Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/239.1)
  • Patent number: 8734742
    Abstract: A method is described for treating a gas including nitrogen oxides (NOx). The method can include conducting a reduction reaction of the nitrogen oxides with a nitrogen reducing agent. Further described, is a catalyst used for the reduction reaction which is a catalytic system including a composition based on cerium oxide and including niobium oxide in a proportion by a mass of from 2% to 20%.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 27, 2014
    Assignee: Rhodia Operations
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jayne Harris, Clare Jones
  • Publication number: 20140134089
    Abstract: The present invention relates to an apparatus and a method for the selective non-catalytic reduction (SNCR) of NOx in industrial cement production plants. In particular, the method according to the present invention provides for the atomization of an aqueous solution containing the reagent by introducing it into the gas to be treated that is at a high temperature, thus achieving the simultaneous and immediate evaporation of the water and gasification of the reagent. Thanks to this method, there is achieved improved performance of the non-catalytic reduction process of NOx while using the same reagent or, specularly, the same performance with a lesser amount of reagent being required, with consequent reduction of the costs.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 15, 2014
    Applicant: ECOSPRAY TECHNOLOGIES S.R.L.
    Inventor: Maurizio Archetti
  • Patent number: 8703643
    Abstract: A catalyst for NOx storage and reduction may include a carrier that contains alkali metal and Al, or alkali earth metal and Al, a NOx storage element of alkali metal, alkali earth metal or rare earth element, and one or more noble metals that are selected from the group consisting of Pt, Pd, Ru, Ag, Au and Rh. The catalyst for NOx storage and reduction shows excellent NOx storage and reduction capability, maintains excellent storage and reduction capability especially before and after deterioration and sulfation, and shows excellent catalytic activity under low temperature environment, while maintaining unusually high hydrophobicity.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: April 22, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: In-Sik Nam, Sang Jun Park, Jin Ha Lee, Young-Kee Youn
  • Patent number: 8703083
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99 % of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: April 22, 2014
    Assignees: The Regents of the University of California, Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia, Paul Timothy Fanson
  • Publication number: 20140105803
    Abstract: Disclosed is a method for preparing a deNOx catalyst for removing nitrogen oxides (NOx) included in exhaust gas and the like. One embodiment of the present invention discloses a V2O5(vanadium pentoxide)-TiO2(titanium dioxide)-based deNOx catalyst for removing nitrogen oxides through selective catalytic reduction by dry-ball-milling crystalline titanium dioxide (TiO2) powder and crystalline vanadium pentoxide (V2O5) powder.
    Type: Application
    Filed: May 22, 2012
    Publication date: April 17, 2014
    Applicant: KEPCO ENGINEERING & CONSTRUCTION COMPANY, INC.
    Inventors: Sung Ho Hong, Sung Pill Cho, Chang Hoon Shin, Bok Yeon Yang, Sang Woo Shin, Sung Chang Hong, Kwang Hee Park, Sung Su Kim, Sang Moon Lee, Dong Wook Kwon
  • Publication number: 20140099248
    Abstract: A method of reducing NOx emissions from a lean burn combustion source employs an aqueous solution of reagent that is injected into a continuous decomposition duct at a rate of 0.2-10 gph with a flowing side stream of hot gas at a rate of 150-3000 scfm and a temperature of greater than 700° F. in the decomposition duct such that the aqueous reagent is converted to ammonia gas that is conveyed by the continuous decomposition duct to an ammonia injection grid that is placed in a primary exhaust stream from the combustion source upstream of a NOx reducing catalyst and NOx is reduced.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 10, 2014
    Inventors: Jeffrey Michael Broderick, Scott H. Lindemann, James M. Valentine
  • Publication number: 20140099247
    Abstract: A method for reducing NOx emissions from a lean burn combustor equipped with a NOx reducing exhaust catalyst, includes at least the following steps: (i) generating a computer based model of the geometry of an exhaust system of the combustor; (ii) computing at least one of flue gas velocity profiles and mass flow stream lines for exhaust gas flow through the exhaust system; (iii) inputting injector data comprising at least droplet size and velocity; (iv) modeling droplet trajectories for a plurality of injector locations; (v) modeling at least one flow conditioning device in the exhaust system; and (vi) manipulating the computer based model until an injector location is identified that provides a predicted root mean square (RMS) of reagent at the face of the catalyst that is less than 15%.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 10, 2014
    Inventors: Saiprasad Jangiti, Thomas V. Eldredge, Jeffrey Michael Broderick, James M. Valentine
  • Patent number: 8691170
    Abstract: A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550° C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH3 reactions above about 200° C. A downstream portion (36) catalyzes NOx+H2 reactions below about 260° C., and catalyzes oxidation of NH3, CO, and VOCs with oxygen in the exhaust above about 200° C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 8, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Anatoly Sobolevskiy, Joseph A. Rossin
