable pollutants. The exhaust gas (7) that contains oxidizable pollutants is introduced at a suitable location (a) into a flue gas system (K) that corresponds to a process oven (D) and is mixed with hot, oxygen-containing flue gas that flows through the flue gas system, whereby the exhaust gas (7) that contains oxidizable pollutants is heated to a temperature of at least 600° C.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 4, 2011
    Assignee: Linde AG
    Inventors: Konstanze Furchtbar, Roland Thalhammer, Klemens Wawrzinek
  • Patent number: 8025860
    Abstract: Acid mist may be removed efficiently from a gas stream using at least one fiber bed mist eliminator operating at elevated pressure of typically at least 2 bar (0.2 MPa), e.g. at about 4 bar (0.4 MPa) to about 50 bar (5 MPa). The invention has particular application in methods for processing carbon dioxide flue gas in which SO2 and/or NOx contaminants are converted at elevated pressure to sulfuric acid condensate and/or nitric acid condensate respectively.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 27, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Barry Wayne Diamond
  • Publication number: 20110229393
    Abstract: An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.
    Type: Application
    Filed: April 13, 2011
    Publication date: September 22, 2011
    Inventor: Liang HU
  • Patent number: 8021635
    Abstract: An injection device for humidifying a reactor space and injecting and dispersing reagents into the humidified reactor space, including an exterior injection duct for high-velocity gas injection and at least one interior injector for reagent and humidifying agent injection as droplets with a droplet environment. The high-velocity gas ensuring the humidification of the liquid droplet environment and mixing and dispersion of the liquid reagent droplets into the reactor. A multiple injection device system and a method for operating the system are also described.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 20, 2011
    Assignee: Nalco Mobotec, Inc.
    Inventors: Brian S. Higgins, Goran Moberg
  • Publication number: 20110223083
    Abstract: A flue gas stream processing system includes a fuel reactor for combusting a fuel to generate a flue gas stream including water vapor, carbon monoxide and carbon dioxide. The system includes an oxidation catalyst downstream of the fuel reactor, the oxidation catalyst configured to receive the flue gas stream and oxidize the carbon monoxide to form a carbon dioxide rich flue gas stream, and a processing unit to liquefy carbon dioxide in the carbon dioxide rich flue gas stream and generate an exhaust gas.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: Michal T. Bialkowski, Gisbert Wolfgang Kaefer
  • Patent number: 8017100
    Abstract: The invention provides a system for converting urea into reactants useful for removing NOX from industrial emissions. The system includes a urea inlet, a steam inlet, and a reactor in fluid communication with the urea inlet and the steam inlet. The reactor is configured and adapted to inject urea from the urea inlet into a steam flow from the steam inlet to convert the urea into at least one reactant for NOX reduction within a substantially gaseous mixture. The invention also provides a method of converting urea into reactants for reducing NOX out of industrial emissions. The method includes injecting urea into a steam flow to convert the urea into at least one reactant for NOX reduction within a substantially gaseous mixture.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 13, 2011
    Assignee: Babcock Power Environmental Inc.
    Inventors: Calvin E. Phelps, Sr., Clayton A. Erickson, Rajaram Jambhekar, John R. Harold
  • Patent number: 8012438
    Abstract: A method for controlling multipollutant (e.g., SO2, NOx, Hg0 and Hg2+) emissions from a gas stream of a stationary combustion source, an apparatus for controlling multipollutant emissions, and a wet scrubber additive composition for controlling multipollutant emissions are disclosed.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 6, 2011
    Assignee: The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventors: Nick D. Hutson, Ravi K. Srivastava, Renata Krzyzynska, Yongxin Zhao
  • Publication number: 20110206587
    Abstract: A method is provided for separation of nitrogen oxides (NOx) from an epoxide-containing gas stream. The separation of nitrogen oxides (NOx) is performed by gas-liquid sorption and/or by gas-solid sorption.
    Type: Application
    Filed: June 16, 2009
    Publication date: August 25, 2011
    Applicant: Zylum Beteiligungsgesellschaft mbH & Co. Patente II KG
    Inventor: Torsten Berndt
  • Patent number: 7998444
    Abstract: The present invention is a method for selective reduction of nitrogen oxides in a gas stream with ammonia wherein the ammonia is vaporized prior to contacting it with the carrying fluid. The present invention also comprises a reducing agent dispersion system for use in substantially uniformly mixing a reducing agent with nitrogen oxides in a flue gas stream comprising a header and a plurality of lances. Further, the present invention comprises a novel reactor design for use in selective reduction of nitrogen oxides in a gas stream.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 16, 2011
    Assignee: Johnson Matthey Inc.
