Nitrogen Or Nitrogenous Component Patents (Class 423/235)
  • Publication number: 20100254871
    Abstract: An improved oxidization process may be used to oxidize a wide variety of feedstocks. Oxidation takes place in a reactor where the feedstock is mixed with an oxidizing acid, such as nitric acid. The reaction mixture may also include a secondary oxidizing acid such as sulfuric acid as well as water and/or dissolved and mechanically mixed oxygen gas. The reactor may be maintained at an elevated pressure such as at least approximately 2070 kPa or desirably at least approximately 2800 kPa. The temperature of the reaction mixture may be maintained at no more than 210° C.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: EARTH RENEWAL GROUP, LLC
    Inventors: George G. Foster, Frederick P. Kesler, Malcolm Draper
  • Publication number: 20100254870
    Abstract: An improved oxidization process may be used to oxidize a wide variety of feedstocks. Oxidation takes place in a reactor where the feedstock is mixed with an oxidizing acid, such as nitric acid. The reaction mixture may also include a secondary oxidizing acid such as sulfuric acid as well as water and/or dissolved and mechanically mixed oxygen gas. The reactor may be maintained at an elevated pressure such as at least approximately 2070 kPa or desirably at least approximately 2800 kPa. The temperature of the reaction mixture may be maintained at no more than 210° C.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: Earth Renewal Group, LLC
    Inventors: George G. Foster, Frederick P. Kesler, Malcolm Draper
  • Publication number: 20100254872
    Abstract: An improved oxidization process may be used to oxidize a wide variety of feedstocks. Oxidation takes place in a reactor where the feedstock is mixed with an oxidizing acid, such as nitric acid. The reaction mixture may also include a secondary oxidizing acid such as sulfuric acid as well as water and/or dissolved and mechanically mixed oxygen gas. The reactor may be maintained at an elevated pressure such as at least approximately 2070 kPa or desirably at least approximately 2800 kPa. The temperature of the reaction mixture may be maintained at no more than 210° C.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: Earth Renewal Group, LLC
    Inventors: George G. Foster, Frederick P. Kesler, Malcolm Draper
  • Patent number: 7799297
    Abstract: This combustion exhaust gas processing device comprises a dust collector collecting dust in combustion exhaust gas, a wet dust collector collecting water soluble components and dust in the combustion exhaust gas passed through the dust collector, and a catalyst tower decomposing and removing NOx and/or dioxins in the combustion exhaust gas passed through the wet dust collector. The device also comprises a reheater heating the combustion exhaust gas discharged from the wet dust collector at the front stage of the catalyst tower, an oxidizer adding device adding an oxidizer to the combustion exhaust gas passed through the dust collector, a solid/liquid separator separating slurry discharged from the wet dust collector into solid and liquid phases, a mercury adsorbing tower adsorbing mercury in liquid separated in the solid/liquid separator, and a heat recovering device heating the combustion exhaust gas discharged from the catalyst tower at the rear stage thereof.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 21, 2010
    Inventor: Shinichiro Saito
  • Patent number: 7790126
    Abstract: The invention is directed to a method for cleaning exhaust gases of a glass melting process. The raw material for production of the glass is charged to the glass furnace and molten glass is removed from the glass furnace. The exhaust gases of the glass melting process are freed of the pollutant components in a moving bed reactor system on a catalytically active adsorbent and/or absorbent. Catalyst damaging pollutant components are bound by absorption and the particulate components are adhesively removed. Catalytic removal of nitrogen is performed in the layer area adjacent to the immediate oncoming flow area of the catalyst damaging pollutant components. Other pollutant components that do not damage the catalyst, such as dioxins and furans, are removed by absorption in the layer area.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: September 7, 2010
    Inventor: Horst Grochowski
  • Patent number: 7790128
    Abstract: Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: September 7, 2010
    Assignee: United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Clyde F. Parrish
  • Patent number: 7780934
    Abstract: A process is described that removes by chemical oxidation the excess ammonia (NH3) gas from flue gases that have been subjected to selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) of oxides of nitrogen (NOx) by ammonia injection. Methods for the removal of residual ammonia from flue gases prior to fouling air pre-heaters or deposition on fly ash are discussed.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: August 24, 2010
    Assignee: Headwaters Incorporated
    Inventor: Rafic Y. Minkara
  • Patent number: 7780932
    Abstract: A process for desulfurizing an SO2-comprising gaseous stream comprising the steps of: a. providing an aqueous feed comprising an anion selected from a group consisting of carbonate, bicarbonate, hydroxide, sulfite, and hydrogen sulfite; b. providing an SO2-comprising gaseous feed; and c. contacting the aqueous feed and the gaseous feed to generate a desulfurized gaseous product comprising less than 40% of the feed SO2 content, and an aqueous product; wherein the contacting is carried out in a cyclone unit comprising a housing defined by a cylindrical peripheral wall and provided with at least one inlet opening for receiving fluids thereinto and with at least one swirling means, and wherein the cyclone unit is characterized in that the velocity of the gaseous stream inside the cyclone unit is between 20 m/sec and 120 m/sec.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: August 24, 2010
    Assignees: Clue AS, Eyal Research Consultants Ltd.