  • Publication number: 20140093442
    Abstract: A dual function catalytic filter is provided having a soot filter with an inlet and an outlet, a soot oxidation layer on the inlet, wherein the soot oxidation layer comprises a soot oxidation catalytic component consisting essentially of at least one transition metal dispersed on a cerium and zirconium mixed and/or composite oxide, wherein the at least one transition metal is selected from the group consisting of W, Cr, Ce, Mn, Fe, Co, Ni, Cu, and combinations thereof, and an SCR layer coated on the outlet, wherein the SCR layer comprises an SCR catalytic component. Also provided are methods for removing NOx and soot from a lean burn exhaust gas using the dual function catalytic filter.
    Type: Application
    Filed: May 31, 2012
    Publication date: April 3, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Glen Spreitzer, Sougato Chatterjee, Raj Rao Rajaram, Jillian Elaine Collier, Paul James Millington, Sylvie Cecile Laroze
  • Patent number: 8685353
    Abstract: Provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning systems and methods allow for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards. The disclosed exhaust gas cleaning systems are suitable for use in internal combustion engines (e.g., diesel, gasoline, CNG) which operate with lean air/fuel ratios over most of the operating period.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 1, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul James Polini
  • Patent number: 8685354
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 1, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Siva Sankar Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Patent number: 8685882
    Abstract: Disclosed is a vanadium/titania-based catalyst including natural manganese ore for removing nitrogen oxides and dioxin in a wide operating temperature range and a method of using the same. Specifically, this invention pertains to a vanadium/titania (V/TiO2)-based catalyst, including natural manganese ore, and a method for removing nitrogen oxides and dioxin over a wide operating temperature range, in which the WTiO2 catalyst for selective catalytic reduction of nitrogen oxides and removal of dioxin contained in flue gas includes 5-30 wt % of natural manganese ore.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 1, 2014
    Assignee: Korea Power Engineering Company, Inc.
    Inventors: Sung Ho Hong, Jun Yub Lee, Seok Joo Hong, Sung Pill Cho, Sung Chang Hong, Do Gyong Lee, Sang Hyun Choi
  • Patent number: 8679432
    Abstract: The invention relates to an adsorber, including a reaction chamber, an adsorbent having adsorption properties enabling the at least partial removal of water from a gas stream including NOx and/or SOx, and a coating essentially consisting of a polymer material on at least a portion of the inner metal wall of the reaction chamber, said polymer being resistant to the acidic liquids at temperatures above 150° C.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 25, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Ivan Sanchez-Molinero, Serge Moreau
  • Patent number: 8679431
    Abstract: An air pollution control system comprises a SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler for reducing the sulfur oxides that remain in the flue gas and for decreasing a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced, a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which for decreasing a temperature of the flue gas, and calcium carbonate spraying equipment for spraying calcium carbonate between the heat exchanger and an electric dust collector, wherein a mist generation material in the flue gas is converted from a gas state to a mist state to arrest and reduce the mist generation material in the mist state using calcium carbonate.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 8673250
    Abstract: An exhaust gas purification catalyst is made as a composition comprising titanium oxide (TiO2), aluminum sulfate (Al2(SO4)3), an oxide of vanadium (V), and an oxide of molybdenum (Mo) and/or tungsten (W), wherein on titanium oxide having sulfate ions and aluminum ions adsorbed thereon obtained by making contact with aluminum sulfate at more than 1 wt % and not more than 6 wt % relative to titanium oxide in the presence of water, an oxo acid salt of vanadium or a vanadyl salt and an oxo acid or an oxo acid salt of molybdenum and/or tungsten are supported in a proportion of more than 0 atom % and not more than 3 atom %, respectively. By this, the degradation of catalyst performance can be suppressed even with exhaust gas containing potassium compounds at a high concentration in combustion ash.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Keiichiro Kai, Yasuyoshi Kato, Naomi Imada
  • Patent number: 8673249
    Abstract: The invention includes a process for reducing the amount of NOx discharged to atmosphere from a FCC unit, having a regenerator and a means for collecting and supporting catalyst particles. The process comprises adding a catalyst to the regenerator flue gas prior to entering the collecting means and precipitating the catalyst in the collecting means to form a catalyst bed. Ammonia or ammonia precursor is added to the flue gas prior to and/or within the collecting means. The flue gas NOx is reacted with the ammonia or ammonia precursor at 200° C. to 800° C. in the presence of the catalyst bed to reduce the NOx amount, and the flue gas containing a reduced amount of NOx is discharged to atmosphere. The catalyst is one or more supported transition or lanthanide metal catalysts. The process can also be utilized in any combustion process.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 18, 2014
    Assignee: Intercat, Inc.