    Inventor: Yul Kwan
  • Patent number: 7993616
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 9, 2011
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Publication number: 20110189068
    Abstract: A system for treating a gas stream containing nitrogen oxides (NOx) and particulates flowing in the system comprises means for injecting a source of ammonia (NH3) or urea (CO(NH2)2) into a flowing exhaust gas upstream of a precious metal-free particulate trap, a selective catalytic reduction catalyst disposed downstream of the particulate trap and a source of ammonia or urea.
    Type: Application
    Filed: May 29, 2009
    Publication date: August 4, 2011
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Paul Richard Phillips, Gudmund Smedler, Martyn Vincent Twigg
  • Publication number: 20110173139
    Abstract: Systems, methods and processes teach by specific examples how the cost of sequestering carbon dioxide (CO2) can be totally offset and turned into profits during coal powered electricity generation from revenue and co-benefits. The process is provided whereby fly ash-carbon mixtures, or de-volatilized coal char, or anthracite coal culm is co-fired in an air-cooled, slagging combustor with limestone or similar slag fluxing materials converts the ash into cementitious slag with properties similar to ground granulated blast furnace slag.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Inventor: Bert ZAUDERER
  • Publication number: 20110165663
    Abstract: A device and a method for producing a fine liquid mist and injecting the said mist into a gas stream to capture and remove very fine particulate pollutants. The pressurized gas stream is passed into a droplet generator (20) into which the liquid is sprayed and atomised into a mist which captures particulates and then into a droplet separator (30) to produce a separated liquid/particulate mixture and a gas stream with a reduced concentration of particulates. The main application is the removal of fine particulates from vehicle exhaust streams. Optionally a degassing stage (90) is provided for the removal of residual gases and vapours. The preferred liquid to form the mist is water.
    Type: Application
    Filed: July 11, 2005
    Publication date: July 7, 2011
    Inventor: Howard P. Davis
  • Patent number: 7964166
    Abstract: The present invention provides for process for inhibiting the levels of nitrogen oxides in process gas streams from sulfuric acid regeneration and production plants. The process gas stream from the waste heat boiler and the candle mist eliminator is contacted with ozone which will react with nitrogen oxides present in the flue gas.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: June 21, 2011
    Assignee: Linde Aktiengesellschaft
    Inventor: Naresh Suchak
  • Publication number: 20110142739
    Abstract: A method of decreasing a concentration of nitrogen oxides in a combustion gas flowing through a vessel including: generating a flue gas in a combustion zone of the vessel, the flue gas containing nitrogen oxides and carbon monoxide; providing overfire air into a burnout zone of the vessel from a first injector of overfire air to oxidize at least some of the carbon monoxide in the flue gas; injecting a selective reducing agent concurrent with overfire air at a level in the burnout zone downstream of the first injector of overfire air and downstream of the oxidization of the carbon monoxide, and reacting the selective reducing agent with the flue gas to reduce the nitrogen oxides.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 16, 2011
    Applicant: General Electric Company
    Inventors: Larry William Swanson, Wei Zhou, David Kelly Moyeda, Roy Payne
  • Patent number: 7959884
    Abstract: An air purifying apparatus includes an air flow generating device for generating a flow of air, a nozzle spraying water to the air flowing through the air flow generating device, a plasma module performing a plasma reaction on the air containing the water sprayed from the nozzle, and oxidizing NOx in the air and converting it into NO3, an eliminator eliminating the NO3 converted in the plasma module and the water contained in the air and passing pure air through the eliminator and out of the air purifying apparatus and a water tank storing the water received from the eliminator, thereby heightening the removal efficiency of NOx from the air.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: June 14, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun-Jung Yi, Seung-Ki Cha, Chang-su Lim
  • Publication number: 20110135552
    Abstract: Methods and apparatus for treating an exhaust gas in a foreline of a substrate processing system are provided herein. In some embodiments, an apparatus for treating an exhaust gas in a foreline of a substrate processing system includes a plasma source coupled to a foreline of a process chamber, a reagent source coupled to the foreline upstream of the plasma source, and a foreline gas injection kit coupled to the foreline to controllably deliver a gas to the foreline, wherein the foreline injection kit includes a pressure regulator to set a foreline gas delivery pressure setpoint, and a first pressure gauge coupled to monitor a delivery pressure of the gas upstream of the foreline.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 9, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: COLIN JOHN DICKINSON, MEHRAN MOALEM, DANIEL O. CLARK
  • Patent number: 7947168
    Abstract: A method for recovering NH3 present in a sour water stream containing odiferous compounds such as pyridines, indoles, ketones and mercaptans produced during an upgrading process for upgrading bitumen from oil sands into synthetic crude comprising treating the sour water stream in a sour water treatment unit to produce a NH3-rich stream and a H2S-rich stream; and hydrotreating the NH3-rich stream in a hydrotreater in the presence of hydrogen to remove the odiferous compounds such as pyridines, indoles, ketones and mercaptans and produce a treated NH3-rich stream.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: May 24, 2011
    Assignee: Syncrude Canada Ltd.