    Inventors: Riki Canari, Aharon Eyal
  • Patent number: 7780935
    Abstract: A process for the reduction of NOx emissions from a regeneration zone during a fluid catalytic cracking (FCC) process are disclosed. The process comprises contacting a hydrocarbon feedstock with a circulating inventory of an FCC cracking catalyst and a NOx reduction composition during an FCC process. The NOx reduction composition comprises at least one reduced nitrogen species component having the ability to reduce the content of reduced nitrogen species to molecular nitrogen under reducing or partial burn FCC conditions and at least one NOx reduction component having the ability to convert NOx to molecular nitrogen under oxidizing or full burn FCC conditions.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: August 24, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: John Allen Rudesill, George Yaluris, Meenakshi Sundaram Krishnamoorthy, Timothy Dougan, Katherine W. Dougan, legal representative
  • Patent number: 7771684
    Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 10, 2010
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Terence C. Holland
  • Patent number: 7767177
    Abstract: The present invention describes a new device which permits a reduction of NOx emissions contained in the fumes from FCC regenerators. The device consists essentially of a conveyance conduit which connects the two regeneration stages and which has an outlet opening into the dilute phase of the second stage.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 3, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Gauthier, Romain Roux, André Nicolle
  • Publication number: 20100189618
    Abstract: The present invention controls reagent flow levels in a selective non-catalytic reduction (SNCR) system by more accurately predicting Nitrogen Oxides (NOx) production with a municipal waste combustor. In one embodiment, the reagent levels correspond with measured furnace temperatures. The reagent levels may have a baseline level from prior measured NOx that is then modified according to temperatures measurements. A slow controller may use NOx measurements over an extended period to define a base regent level, and a fast controller may use additional information such as the furnace temperature to modify the base regent level. The fast controller may further receive two additional signals that are added individually or together to maximize NOx control while minimizing ammonia slip from the reagent. The two signals are a feed-forward signal from the combustion controller and a feedback signal from an ammonia analyzer downstream of the combustion zone.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Applicant: COVANTA ENERGY CORPORATION
    Inventors: Mark L. White, Stephen G. Deduck
  • Patent number: 7754172
    Abstract: The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the absorption of the gas mixture G-0 in an organic solvent, subsequent desorption of a gas mixture G-1 from the laden organic solvent, absorption of the gas mixture G-1 in water and subsequent desorption of a gas mixture G-2 from the laden water, and also to the use of a purified gas mixture which comprises dinitrogen monoxide and is obtainable by such a process as an oxidizing agent for olefins.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 13, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Joaquim Henrique Teles, Beatrice Roessler, Dieter Baumann
  • Patent number: 7749471
    Abstract: A process for reduction of oxides of nitrogen contained in a gas stream comprising contacting the gas stream with a boron-containing molecular sieve, the boron-containing molecular sieve having the CHA crystal structure and comprising (1) silicon oxide and (2) boron oxide or a combination of boron oxide and aluminum oxide, iron oxide, titanium oxide, gallium oxide and mixtures thereof; and wherein the mole-ratio of silicon oxide to boron oxide in said boron-containing molecular sieve is between 15 and 125. A method for reduction of oxides of nitrogen, comprising a) selecting the boron-containing molecular sieve; and b) contacting a gas stream with the molecular sieve. A method for reduction of oxides, comprising: a) selecting the boron-containing molecular sieve containing a metal or metal ions capable of catalyzing the reduction of the oxides of nitrogen; and b) contacting an exhaust stream of an internal combustion engine with the molecular sieve.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: July 6, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lun-Teh Yuen, Stacey I. Zones