    Inventors: Martin Evans, Xunhua Mo, Raymond Paul Fletcher
  • Patent number: 8668889
    Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler which is provided on the downstream side of the SOx removal equipment, for reducing the sulfur oxides from the flue gas and for decreasing a gas temperature, CO2 recovery equipment which includes an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid so as to be reduced and a regenerator for causing the CO2 absorption liquid to emit CO2 so as to recover CO2 and regenerate the CO2 absorption liquid, and dissolved salt spraying equipment for reducing a mist generation material which is a generation source of mist that is generated in the absorber of the CO2 recovery equipment before introducing the flue gas to the CO2 recovery equipment, are included.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 11, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
  • Patent number: 8668893
    Abstract: Disclosed is a catalyst composition for reducing NOx through two steps including reacting NOx with H2 thus producing ammonia which is then reacted with NOx, instead of direct NOx reduction by H2, and a method of reducing NOx using the catalyst composition.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 11, 2014
    Assignee: Heesung Catalysts Corporation
    Inventors: Hyun-Sik Han, Eun-Seok Kim, Gon Seo, Se-Min Park, Yun-Je Lee
  • Publication number: 20140061540
    Abstract: Metal-organic frameworks of the family M2 (2,5-dioxido-1,4-benzenedicarboxylate) wherein M=Mg, Mn, Fe, Co, Cu, Ni or Zn are a group of porous crystalline materials formed of metal cations or clusters joined by multitopic organic linkers that can be used to isolate individual gases from a stream of combined gases. This group of adsorbant materials incorporates a high density of coordinatively-unsaturated MII centers lining the pore surfaces. These adsorbents are particularly suited for selective carbon dioxide/monoxide adsorption via pressure swing adsorption near temperatures of 313 K since they selectively adsorb carbon dioxide at high pressures in the presence of hydrogen, and desorb carbon dioxide upon a pressure decrease. The redox-active FeII centers in Fe2(dobdc) can be used for the separation of O2 from N2 and other separations based on selective, reversible electron transfer reactions.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Zoey R. Herm, Joseph A. Swisher, Berend Smit, Rajamani Krishna, Eric Bloch, Leslie Murray
  • Publication number: 20140056793
    Abstract: Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titania slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3—SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: CRISTAL USA INC.