    Inventors: John Machin, Daniel Rusnell, Paul Won, Monica Morphy, Xin Alex Wu, Brenda Crickmore, Craig McKnight
  • Publication number: 20110097253
    Abstract: A method producing a volume of purified F2 comprising removing HF from a F2 feed and removing CF4 from the F2 feed, wherein a concentration of HF in the volume of purified F2 is less than 1 ppm (v/v) and a concentration CF4 in the volume of purified F2 is less than 10 ppm (v/v).
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: FLUOROMER LLC
    Inventors: Yuichi Iikubo, Stephen Owens
  • Patent number: 7927573
    Abstract: Carbon dioxide is purified by processes employing NOx-rich sulfuric acid that can be formed by removal of SO2 from the carbon dioxide.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 19, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Ravi Kumar
  • Patent number: 7927572
    Abstract: Carbon dioxide is purified by processes employing NOx-rich sulfuric acid that can be formed by removal of SO2 from the carbon dioxide.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 19, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah
  • Patent number: 7914743
    Abstract: Various systems, devices, NO2 absorbents, NO2 scavengers and NO2 recuperator for generating nitric oxide are disclosed herein. According to one embodiment, an apparatus for converting nitrogen dioxide to nitric oxide can include a receptacle including an inlet, an outlet, a surface-active material coated with an aqueous solution of ascorbic acid and an absorbent wherein the inlet is configured to receive a gas flow and fluidly communicate the gas flow to the outlet through the surface-active material and the absorbent such that nitrogen dioxide in the gas flow is converted to nitric oxide.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: March 29, 2011
    Assignee: Geno LLC
    Inventors: David Fine, Gregory Vasquez, David P. Rounbehler
  • Patent number: 7906089
    Abstract: Horizontal gas-liquid scrubbing systems and associated gas scrubbing methodologies are provided. In one embodiment, a horizontal duct scrubbing system includes a horizontally disposed housing having a waste gas inlet and a treated gas outlet, a liquid inlet manifold disposed within the horizontally disposed housing, the liquid inlet manifold comprising a plurality of nozzles oriented to spray a scrubbing liquor co-current to the flow of a gas stream flowing through the horizontally disposed housing, and a demister located proximal the treated gas outlet, where the horizontally disposed housing is substantially free of flow deflection members between the liquid inlet manifold and the demister. The gas stream may include sulfur dioxide, and the system may be capable of removing at least 71 vol. % sulfur dioxide from the gas stream.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 15, 2011
    Assignee: Alcoa Inc.