  • Patent number: 7744836
    Abstract: This gas purifying process removes trace constituents from a mixed gas that includes a rare gas and nitrogen as main components, and at least one from among hydrogen, nitrogen and hydrogen reaction products, and water vapor as the trace constituent. This process sequentially carries out an adsorbing step for removing water vapor and nitrogen and hydrogen reaction products; a hydrogen oxidation step for converting the hydrogen into water vapor by means of a hydrogen oxidation catalytic reaction in the presence of oxygen; and a drying step for removing water vapor generated in the hydrogen oxidation step. When nitrogen oxides are included as a trace constituent, then a denitration step is carried out prior to the adsorbing step, to convert nitrogen oxides into nitrogen and water vapor by means of a catalytic denitration reaction in the presence of a reducing substance.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: June 29, 2010
    Assignees: Taiyo Nippon Sanso Corporation
    Inventors: Tadahiro Ohmi, Ryuichi Yazaki, Masato Kawai, Tetsuya Kimijima, Kunio Matsuda
  • Publication number: 20100158778
    Abstract: An air purifying apparatus includes an air flow generating device for generating a flow of air, a nozzle spraying water to the air flowing through the air flow generating device, a plasma module performing a plasma reaction on the air containing the water sprayed from the nozzle, and oxidizing NOx in the air and converting it into NO3, an eliminator eliminating the NO3 converted in the plasma module and the water contained in the air and passing pure air through the eliminator and out of the air purifying apparatus and a water tank storing the water received from the eliminator, thereby heightening the removal efficiency of NOx from the air.
    Type: Application
    Filed: November 16, 2009
    Publication date: June 24, 2010
    Inventors: Hun-Jung YI, Seung-Ki Cha, Chang-su Lim
  • Patent number: 7740818
    Abstract: Disclosed herein is a transition metal-substituted hydrotalcite catalyst for removing nitrogen oxides using a storage-reduction method, in which a molar ratio of transition metal to magnesium is 0.2 or less, and a method of manufacturing a transition metal-substituted hydrotalcite catalyst for removing nitrogen oxides using a storage-reduction method, including the steps of preparing a hydrotalcite synthesis solution including transition metal precursors such that the molar ratio of transition metal to magnesium is 0.2 or less, and preferably 0.001 to 0.2; aging the synthesis solution; and hydrothermally treating the synthesis solution.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: June 22, 2010
    Assignee: Heesung Engelhard Corporation
    Inventors: Hyun-Sik Han, Young-San Yoo, Gon Seo, Gi-Won Park
  • Patent number: 7736608
    Abstract: A method for reducing the emissions from combustion gases produced during a combustion process includes injecting a hydrocarbon-based reducing agent into the combustion gases to form a combustion gas mixture. The combustion gas mixture including oxides of nitrogen, NOx, is directed through a selective catalyst reduction (SCR) system including a catalyst bed to remove NOx from the combustion gas mixture and to produce an exhaust gas. In one embodiment, the exhaust gases are released from the SCR to the atmosphere.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: June 15, 2010
    Assignee: General Electric Company
    Inventors: Boris Nickolaevich Eiteneer, Antonio Marquez, David Kelly Moyeda
  • Patent number: 7718147
    Abstract: The invention relates to a process for the chemical beneficiation of raw material containing tantalum-niobium such as wastes, scoria, concentrates and ores.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: May 18, 2010
    Assignee: Krupinite Corporation Ltd.