    Inventors: Steve M. Augustine, David M. Chapman, Dennis F. Clark
  • Patent number: 8652410
    Abstract: A method for controlling a selective catalytic reduction system (SCR) exploiting a set of predetermined trigger events and a set point for the NOx concentration, and an arrangement for SCR. At the occurrence of a trigger event, NOx concentration measurement downstream from the catalyst elements is started and the difference between the measured concentration and the set point is determined. If the difference is negative, the dosing of the reducing agent is decreased. If the difference is positive, the dosing of the reducing agent is increased and after system stabilization a new measurement is started. If the measured value is below the previous measured value, the same dosing is maintained. If the measured value is above the previous measured value, the dosing is decreased with an amount greater than the increase after the previous measurement.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 18, 2014
    Assignee: Wartsila Finland Oy
    Inventors: Daniel Nordberg, Raine Peltokoski
  • Publication number: 20140044633
    Abstract: Methods and systems are provided for selective catalytic reduction of NOx with a low molecular low molecular weight hydrocarbon, e.g., propylene, as a reductant using a catalyst system including two catalysts. An exhaust stream containing an amount of NOx from a combustion operation is provided. A portion of the exhaust stream and a reductant stream including a low molecular weight hydrocarbon is introduced to a first catalytic reactor, which comprises a first catalyst including alumina loaded with silver. The NOx-reduced exhaust stream from the first catalyst is then directed to a second catalyst including zirconia loaded with at least one metal.
    Type: Application
    Filed: July 10, 2013
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ajit B. DANDEKAR, Richard F. SOCHA, Richard L. ECKES, S. Beau WALDRUP
  • Publication number: 20140044634
    Abstract: A heat recovery steam generator includes a casing for receiving exhaust gas from a turbine, a heat exchanger positioned within the casing for thermal communication with the exhaust gas, and an ammonia vapor distributor positioned within the casing. An ammonia vaporization unit is configured for conversion of aqueous ammonia to ammonia vapor and communication of the ammonia vapor to the distributor. A first extraction line operatively connects between the casing and the ammonia vaporization unit for communication of exhaust gas to the ammonia vaporization unit. A second extraction operatively connects between the casing and the ammonia vaporization unit for communication of exhaust gas to the ammonia vaporization unit. A catalytic reduction system is located within the casing and positioned downstream from the distributor for effecting a reaction between the ammonia vapor and NOx in the exhaust gas.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 13, 2014
    Applicant: Nooter/Eriksen, Inc.
    Inventor: Joseph E. Schroeder
  • Publication number: 20140044635
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers haying a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) haying at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 13, 2014
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Publication number: 20140044636
    Abstract: Methods and systems for selective catalytic reduction of NOx with an activated-carbon-supported metal catalyst at an operating temperature of between about between about 500° C. and about 750° C. An exhaust stream including NOx is introduced to a catalytic reactor having the activated-carbon-supported metal catalyst for NOx reduction of at least 90%. A second catalyst reactor can be provided downstream to remove or convert nitrous oxide as desired.
    Type: Application
    Filed: July 10, 2013
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ajit B. DANDEKAR, Richard F. SOCHA, Richard L. ECKES, S. Beau WALDRUP
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 8641993
    Abstract: A NOx absorber catalyst comprising an extruded solid body comprises either: (A) 10-95% by weight of at least one binder/matrix component; and 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal, wherein (a) and (b) are carried in one or more coating layer(s) on a surface of the extruded solid body; or (B) 10-95% by weight of at least one binder/matrix component; and 5-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Ralf Dotzel, Rainer Leppelt, Elizabeth Hazel Mountstevens, Jörg Werner Münch, Paul Richard Phillips, Hubert Schedel, Daniel Swallow
  • Publication number: 20140030178
    Abstract: The disclosure provides an improved means of controlling mercury emissions from coal-fired boiler applications. Specifically, the disclosure comprises a static mixing device placed in the flue gas stream. The static mixing device can enhance dispersion of injected sorbents in the flue gas, resulting in improved mercury capture at a lower sorbent injection rate.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Applicant: ADA-ES, Inc.