    Inventors: Rajat Ghosh, Peter Bowen, Myra Bowen, legal representative, Charles Dobbs, Roger Nichols, Neal Dando, John R. Smith, Richard R. Lunt, Gregory Charles Kraft
  • Patent number: 7906086
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing carbon dioxide present in an industrial effluent fluid stream containing carbon dioxide. A scrubbing material comprising a first component, a second component (distinct from the first component), and preferably water, is contacted with the effluent fluid stream. The first component comprises a source of calcium oxide and a source of alkali metal ions. The second component comprises a slag having one or more reactive silicate compounds. Methods of reducing carbon dioxide from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided. Carbon dioxide emission abatement systems are also disclosed. Methods of recycling industrial byproducts are further provided.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: March 15, 2011
    Inventor: Douglas C. Comrie
  • Patent number: 7906091
    Abstract: A method and device for removal of N2O in nitric acid production are disclosed. The device is arranged after a heat exchanger, post ammonia burning, before the absorption tower and contains a catalyst, which essentially comprises one or several iron loaded zeolites.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: March 15, 2011
    Assignee: Uhde GmbH
    Inventors: Meinhard Schwefer, Rainer Maurer, Thomas Turek
  • Patent number: 7906087
    Abstract: Apparatus comprising an absorber device provided with a plurality of sequentially adjacent sections for flowing a gas stream therethrough. A solvent reactable with components of the gas stream is ingressed into and egressed from each section of the absorber device by a conduit infrastructure. The conduit infrastructure has a plurality of heat exchange and cooling equipment, and communicates with solvent recovery and regeneration equipment. A process wherein a liquid solvent selected for reacting with gaseous components, is counter-flowed against the gas stream. The liquid solvent temperature is controllably manipulated between each section of the absorber device to provide: (a) thermodynamic-driven mass transfer at the front end of the absorber device, and (b) kinetic-driven mass transfer at the back end of the absorber device. Heat generated during recovery of gaseous components from the liquid solvent is recovered for use in regenerating the solvent system.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: March 15, 2011
    Assignee: University of Regina
    Inventors: Adisorn Aroonwilas, Amornvadee Veawab
  • Patent number: 7901647
    Abstract: An apparatus and method for achieving increased NOx removal efficiency from an emissions control portion of a fossil fuel fired boiler while controlling ammonia slip provides excess levels of ammonia above those levels conventionally employed in SCR and/or SNCR applications. The apparatus and methods comprise, in part, use of a NOx reduction system comprising at least one selective catalytic reduction system which receives ammonia in higher amounts than conventional practice from an upstream ammonia injection point, and an ammonia reduction system positioned downstream of one or more ammonia injection points and the NOx reduction system. The excess ammonia achieves increased NOx removal, while the ammonia reduction system contains at least one ammonia destruction catalyst which permits the NOx reduction system to be operated at an increased NOx removal efficiency without a corresponding increase in ammonia slip.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: March 8, 2011
    Inventors: William Downs, Larry A. Hiner, Xiaoyu Guo
  • Publication number: 20110052468
    Abstract: There is provided an effective method for removing mercury comprising injecting NaClO2 into an emission gas containing elemental mercury and NOx; converting the elemental mercury to oxidized mercury by using oxidizing agents produced by the NaClO2 and the NOx; and removing oxidized mercury from the emission gas.
    Type: Application
    Filed: July 17, 2009
    Publication date: March 3, 2011
    Applicant: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Dong Nam Shin, Dong Jun Koh, Youngchul Byun, Kiman Lee
  • Patent number: 7895769
    Abstract: Raw meal sludge is dried in a vapor flow dryer by circulating exhaust vapor through a steam circuit which, prior to introduction thereof into the lower part of the dryer, is heated by indirect heat transmission from gaseous flows from a pre-heating system from a gas cyclone of a clinker production line. A partial vapor flow corresponding to water evaporated during raw meal sludge drying is removed from the steam circuit and extracted in the form of a condensate after increasing the vapor temperature by a vapor compressor and the passage of vapor arranged in the dryer over a heating surface of a vapor condenser. The sludge is sprayed into the lower part of the dryer where water is evaporated by the heat of the circulating exhaust vapor and heat from the condenser heating surface. Dried raw meal is separated from the exhaust vapor in a cyclone separator.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: March 1, 2011
    Assignee: KHD Humboldt Wedag GmbH
    Inventors: Matthias Jochem, Klaus Kühne
  • Publication number: 20110044872