    Inventor: Alexander Krupin
  • Publication number: 20100120095
    Abstract: The present invention relates to an electromagnetic bioaccelerator for obtaining biomass by simulating environmental marine conditions, comprising at least the following elements: octagonal biomass converters (1), seawater reserve tanks (3), particle filters (4), UV light filters (5), feedback and mixture tanks (6), pressurization feed tanks (8), manometers (9), pressure controllers (10), buffer tanks (11), expansion tanks with a safety valve (12), heat exchangers (13), temperature control thermostats (14), recycled water feedback tanks (15), reinjection pumps (16), centrifuges for separating the biomass from the water (17), desuperheaters (18); control panels (25), recirculation pumps (26), densimeters (27), biomass mechanical extraction systems by means of centrifugation (32) and biomass accumulation tanks (33).
    Type: Application
    Filed: December 14, 2007
    Publication date: May 13, 2010
    Inventors: Bernard A. J. Stroïazzo-Mougin, Cristian Gomis Catala
  • Patent number: 7708804
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: May 4, 2010
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude
    Inventors: Arthur Darde, Bao Ha, Jean-Pierre Tranier
  • Patent number: 7708964
    Abstract: Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 4, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Richard D. Boardman, Robert A. Carrington
  • Publication number: 20100099914
    Abstract: A method and apparatus is provided for cleaning flue gases from combustion plants. The method includes removing dust and removing nitrogen from flue gases, bringing flue gases into contact with an aqueous ammonia solution in the presence of an oxidizing agent whereby a reaction solution forms which contains at least ammonium carbonate, heating the reaction solution such that ammonium carbonate decomposes and carbon dioxide and ammonia transfer into the gas atmosphere, and reacting the gaseous carbon dioxide and the gaseous ammonia to form urea. The apparatus includes a device for removing nitrogen and removing dust from the flue gases, a washing device downstream of the device for removing nitrogen and removing dust, a stripper downstream of the washing device, and a urea installation downstream of the stripper.
    Type: Application
    Filed: April 18, 2008
    Publication date: April 22, 2010
    Applicant: Evonik Energy Services GmbH
    Inventor: Hermann Winkler
  • Patent number: 7700519
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % CO3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Grant
    Filed: July 4, 2001
    Date of Patent: April 20, 2010
    Assignee: Yara International ASA
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Patent number: 7700058
    Abstract: A denitration process for removing nitrogen oxides contained in low-temperature exhaust gas at a high denitration rate; namely, a denitration process for reductively removing nitrogen oxides contained in an exhaust gas (x) containing nitrogen monoxide and sulfur dioxide. The process comprises a preliminary step 2 of partially oxidizing nitrogen monoxide in the exhaust gas to form nitrogen dioxide, a radical formation step 3 of adding a nitrogen compound and a hydrocarbon compound to a high-temperature zone 22 to form amine radicals (r), and a denitration step 4 of mixing the amine radicals (r) with the pretreated gas (p) containing nitrogen monoxide and nitrogen dioxide that was discharged from the preliminary step 2. As a result, nitrogen oxides in the exhaust gas (x) are reductively decomposed.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 20, 2010
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Nobuyasu Kanda, Kimihiko Sugiura, Shoichi Ibaragi, Youichi Takahashi, Yutaka Tsukui
  • Patent number: 7698004
    Abstract: A controller is provided for directing control of a process performed to control an amount of a pollutant emitted into the air. The process has multiple process parameters (MPPs) The controller includes either a neural network process model or a non-neural network process model. Whichever type model is included, it will represent a relationship between one of the MPPs and other of the MPPs. The controller also includes a control processor having the logic to determine the validity of a measured value of the one MPP based on the one model. The control processor directs control of the process in accordance with the measured value of the one MPP only if the measured value of the one MPP is determined to be valid. On the other hand, if the measured value is determined to be invalid, the control processor may direct control of the process in accordance with an estimated value of the one MPP.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: April 13, 2010
    Assignee: ALSTOM Technology Ltd.