    Inventor: Cameron E. Martin
  • Patent number: 8636968
    Abstract: A method and apparatus for separating gaseous emission pollutants from a scrubber by using a narrow band of UV light energy emitted from an LED light source. The method includes sweeping the evolved gas away from the flow of liquid containing the pollutant using a non-reactive gas. The pollutant can be CO2, NOx, SOx, or other pollutants. The method can operate on multiple pollutants the gas stream, using different banks of LEDs, specifically tuned for a certain pollutant.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: January 28, 2014
    Inventor: Bamidele A. Omotowa
  • Patent number: 8629781
    Abstract: A method of assessing overall efficiency of a selective-catalytic-reduction catalyst includes monitoring instantaneous efficiency of the catalyst. The method also includes determining the overall efficiency by summing instantaneous efficiency values weighted by a first set of coefficients if the most recent instantaneous efficiency value is above an instantaneous efficiency threshold. The method additionally includes determining the overall efficiency by summing instantaneous efficiency values weighted by a second set of coefficients if the most recent instantaneous efficiency value is equal to or below the instantaneous efficiency threshold. Furthermore, the method includes determining whether the overall efficiency has dropped below an overall efficiency threshold and reporting when the overall efficiency has dropped below the overall efficiency threshold.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Stephen Paul Levijoki, John F. Van Gilder
  • Publication number: 20140010748
    Abstract: The present disclosure relates to a method for removing nitrogen oxides (NOx) more effectively at 300° C. or below in boilers, gas turbines, incinerators, diesel engines, glass melting furnaces, etc. by selective catalytic reduction (SCR). To this end, an oxidation catalyst is mounted in front of a NOx-reducing device based on selective catalytic reduction and the NOx composition, i.e. the ratio of NO:NO2, in the exhaust gas is adjusted to about 1:1, such that de-NOx catalytic reaction is carried out under optimized fast SCR condition and de-NOx efficiency at low temperature can be maximized.
    Type: Application
    Filed: October 20, 2011
    Publication date: January 9, 2014
    Applicant: GEESCO CO., LTD.
    Inventors: Dae Woo Kim, Ha Kue Park, Jae Pil Jung
  • Patent number: 8623305
    Abstract: The present disclosure relates to a method for controlling an injection device for feeding an ammonia-releasing reducing agent into an exhaust-gas purification system of an internal combustion engine for the purpose of reducing the nitrogen oxide emissions, wherein the exhaust-gas purification system comprises at least one SCR catalytic converter with n cells which are arranged in series in the exhaust-gas throughflow direction and in which ammonia can be stored.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 7, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Yasser Mohamed sayed Yacoub, Mario Balenovic, Jan Harmsen
  • Publication number: 20140004028
    Abstract: The invention pertains to a system for purification of a carbon dioxide rich flue gas generated in a boiler combusting a fuel in the presence of a gas containing oxygen, and being contaminated by NOx gases, wherein the system comprising one or more gas drier(s) comprising desiccants for removal of at least a portion of water content of the further compressed carbon dioxide rich flue gas; and a closed loop connected to the drier(s) for regeneration of desiccants of the drier(s) wherein the NOx gases are removed substantially separately from the water vapour. The invention pertains also to a method for removing the NOx gases substantially separately from the water vapour.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 2, 2014
    Applicant: ALSTOM Technology Ltd.
    Inventor: Olaf STALLMANN
  • Publication number: 20140004027
    Abstract: Provided are a titania carrier for supporting a catalyst for removing nitrogen oxides, a manganese oxide-titania catalyst comprising the same, an apparatus and a method for preparing the same, and a method for removing nitrogen oxides. More particularly, provided are a titania carrier having a specific surface area of 100 m2/g-150 m2/g, an average pore volume of 0.1 cm3/g-0.2 cm3/g, and an average particle size of 5 nm-20 nm, and an apparatus and method for preparing the same. Provided also are a manganese oxide-titania catalyst comprising the titania carrier and manganese oxide supported thereon, a method for preparing the same, and a method for removing nitrogen oxides using the catalyst. The catalyst has high activity and dispersibility, and thus provides excellent denitrogenation efficiency even in a low temperature range of about 200° C.
    Type: Application
    Filed: November 27, 2012
    Publication date: January 2, 2014
    Inventors: Jong Soo Jurng, Eun Seuk Park, Sung Min Chin, Woo Joon Cha
  • Patent number: 8617502
    Abstract: A catalyst for removal of NOx from exhaust gas, containing cerium oxide and titanium dioxide, wherein a first portion of the cerium oxide forms at least one agglomerate of cerium oxide crystallites interdispersed in the titanium dioxide, and a second portion of the cerium oxide forms at least one island on a surface of the titanium dioxide, a method for producing the catalyst, a process for selectively reducing NOx levels in an exhaust gas using the catalyst, and an SCR canister containing the catalyst therein.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 31, 2013
    Assignee: Cristal USA Inc.