    Abstract: A flue gas control system of a coal combustion boiler according to the present invention includes: an HCI atomizer (32) that sprays hydrogen chloride (33) to flue gas from a coal combustion boiler (11) that uses coal as a fuel (F); NOx removing apparatus (13) that removes nitrogen oxides by ammonia denitration by adding ammonia (12) to the flue gas after spraying hydrogen chloride and oxidizes mercury; an air preheater (14) that recovers heat in the gas after removal of nitrogen oxides; a precipitator (15) that removes particulates in the gas; an activated carbon atomizer (22) that sprays activated carbon (22a) into the gas after particulate collection; a bag filter (21) that collects activated carbon having adsorbed mercury; a desulfurizer (16) that removes sulfur oxides in the flue gas after removal of activated carbon; a stack (17) that discharges the gas which has undergone desulfurization to outside; and an ORP meter (19) that measures an oxidation reduction potential for feeding air to a slurry absorben
    Type: Application
    Filed: January 20, 2009
    Publication date: February 24, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Nobuyuki Ukai, Shintaro Honjo, Susumu Okino
  • Publication number: 20110033359
    Abstract: In a process for removing pollutants from a flue gas stream (31) formed in the firing of a fossil fuel in a combustion chamber of a power station in a plurality of process stages (1, 2, 3), which comprise a first process stage (1) in which the flue gas stream (31, 9, 10) is subjected to gas scrubbing with a first chemical absorbent (6), and a process stage (3) which precedes the first process stage (1), in which the flue gas stream (31) is subjected to a flue gas desulphurization treatment (11) with a calcium-containing chemical absorbent (32), a solution should be provided which makes it possible to reduce the pollutant and solids contents of a flue gas stream formed in the combustion of fossil fuels, in particular coal, to the extent that directly after, with sufficient service life CO2 separation can be carried out continuously by means of a flue gas scrubber and can be integrated into the exhaust gas purification of a power station, in particular coal power station.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 10, 2011
    Applicant: Hitachi Power Europe GmbH
    Inventors: Georg Papenheim, Torsten Buddenberg
  • Patent number: 7883678
    Abstract: There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 8, 2011
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Patent number: 7877983
    Abstract: An arrangement for supplying a medium to an exhaust line of a combustion engine. The arrangement comprises a first exhaust passage defined by at least a first wall surface of an element, and a dosing device supplying the medium to the first exhaust passage. The arrangement is adapted to maintaining a degree of heating of the first wall surface so that the latter will be at a higher temperature than the medium's vaporization point when the liquid medium is supplied in the first exhaust passage. Therefore, even the medium which reaches the first wall surface will vaporize in the first exhaust passage.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: February 1, 2011
    Assignee: Scania CV AB
    Inventors: Christian Künkel, Björn Westerberg, Anders Häggkvist
  • Patent number: 7879305
    Abstract: A fluidized bed reactor device for sequestering flue gas CO2 from a flue gas source is provided. The fluidized bed reactor device comprises an operating portion having a first end and a second end. A flue gas inlet is formed at the first end of the operating portion with the flue gas inlet receiving flue gas from the flue gas source. A flue gas outlet formed at the second end of the operating portion. A distributor plate is mounted within the operating portion adjacent the first end of the operating portion. A volume of fly ash is encased within the operating portion between the second end and the distributor plate with the flue gas traveling through the distributor plate and the fly ash creating reacted flue gas wherein the reacted flue gas exits the operating portion through the flue gas outlet.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 1, 2011
    Assignee: University of Wyoming
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Patent number: 7867462
    Abstract: A method and system for controlling emissions with ammonia recovery and fly ash beneficiation in accordance with the present invention includes introducing ammonia to react with at least a portion of sulfur trioxides in an exhaust emission and result in at least one or more ammoniated compounds. At a least a portion of fly ash particles and the ammoniated compounds in the exhaust emission are precipitated and at least the precipitated fly ash particles are beneficiated. At least a portion of the beneficiated fly ash particles which are heated are mixed with the precipitated ammoniated compounds to recover at least a portion of the ammonia. The recovered ammonia is reused in introducing ammonia to react with at least a portion of sulfur trioxides.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: January 11, 2011
    Assignee: PMI Ash Technologies, LLC
    Inventor: Joseph W. Cochran
  • Patent number: 7862771
    Abstract: A virtual analyzer is provided to estimate either an attribute of a reactant applied during performance of, or an amount of a reactant exhausted by, a process having multiple process parameters (MPPs) that is performed to control an amount of a pollutant emitted into the air. The virtual analyzer includes an interface which receives signals corresponding to attributes of the MPPs. If the process is a wet flue gas desulfurization (WFGD) process, the signals include a signal corresponding to a measured pH level of the applied reactant. If the process is a selective catalytic reduction (SCR) process, the signals include a signal corresponding to a measured amount of the reactant exhausted by the process.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 4, 2011
    Assignee: Alstom Technology Ltd.