    Inventors: Scott A. Boyden, Stephen Piche
  • Patent number: 7691350
    Abstract: A method of treating fly ash and fly ash treated thereby, the method involving contacting ammonia-laden fly ash with an organic base-containing treatment composition, where the organic base causes the ammonia within the fly ash to evolve from the fly ash. The treatment composition preferably includes an effective amount of one or more amines. The treatment compound may be applied to the fly ash in any manner effective to disperse the treatment compound among the fly ash.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: April 6, 2010
    Assignee: Boral Material Technologies Inc.
    Inventors: Russell L. Hill, Carmel Jolicoeur, Thi Cong To
  • Publication number: 20100047638
    Abstract: There is described a method and apparatus (100, 100?) for storing and delivering ammonia wherein at least two ammonia storage materials (1a, 2a) capable of reversibly adsorbing or absorbing ammonia having different ammonia vapor pressures are used. Ammonia storage material (2a) having a lower vapor pressure, which is only partially saturated with ammonia or void of ammonia, is brought into fluid communication with ammonia storage material (1a) having a higher ammonia vapor pressure to adsorb or absorb ammonia released from the ammonia storage material (1a) having a higher ammonia vapor pressure when the latter is higher than a pressure threshold. An automotive NOx treatment system (200) comprising such apparatus (100, 100?) is also described.
    Type: Application
    Filed: December 21, 2007
    Publication date: February 25, 2010
    Applicant: Amminex A/S
    Inventor: Tue Johannessen
  • Publication number: 20100040524
    Abstract: A scrubber for scrubbing at least one pollutant from flue gas includes a first stage configured to provide a chemical oxidant to a stream of flue gas, and a second stage configured to provide a chemical or chemicals to the stream of flue gas, a scrubbing medium recirculation feature configured to continuously recirculate a slurry used in the second stage, and a by-product processing portion configured to remove a by-product from a stream of slurry withdrawn from the scrubber. The by-product includes reaction products of at least one pollutant.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 18, 2010
    Inventors: Kevin P. Furnary, William Ellison
  • Patent number: 7655202
    Abstract: A process for treating flue gas containing fly ash and carbon dioxide is disclosed. In the process, carbon dioxide and fly ash are contacted with an aqueous metal hydroxide solution to convert carbon dioxide into a metal carbonate, and wherein the metal carbonate and the metal hydroxide cause the fly ash to undergo a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is recovered for disposal or for further use, such as a concrete additive.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: February 2, 2010
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, Chett Boxley
  • Patent number: 7645432
    Abstract: An exhaust treatment system and method for removing particulates and/or gases from exhaust gases and for cooling exhaust gases. The exhaust treatment system may include a venturi nozzle for injecting a mixture of water and air into the exhaust gases to cause particulate matter and/or certain gases present in the exhaust gases to adhere to water droplets in the mixture. The exhaust treatment system may further include a receptacle positioned in proximity to the exhaust outlet and adapted for collecting water and particulate matter exiting the exhaust outlet, a filter adapted to receive water from the receptacle and remove particulate matter from the water, and/or a heat transfer device adapted to receive water from the filter and remove heat from the water.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 12, 2010
    Assignee: Hood & Motor Technology, LLC
    Inventor: Jason David Solomon
  • Patent number: 7645430
    Abstract: Horizontal gas-liquid scrubbing systems and associated gas scrubbing methodologies are provided. In one embodiment, a horizontal duct scrubbing system includes a horizontally disposed housing having a waste gas inlet and a treated gas outlet, a liquid inlet manifold disposed within the horizontally disposed housing, the liquid inlet manifold comprising a plurality of nozzles oriented to spray a scrubbing liquor co-current to the flow of a gas stream flowing through the horizontally disposed housing, and a demister located proximal the treated gas outlet, where the horizontally disposed housing is substantially free of flow deflection members between the liquid inlet manifold and the demister. The gas stream may include sulfur dioxide, and the system may be capable of removing at least 71 vol. % sulfur dioxide from the gas stream.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: January 12, 2010
    Assignee: Alcoa Inc.