    Inventors: Steven Mark Augustine, David Monroe Chapman, Mark Barrett Watson
  • Patent number: 8617497
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W. L. Southward
  • Patent number: 8613896
    Abstract: A process is disclosed for the removal of nitrous oxide from a gas stream having a contaminating concentration of nitrous oxide to provide a gas stream with a significantly reduced concentration of nitrous oxide. The process includes passing the feed gas stream through a first heat transfer zone that is in heat exchange relationship with a product stream whereby heat is transferred from the product stream to the feed gas stream to thereby provide a heated gas stream; passing said heated gas stream to a reaction zone containing a N2O decomposition catalyst and optionally a combination of other catalyst that provides for the decomposition of nitrous oxide or other contaminants and yielding therefrom a product stream having a reduced concentration of nitrous oxide; and passing the product stream to the first heat transfer zone to provide a cooled product stream.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: December 24, 2013
    Assignee: Shell Oil Company
    Inventors: Christos Odyssea Angelides, Bradley Douglas Morello
  • Patent number: 8609026
    Abstract: Various systems, devices, NO2 absorbents, NO2 scavengers and NO2 recuperator for generating nitric oxide are disclosed herein. According to one embodiment, an apparatus for converting nitrogen dioxide to nitric oxide can include a receptacle including an inlet, an outlet, a surface-active material coated with an aqueous solution of ascorbic acid and an absorbent wherein the inlet is configured to receive a gas flow and fluidly communicate the gas flow to the outlet through the surface-active material and the absorbent such that nitrogen dioxide in the gas flow is converted to nitric oxide.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 17, 2013
    Assignee: GENO LLC
    Inventors: David Fine, Gregory Vasquez, David P. Rounbehler
  • Publication number: 20130315810
    Abstract: The present invention relates to a method and a system for cleaning a CO2 rich flue gas stream containing water vapor and NOX prior to CO2 sequestration.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: ALSTOM Technology Ltd
    Inventors: Olaf STALLMANN, Gerhard Heinz, Klaus Schnieder
  • Patent number: 8591849
    Abstract: A system and method for reducing NOx emissions from a lean burn combustion source is provided. The system includes a blower passing air through a continuous duct having a hot portion and a reaction portion. The hot portion of the duct is positioned in the convective zone of the combustion source to heat the passing air for the reaction portion of the duct. An injector attached to a urea storage container is positioned in the reaction portion of the duct and sprays urea from the storage container into the heated air in the reaction duct for evaporation and decomposition into ammonia gas. The ammonia gas is then supplied to an injection grid in the exhaust duct of the lean burn combustion source upstream of a NOx reduction catalyst. The injection grid supplies the ammonia gas to the exhaust gas in the exhaust duct.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: November 26, 2013
    Assignee: Combustion Components Associates, Inc.
    Inventors: James M. Valentine, Jeffrey Michael Broderick, Scott H. Lindemann, R. Gifford Broderick, Edmund S. Schindler
  • Patent number: 8591845
    Abstract: The present invention relates to the use, for the reduction of oxidizing contaminating entities of the NOx type, in particular NO2, present in a gas to be purified, of a catalytic system comprising or composed of an oxide corresponding to the molar formulation: Ce1-y-zO2-xMyNz, in which: Ce is cerium, M is an element chosen from: Gd, Y, Sc, Sm, La, Pr, Nd, Er or Tb, y is between 0.01 and 0.4, N is an element having several degrees of valency chosen from: Ti, V, Cr, Mn, Fe, Co, Ni or Cu, z is less than 0.4, x is greater than 0.05.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 26, 2013
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique, Universite Claude Bernard-Lyon 1
    Inventors: Agnes Princivalle, Philippe Vernoux, Abdelkader Hadjar, Christian Guizard
  • Patent number: 8591848
    Abstract: Disclosed is a system which enables the efficient utilization of urea for selective catalytic reduction (SCR) of NOx by gasifying it and feeding it to a plurality of selective catalytic reduction units associated with a plurality of gas turbines. The invention enables feeding a gasified product of the urea with the ability to fully control separate SCR units without excessive reagent usage or loss of pollution control effectiveness. Controllers determine the amount of reagent required for each turbine to control NOx emissions and then mixes the gasified urea with the correct amount of carrier gas for efficient operation of each separate SCR unit despite the demand variation between the turbines. In this manner the gasification unit can be properly controlled to provide urea on demand without the need for storing large inventories of ammonia-containing gasses to correct for fluctuations in demand.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 26, 2013
    Assignee: Fuel Tech, Inc.