    Inventors: Scott A. Boyden, Stephen Piche
  • Patent number: 7862787
    Abstract: A boiler conveys an exhaust gas stream to a heat recovery device. The heat recovery device includes an air straightener, a heat recovery unit or feedwater heater, and a catalyst assembly positioned between the air straightener and the feedwater heater. The catalyst assembly has a catalyst drawer or bed that holds a quantity of catalyst materials for removing contaminants from the exhaust gas stream. The air straightener has a plurality of baffles that are arranged in a manner that optimizes the performance of the catalyst drawer or bed. The baffles also prevent condensation from leaking from the feedwater heater into the boiler. The feedwater heater recovers a quantity of heat from the exhaust gas stream.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: January 4, 2011
    Assignee: Cannon Boiler Works, Inc.
    Inventors: Arthur P. Skelley, Alan L. Stehman, Steven G. Rendos
  • Patent number: 7858062
    Abstract: Embodiments of the present invention relate to a method for synthesizing nanocrystalline zeolites, the method comprising contacting starting products that comprise a solvent, a silicon source, a cation base, an organic template, and an aluminum source, or any combination thereof sufficient to produce a zeolite gel by hydrolysis, heating the zeolite gel sufficient to produce a first batch of zeolite crystals and a first clear solution, separating the first batch of zeolite crystals from the first clear solution, heating the first clear solution sufficient to produce a second batch of zeolite crystals and second clear solution and separating the second batch of zeolite crystals from the second clear solution.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 28, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Sarah Larsen, Vicki Grassian, Weiguo Song, Gonghu Li
  • Patent number: 7860586
    Abstract: A parameter value estimator is provided for a process performed primarily to control emission of a particular non-particulate pollutant, such as NOx and SO2, into the air. The process has multiple process parameters (MPPs) including a parameter representing an amount of the particular non-particulate pollutant emitted. The parameter value estimator includes either a neural network process model or a non-neural network process model. In either case the model represents a relationship between one of the MPPs, other than the parameter representing the amount of the emitted particular non-particulate pollutant, and one or more other of the MPPs. Also included is a processor configured with the logic, e.g. programmed software, to estimate a value of the one MPP based on a value of each of the one or more other MPPs and the one model.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: December 28, 2010
    Assignee: Alstom Technology Ltd.
    Inventors: Scott A. Boyden, Stephen Piche
  • Patent number: 7846406
    Abstract: A scrubber for scrubbing at least one pollutant from flue gas includes a first stage configured to provide a chemical oxidant to a stream of flue gas, and a second stage configured to provide a chemical or chemicals to the stream of flue gas, a scrubbing medium recirculation feature configured to continuously recirculate a slurry used in the second stage, and a by-product processing portion configured to remove a by-product from a stream of slurry withdrawn from the scrubber. The by-product includes reaction products of at least one pollutant.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: December 7, 2010
    Inventors: Kevin P. Furnary, William Ellison
  • Patent number: 7846407
    Abstract: An process for efficiently deacidizing a gaseous mixture is described. The process utilizes a self-concentrating absorbent that absorbs an acid gas at reduced overall energy costs for the deacidizing operation.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: December 7, 2010
    Inventor: Liang Hu
  • Patent number: 7842267
    Abstract: A technology for purifying an exhaust emission from an engine is provided, in which a misjudgment caused by a time lag between the abnormality detection and an abnormality judgment is avoided, in the case where a plurality of abnormalities is judged on the aqueous solution of a reducing agent or the like. After a first abnormality judgment (Femp=1: the time t2) is made, when a second abnormality is detected as a result that the concentration Dn as a state parameter is directly shifted from a first region A to a second region C (the time t3), the first abnormality judgment is maintained for a predetermined period of time PRD after the second abnormality detection.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: November 30, 2010
    Assignee: Nissan Diesel Motor Co., Ltd.