    Inventors: Rajat Ghosh, Peter Bowen, Charles Dobbs, Roger Nichols, Neal Richard Dando, John R. Smith, Richard R. Lunt, Gregory Charles Kraft
  • Patent number: 7641874
    Abstract: Granulated Activated Carbon (GAC) is used to remove hydrogen sulfide (H2S) from the biogas produced in an anaerobic digester. The cleaned biogas is then combusted in a reciprocating engine. The exhaust of the engine is passed through a heat exchanger and then through GAC in an adsorber to adsorb nitrogen oxides (NOx) and any sulfur oxides (SOx). The GACs containing NOx, H2S, and SOx, are transported to a microwave reactor, mixed, and exposed to microwave energy. The H2S and NOx are desorbed from the GAC and chemically combined to produce nitrogen, carbon dioxide, sulfur and water. Unreacted nitrogen oxides or hydrogen sulfide are transported to a second reactor containing carbon media to be reacted by a further microwave process. Sulfur is removed with a filter as a solid and the remaining inert components are vented to the atmosphere. The GAC is regenerated and reused to remove additional H2S and NOx.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: January 5, 2010
    Assignee: CHA Corporation
    Inventor: Chang Yul Cha
  • Patent number: 7640067
    Abstract: A controller directs a process primarily performed to control emission of a particular pollutant into the air. The process has multiple process parameters (MPPs), including a parameter representing an amount of the particular pollutant. The controller includes either a neural network process model or a non-neural network process model. In either case, the model represents a relationship between a first of the MPPs and one or more of the other MPPs. The one or more other MPPs include a second of the MPPs which is other than the parameter representing the amount of the emitted particular pollutant. Also included is a processor configured with logic to estimate a value of the second MPP, and to direct control of the first MPP based on the estimated value of the second MPP and the model.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: December 29, 2009
    Assignee: Alstom Technology Ltd.
    Inventors: Scott A. Boyden, Stephen Piche
  • Publication number: 20090314190
    Abstract: A hot oxygen stream containing radicals is fed into a gas stream, such as a catalyst regenerator flue gas stream, that contains carbon monoxide to convert carbon monoxide to carbon dioxide.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventors: Kuang-Tsai Wu, Lee Rosen, David Lenhert, Christopher Leger
  • Patent number: 7635459
    Abstract: Disclosed is a method of removing nitric acid from an aqueous liquid containing various components such as vegetable extract, and nitrate ion is removed selectively without spoiling the taste or other components, by subjecting the aqueous liquid to chromatographic treatment with an amphoteric ion exchanger to separate nitrate ion from other components contained in the aqueous liquid. A nitric acid-reduced drink is produced by preparing a raw drink material comprising an extract or juice of plant tissue; removing nitric acid from the raw drink material with use of the method of removing nitric acid from an aqueous liquid as described above; and preparing a drink using the raw drink material after the removing of nitric acid.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: December 22, 2009
    Assignee: ITO EN, Ltd.
    Inventors: Takanobu Takihara, Yuji Kubota
  • Patent number: 7632475
    Abstract: The present invention provides for process for inhibiting the levels of nitrogen oxides in process gas streams from sulfuric acid regeneration and production plants. The process gas stream from the waste heat boiler and the candle mist eliminator is contacted with ozone which will react with nitrogen oxides present in the flue gas.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: December 15, 2009
    Assignee: Linde, Inc.
    Inventors: Naresh Suchak, Steven Joseph Finley, Joseph A. Eschbach, Robert Aeiss
  • Publication number: 20090297415
    Abstract: A nitrogen oxide storage catalytic converter which is operated for a relatively long time at low exhaust-gas temperatures in the range between 120 and 250° C. exhibits a decreasing storage capacity as a result of incomplete regeneration at said temperatures. In order to re-establish the original storage capacity of the catalytic converter which is operated in this way, two-stage regeneration is proposed, wherein the storage catalytic converter is initially partially regenerated at the low exhaust gas temperature by means of a switch from the lean mode to the rich mode, and wherein subsequently, with rich exhaust gas again, the exhaust-gas temperature of the engine is raised into a range of between 300 and 400° C. for complete regeneration.