    Inventors: William H. Sun, Paul G. Carmignani, John M. Boyle
  • Patent number: 8591844
    Abstract: Systems and methods are described for reducing the start-up time of flue gas conditioning processes. Such processes can include a gas removal unit configured to selectively remove a reactive gas from a flue gas stream using a catalyst and reagent to produce a scrubbed stream that is substantially depleted of the reactive gas. A heating device can advantageously be used upstream of the gas removal unit to thereby preheat the catalyst to an operational temperature and thereby reduce the start-up time of the process.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 26, 2013
    Assignee: Fluor Technologies Corporation
    Inventors: Dennis W. Johnson, James H. Brown, Jon Peeples
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Patent number: 8575058
    Abstract: An activated carbon catalyst is described which is sufficiently active in the presence of catalytic poisons in crude gas to convert nitrogen oxides to nitrogen in the presence of ammonia.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 5, 2013
    Assignee: CarboTech AC GmbH
    Inventors: Klaus-Dirk Henning, Wolfgang Bongartz
  • Publication number: 20130287664
    Abstract: A hydrocarbon selective catalytic reduction (HC-SCR) catalyst is regenerated using a nitrogen-based reductant agent. The HC-SCR catalyst is in communication with a power system such as an internal combustion engine and receives exhaust gasses from the internal combustion engine. Sulfur in the exhaust gasses may deactivate the HC-SCR catalyst by sulfur oxides forming thereon. To remove the sulfur oxides, a nitrogen-based reductant agent is introduced to the exhaust gasses. The nitrogen-based reductant agent decomposes to nitrogen oxides and hydrogen. The hydrogen reacts with the sulfur oxides to form hydrogen sulfides thereby removing the sulfur oxides from the HC-SCR catalyst.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: Caterpillar Inc.
    Inventor: Praveen Chavannavar
  • Publication number: 20130287665
    Abstract: A NOx reduction catalyst carrier yields a NOx reduction catalyst with an improved permissible dose of poisoning substances such as arsenic. More specifically, the present invention relates to a NOx reduction catalyst carrier comprising TiO2, having a honeycomb structure and having a specific surface area greater than 100 m2/g.
    Type: Application
    Filed: December 7, 2011
    Publication date: October 31, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Katsumi Nochi, Masashi Kiyosawa
  • Patent number: 8568677
    Abstract: The present invention relates to the use of a zeolite catalyst comprising at least one transition metal and in addition sulfur and/or phosphorus atoms for reducing the content of nitrogen oxides in a gas, and also to a process for reducing the content of nitrogen oxides in a gas by bringing this gas into contact with such a zeolite catalyst.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 29, 2013
    Assignee: BASF SE
    Inventors: Stephan Deuerlein, Tobias Rosendahl
  • Patent number: 8568673
    Abstract: A gas analysis device according to the present invention includes a flue-gas extraction pipe for extracting flue gas from a flue gas duct to which flue gas including both of NH4Cl and SO3 is fed, a collector that is provided in the flue-gas extraction pipe, for removing soot dust contained in the extracted flue gas, a roll filter that is provided in the flue-gas extraction pipe, for depositing both of NH4Cl and SO3 contained in the flue gas, and a measurement device for measuring both of NH4Cl and SO3 contained in the flue gas by irradiating a sample including both of NH4Cl and SO3 deposited by the roll filter with X-rays and detecting fluorescent X-rays generated from the sample.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Seiji Kagawa, Masaru Chiyomaru, Nobuyuki Ukai, Takuya Okamoto, Moritoshi Murakami
  • Publication number: 20130280153
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Applicant: 2E ENVIRONMENTAL, LLC
    Inventor: Robert ELLERY