    Inventors: Mitsuhiro Nishina, Toshikazu Katou
  • Patent number: 7842264
    Abstract: A multiple stage apparatus and process using aerodynamic reactors and aero-coalescers in sequence for the selective capture and removal of purified carbon dioxide gas, the sequential capture and removal of mercury, metal and particulate aerosols by a recycling chemical generation-regeneration system using alkali metal chloride solution following multiple oxidations of mercury vapor, and nitric oxide in sequence, selective capture and removal of sulfur dioxide and nitrogen dioxide by two stage absorption by a recycling chemical generation-regeneration system using alkali metal hydroxide-carbonate-bicarbonate solution together with sequential oxidation to alkali metal sulfate and alkali metal nitrate compounds through evaporation and crystallization. Carbon dioxide capture and recovery is achieved in sequence by selective thermal decarbonation from an alkaline liquid followed by recovery as a purified gas stream.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Cefco, LLC
    Inventors: Hal B. H. Cooper, Robert E. Tang, Donald E. Degling, Thomas K. Ewan, Sam M. Ewan
  • Patent number: 7842266
    Abstract: A method of exhaust gas denitration in which nitrogen oxides contained in a low-temperature exhaust gas are removed at a high NOx removal efficiency. A injection pipe (11) is disposed in a flue (10) for an exhaust gas (x) so that the pipe protrudes from the inner wall of the flue. A hydrocarbon compound (b) and a nitrogen compound (a) are supplied through the injection pipe (11) into the flue (10). The hydrocarbon compound (b) is burned to form a combustion region (s). In this combustion region (s), amine radicals are produced from the nitrogen compound (a). These amine radicals are mixed with nitrogen oxides contained in the exhaust gas (x) to reductively remove the nitrogen oxides.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 30, 2010
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Youichi Takahashi, Yutaka Tsukui, Nobuyasu Kanda, Kimihiko Sugiura, Shoichi Ibaragi, Toshiharu Inaba
  • Patent number: 7837974
    Abstract: By means of a method and a system for heating and partial oxidation of not separately pre-heated, pre-reformed steam/natural gas mixture for an NH3 synthesis gas, whereby energy is supplied to the gas stream (raw synthesis gas), in the direction of flow, after a primary reformer, a solution is to be created, with which soot formation is to be prevented as much as possible, whereby the possibility of the addition of variable amounts, for example of N2 and O2 or mixtures thereof, is also supposed to be possible. This is achieved, according to the method, in that the energy is supplied directly after the primary reformer, by way of at least one pore burner positioned in the gas discharge line of the primary reformer.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 23, 2010
    Assignee: UHDE GmbH
    Inventors: Hartmut Hederer, Joachim Johanning, Evgeni Gorval
  • Patent number: 7833501
    Abstract: A method and apparatus for treating an exhaust gas comprising heavy metals, wherein the apparatus comprises a heat recovery unit, recovering exhaust gas heat at an exit of the air preheater; a precipitator, collecting soot/dust contained in an exhaust gas at an exit of the heat recovery unit; a wet flue gas desulfurizer, removing sulfur oxides contained in the exhaust gas at the exit of the precipitator; and a reheater, heating the exhaust gas at the exit of the wet flue gas desulfurizer. Each of the heat recovery unit and the reheater has a heat exchanger tube, and a circulation line is disposed to connect the heat exchanger tubes. A sulfur trioxide (SO3) removing agent is supplied to the upstream side of the heat recovery unit, and the temperature of the exhaust gas at the exit of the heat recovery unit is adjusted to not more than a dew point of sulfur trioxide.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: November 16, 2010
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Kazuki Kobayashi, Hirofumi Kikkawa, Hiroshi Ishizaka, Goki Sasaki, Hiroyuki Nosaka
  • Patent number: 7815879
    Abstract: Methods and apparatuses are described for contacting an oxidizing solution such as an aqueous hydrogen peroxide composition of hydrogen peroxide and at least one additive that catalyzes the decomposition of the hydrogen peroxide into hydroxyl radicals with an atmospheric effluent containing odorous and/or noxious components. These components are absorbed by the aqueous hydrogen peroxide composition to produce an atmospheric effluent having reduced amounts of the odorous and/or noxious components. Various methods are described for adding the hydrogen peroxide and the decomposition additive.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: October 19, 2010
    Assignee: Steen Research, LLC
    Inventors: Stephen R. Temple, Michael J. Stoltz