    Type: Application
    Filed: October 19, 2006
    Publication date: December 3, 2009
    Applicant: UMICORE AG & CO. KG
    Inventors: Friedemann Rohr, Lutz Marc Ruwisch, Markus Koegel, Juliane Kluge, Ulrich Goebel
  • Publication number: 20090291872
    Abstract: The present invention provides compositions comprising ionic liquids and an amine compound, and methods for using and producing the same. In some embodiments, the compositions of the invention are useful in reducing the amount of impurities in a fluid medium or a solid substrate.
    Type: Application
    Filed: December 11, 2008
    Publication date: November 26, 2009
    Applicant: The Regents of the University of Colorado
    Inventors: Jason E. Bara, Dean E. Camper, Douglas L. Gin, Richard D. Noble
  • Patent number: 7622093
    Abstract: Zonal injection of varying compositions of chemicals, particularly an ammonia-based reagent and hydrocarbon, through injection lances arranged in a grid formation to define planar zones in a furnace convective pass of a furnace. The supply of chemicals is controlled so as to be individually determined for each discrete zone of the grid depending on conditions in that zone.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: November 24, 2009
    Assignee: Doosan Babcock Energy America LLC
    Inventors: Stuart Arrol, Peter Melling, George Anthony Yates, Michael J. Smith, Gerard J. W. C. Hesselmann, Barbara Lefebvre, John Macphail, Keith W. Morris
  • Patent number: 7622091
    Abstract: A method for operating a combustion system to facilitate reducing emissions from the system is provided. The method includes supplying an aqueous selective reducing agent from an aqueous selective reducing agent source to an atomizer that is directly coupled in flow communication with the aqueous selective reducing agent source. The method also includes atomizing the selective reducing agent in the atomizer, and injecting atomized droplets of the selective reducing agent from the atomizer directly into a transport stream of flue gas flowing within a temperature zone defined within the combustion system.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: November 24, 2009
    Assignee: General Electric Company
    Inventors: Donald Keith Morrison, William Theodore Lipinski, Donald Keith Hartsock
  • Patent number: 7618604
    Abstract: An object of the present invention is to provide a method for removing gaseous mercury in flue gas that make it possible to remove mercury in flue gas extremely satisfactorily while handling is made easy and cost increases are kept under control. In order to accomplish the object, the present invention adopts the method of removing gaseous mercury in flue gas, in which, after water-insoluble mercury in the flue gas is converted into water-soluble mercury by placing the flue gas in contact with a solid catalyst formed by a metal oxide, wet-type absorption is performed on the water-soluble mercury.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: November 17, 2009
    Assignees: IHI Corporation, Central Research Institute of Electric Power Industry
    Inventors: Takashi Kiga, Noriyuki Iiyama, Kenji Takano, Akimasa Yamaguchi, Yoshihisa Tochihara, Shigeo Ito
  • Patent number: 7611623
    Abstract: The invention relates to a method of separating the components of a mixture. The inventive method is characterised in that it comprises the following steps: (a) the bringing into contact of the components of a mixture selected from (i) at least two hydrocarbons, (ii) a mixture containing at least nitrogen and oxygen, and (iii) at least one hydrocarbon and water, with an ITQ-29 zeolite material having a T(IV)/T(III) ratio of greater than 7, whereby T(IV) denotes one or more tetravalent elements and T(III) denotes one or more trivalent elements; (b) preferential adsorption of one or more of the components by the ITQ-29 zeolite material and (c) recovery of one or more of the components, preferably for the separation of hydrocarbon mixtures, such as linear or branched olefins from paraffins.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 3, 2009
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad de Politecnica de Valencia
    Inventors: Avelino Corma Canós, Fernando Rey Garcia, Susana Valencia Valencia
  • Publication number: 20090263301
    Abstract: The invention relates to an apparatus and method for reducing contaminants from industrial processes. More particularly, the invention is directed to a method of sequestering pollutants from flue gases in operational plants. The method includes sequestering contaminants from a point source by reacting an alkaline material with a flue gas containing contaminants to be sequestered, wherein the reaction has a rapid mass transfer rate to sequester at least a portion of the contaminants.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 22, 2009
    Applicant: University of Wyoming
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Publication number: 20090252665
    Abstract: An apparatus and method for achieving increased NOx removal efficiency from an emissions control portion of a fossil fuel fired boiler while controlling ammonia slip provides excess levels of ammonia above those levels conventionally employed in SCR and/or SNCR applications. The apparatus and methods comprise, in part, use of a NOx reduction system comprising at least one selective catalytic reduction system which receives ammonia in higher amounts than conventional practice from an upstream ammonia injection point, and an ammonia reduction system positioned downstream of one or more ammonia injection points and the NOx reduction system. The excess ammonia achieves increased NOx removal, while the ammonia reduction system contains at least one ammonia destruction catalyst which permits the NOx reduction system to be operated at an increased NOx removal efficiency without a corresponding increase in ammonia slip.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 8, 2009
    Inventors: William Downs, Larry A. Hiner, Xiaoyu Guo
  • Patent number: 7591985
    Abstract: In one aspect, the crude gas is contacted with a cold caustic solution to reduce levels of carbon dioxide and water. The partially purified gas is chilled in direct-contact with a hydrogen refrigerant to induce homogenous condensation of water impurity. Liquid and ice particles formed by lower temperatures are removed across an aerosol phase separating medium to produce a cooled and partially purified gas mixture which is further dried and de-carbonated across a zeolitic molecular sieve adsorbent to achieve very low concentrations of moisture and carbon dioxide in the bulk gas. In one aspect, the purified gas mixture obtained is partially liquefied, phase-separated and distilled to obtain germanium hydride, digermanium hexahydride and hydrogen gas as products. A portion of the hydrogen product can be compressed, chilled and re-used as a direct-contact refrigerant in the purification process.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 22, 2009
    Assignee: Metaloid Precursors, Inc.
    Inventor: Mathias Tezock
  • Patent number: 7588440
    Abstract: A heat exchanger is provided in an air duct between an air heater and a windbox of a combustion means such as a boiler. Dilution air is carried to the heat exchanger from a dilution air fan in a separate duct. The heat in the air from the air heater is transferred to the dilution air via the heat exchanger and the heated dilution air is sent to vaporize ammonia before the ammonia is introduced into an exhaust duct with a selective catalytic reduction (SCR) chamber. A bypass valve is provided around the heat exchanger for blending heated and unheated air to control the temperature of the dilution air.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: September 15, 2009
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventor: John William Smith
  • Patent number: 7582271
    Abstract: Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 1, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Clyde F. Parrish, J. Landy Chung
  • Publication number: 20090208395
    Abstract: A process for reducing nitrogen oxides and halogenated organic compounds in an incineration plant having at least one combustion chamber. The process comprises separating out fly ash using a dust collector. Water is added to and hydrochloric acid separated out in a first acid-operated scrubber. Water and ammonia are added so as to separate out sulphur dioxide in a second neutral or slightly acid-operated scrubber so as to form ammonium sulphite, a portion of the ammonium sulphite thereby reacts with oxygen so as to form an aqueous ammonium sulphate/ammonium sulphite solution. The aqueous ammonium sulphate/ammonium sulphite solution is introduced into an oxygen-containing smoke gas downstream of a secondary gas introduction area so as to decompose the ammonium sulphate and ammonium sulphite so as to form ammonia and sulphur dioxide.
    Type: Application
    Filed: March 8, 2007
    Publication date: August 20, 2009
    Applicant: Forschungszentrum Karlsruhe GmbH
    Inventor: Hans Hunsinger
  • Patent number: 7572637
    Abstract: Urea water is added to a catalyst in an exhaust pipe for purification. A first-order lag response model corresponding to the exhaust temperature upstream of the catalyst estimates catalyst temperature for each of divided cells of the catalyst. Cell volumes for each of temperature zones are summed on the basis of the estimated temperatures for the cells. The summation for each temperature zone is divided by the whole catalyst volume to determine temperature distribution volume ratio. The ratio for each of the temperature zones is multiplied by a reference injection amount of the urea water determined in consideration to a current engine operation status on the assumption that the catalyst temperatures are all within the temperature zone. The calculated values for the respective temperature zone are summed into a directive injection amount of the urea water.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 11, 2009
    Assignee: Hino Motors, Ltd.
    Inventor: Ichiro Tsumagari